Packages
library(tidycensus)
library(tidyverse)
## -- Attaching packages ----------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.3
## v tidyr 1.1.1 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## -- Conflicts -------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(sf)
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
library(ggplot2)
library(classInt)
library(patchwork)
library(dplyr)
library(ggsn)
## Loading required package: grid
Here I get data profile variables from 2017 for Bexar County, TX Census Tracts
The data profile tables are very useful because they contain lots of pre-calculated variables.
Here is a query where we extract several variables from tehe 2017 ACS for Bexar County, Texas. We can also get the spatial data by requesting geometry=TRUE. Useing output=“wide” will put each variable in a column of the data set, with each row being a census tract.
v15_Profile <- load_variables(2017 , "acs5/profile", cache = TRUE) #demographic profile tables
#Search for my variable of interest
v15_Profile[grep(x = v15_Profile$label, "Median"), c("name", "label")]
## # A tibble: 24 x 2
## name label
## <chr> <chr>
## 1 DP03_0062 Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS~
## 2 DP03_0062P Percent Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED~
## 3 DP03_0086 Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS~
## 4 DP03_0086P Percent Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED~
## 5 DP03_0090 Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS~
## 6 DP03_0090P Percent Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED~
## 7 DP03_0092 Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS~
## 8 DP03_0092P Percent Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED~
## 9 DP03_0093 Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED DOLLARS~
## 10 DP03_0093P Percent Estimate!!INCOME AND BENEFITS (IN 2017 INFLATION-ADJUSTED~
## # ... with 14 more rows
sa_acs<-get_acs(geography = "tract",
state="TX",
county = c("Bexar"),
year = 2017,
variables=c( "DP05_0001E", # Total Population
"DP03_0062E") ,# Median Household Income
geometry = T, output = "wide")
## Getting data from the 2013-2017 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
## Using the ACS Data Profile
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
Renaming variables and filtering data
#create a county FIPS code - 5 digit
sa_acs$county<-substr(sa_acs$GEOID, 1, 5)
#rename variables and filter missing cases
sa_acs3<-sa_acs%>%
mutate(totpop= DP05_0001E, mhi=DP03_0062E) %>%
# st_transform(crs = 102740)%>%
na.omit()
Quantile Breaks vs Pretty Breaks
library(tmap)
library(tmaptools)
tm_shape(sa_acs3)+
tm_polygons("mhi", title="Median Household Income", palette="Blues", style="quantile", n=5 ,legend.hist=T)+
tm_format("World", title="San Antonio Median Household Income - Quantile Breaks", legend.outside=T)+
tm_scale_bar()+
tm_compass()
tm_shape(sa_acs3)+
tm_polygons("mhi", title="Median Household Income", palette="Blues", style="pretty", n=5,legend.hist=T )+
tm_format("World", title="San Antonio Median Household Income - Pretty Breaks", legend.outside=T)+
tm_scale_bar()+
tm_compass()