#install.packages("ggplot2")
#install.packages("dplR")
library(ggplot2)
library(dplR)

#install.packages("installr")
#library(installr)
#check.for.updates.R()
#install.R()
#install.packages("mosaicData")
library(mosaicData)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Scatter Plot

Geom_point Geom_smooth : linear 표시

data(CPS85, package = "mosaicData")

# exper 와 wage 의 산점도 
ggplot(CPS85, mapping=aes(exper, wage))+
    geom_point()

#wage 가 40 이하인것들을 선택 
filter(CPS85, wage < 40)-> plotdata


ggplot(plotdata, aes(exper,wage))+geom_point()

## Warning: Duplicated aesthetics after name standardisation: size
## `geom_smooth()` using formula 'y ~ x'

Grouping - ggplot (x, y : numeric , x= color )

ggplot(plotdata, mapping=aes(exper, wage, color=sex))+
  geom_point()+
  geom_smooth(method="lm", se=FALSE, size=1.5) #se: the confidence interval 표시 
## `geom_smooth()` using formula 'y ~ x'

Scales (sales_x_continues, scale_y_continue : x, y, 축의 범위 표시 )

ggplot(plotdata, mapping = aes(exper, wage, color=sex))+
    geom_point()+
    geom_smooth(method="lm", se=FALSE)+
    scale_x_continuous(breaks = seq(0,60,10))+
    scale_y_continuous(breaks = seq(0,30,5),
                       label= scales:: dollar)+
  scale_color_manual(values=c("indianred3", "cornflowerblue"))
## `geom_smooth()` using formula 'y ~ x'

facetwrap : 변수 1 개 facet grid: 변수 2개 ~x

ggplot(plotdata, mapping = aes(exper, wage, color=sex))+
    geom_point()+
    geom_smooth(method="lm", se=FALSE)+
    scale_x_continuous(breaks = seq(0,60,10))+
    scale_y_continuous(breaks = seq(0,30,5),
                       label= scales:: dollar)+
  scale_color_manual(values=c("indianred3", "cornflowerblue"))+
  facet_wrap(~sector)
## `geom_smooth()` using formula 'y ~ x'

Labels + Theme

ggplot(plotdata, aes(exper, wage, color=sex))+
  geom_point()+
  geom_smooth(method="lm", se=FALSE)+ 
  scale_x_continuous(breaks = seq(0,60,10))+
  scale_y_continuous(breaks= seq(0,30,5))+
  facet_wrap(~sector)+
  scale_color_manual(values= c("indianred3", "cornflowerblue"))+
  labs(title="Relationship between wage and experience",
       subtitle = "Current Populatin Survey", 
       caption = "source: mosaic data", 
       x="Year of Experenice ", 
       y="Hourly Wage",
       color="Gender")+
  theme_minimal()
## `geom_smooth()` using formula 'y ~ x'

linear transformation

geom_smooth 에서 formula 옵션으로 y=ax+b 의 식을 지정해 준다.

ggplot(plotdata, aes(exper, wage, color=sex))+
  geom_point(alpha=0.7, size=2)+
  geom_smooth(method="lm", 
              formula = y ~ poly(x,2),
              se=FALSE,
              size=3)

ggplot(plotdata, aes(exper,wage))+
  geom_point(aes(color=sex))+ 
  geom_smooth(method="lm", 
              formula = y ~poly(x,2), 
              se=FALSE)

Color 변수를 geom_point로 쓸 경우에는 전체 linear 식을 보여준다.

Univariate Graphs : Categorical and Quantitative (age, weight)

3.1 Categorical (Bar Chart ) - RACE (white, hispanic, black 명목형 변수 )

Categorical 변수는 빈도수 표시 : BAR 차트 몇 개가 있는지 (비율%) 가능

data(Marriage, package="mosaicData")

ggplot(Marriage, aes(race))+
    geom_bar(fill="indianred3", color="black")+ #fill 색상, color = 테두리 
    labs(x="Race", y="Frequency")

Percent - RACE : 각 인종은 몇 %를 차지하는가? 1) ..count../sum(..count..) 2) scale_y_continuous(label= scale:: percent )

ggplot(Marriage, aes(x=race, 
               y= ..count../sum(..count..)))+
  geom_bar(fill="indianred3", color="black")+
  scale_y_continuous(labels = scales::percent)

#3) Percent - dplr 활용해서 DB 뽑고 그 안에서 그래프 만들기

Marriage %>% 
  count(race) %>% 
  mutate(pct=paste0(round(n/sum(n)*100), "%")) %>% 
  arrange(desc(n)) -> df1


df1
##              race  n pct
## 1           White 74 76%
## 2           Black 22 22%
## 3 American Indian  1  1%
## 4        Hispanic  1  1%
## Categorical 변수의 Count 갯수,% 구하기 : aes(x, count), y=pct 
ggplot(df1, aes(reorder(race, n), pct))+  ## bar chart (x, y 필요 )
  geom_bar(stat = "identity")+  # stat=identity : plotting function not to calculate counts 
  geom_text(aes(label=pct), vjust=-0.25)

Marriage %>% 
  count(officialTitle) %>% 
  mutate(pct=paste0(round(n/sum(n)*100),"%")) %>% 
  arrange(desc(pct)) -> df2 


ggplot(df2, aes(x=reorder(officialTitle, n), y=pct))+
  geom_bar(stat = "identity", fill="darkgreen")+
  geom_text(aes(label=pct), vjust=0.15)+
  coord_flip()+
  theme_update()

Tree MAP - Categorical variable - COUNT/PCT

library(treemapify)
plotdata <- Marriage %>% 
            count(officialTitle)


ggplot(plotdata, aes(fill=officialTitle, 
                     area=n, 
                     label=officialTitle,n))+
  geom_treemap()+
  geom_treemap_text(color="white", 
                    place="center")

Categorical + Categrocial

1. Stacked Bar

두 변수가 Categorical 이면, x에 카테고리,fill에 다른 카데로기 변수를 넣어준다

ggplot(mpg, aes(class, fill=drv))+
  geom_bar(position = "stack")  # position="dodge" : 따로 만들어서 보여준다 / position= "fill" 전체 넣어서 보여주기 

ggplot(mpg, aes(class, fill=drv))+
  geom_bar(position= "fill")

class / drv 이 Categorical 범주이기 때문에, 두 변수를 factor 로 변환 시키고, level=c()로 묶어서 이름을 변경

두 범주형 데이터는 교차 빈도, 비율이 나올 수 있기 때문에, x1 *x2 의 비율에 대한 검정을 생각해서 시각화 시킨다

library(scales)
#install.packages('DT')
library(DT)

## % 표시를 위한 ddplr 가공 


plotdata <- mpg %>% 
  group_by(class, drv) %>% 
  summarise(n=n()) %>% 
  mutate(pct= n/sum(n), 
         lbl=scales::percent(pct))
## `summarise()` has grouped output by 'class'. You can override using the `.groups` argument.
datatable(plotdata)
## ddplr 로 데이터 가공 group_by 2 개의 카테고리는 x=class,y=pct,fill=drv 로 지정한다 
## geom_bar 에서 ddplr 로 데이터를 가져왔기 때문에, stat="identity" 입력해주기 
## geom_text : aes(label=lbl) 로 어떤 컬럼이 들어갈지 지정해준다. 
ggplot(plotdata, aes(x=factor(class),
                    y=pct,
                     fill=factor(drv)))+
  geom_bar(stat="identity",
          position = "fill")+
  scale_y_continuous(breaks = seq(0,1,2), label =percent)+
  scale_fill_brewer(palette = "Set2")+
  geom_text(aes(label=lbl), size=3)

  theme_minimal()+
  labs(y= "Percent",
       fill="Drive Train",
       x="Class",
       title= "Automobile by Class")
## List of 96
##  $ line                      :List of 6
##   ..$ colour       : chr "black"
##   ..$ size         : num 0.5
##   ..$ linetype     : num 1
##   ..$ lineend      : chr "butt"
##   ..$ arrow        : logi FALSE
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_line" "element"
##  $ rect                      :List of 5
##   ..$ fill         : chr "white"
##   ..$ colour       : chr "black"
##   ..$ size         : num 0.5
##   ..$ linetype     : num 1
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_rect" "element"
##  $ text                      :List of 11
##   ..$ family       : chr ""
##   ..$ face         : chr "plain"
##   ..$ colour       : chr "black"
##   ..$ size         : num 11
##   ..$ hjust        : num 0.5
##   ..$ vjust        : num 0.5
##   ..$ angle        : num 0
##   ..$ lineheight   : num 0.9
##   ..$ margin       : 'margin' num [1:4] 0points 0points 0points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : logi FALSE
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ title                     : chr "Automobile by Class"
##  $ aspect.ratio              : NULL
##  $ axis.title                : NULL
##  $ axis.title.x              :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : num 1
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 2.75points 0points 0points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.title.x.top          :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : num 0
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 0points 2.75points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.title.x.bottom       : NULL
##  $ axis.title.y              :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : num 1
##   ..$ angle        : num 90
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 2.75points 0points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.title.y.left         : NULL
##  $ axis.title.y.right        :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : num 0
##   ..$ angle        : num -90
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 0points 0points 2.75points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.text                 :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : chr "grey30"
##   ..$ size         : 'rel' num 0.8
##   ..$ hjust        : NULL
##   ..$ vjust        : NULL
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : NULL
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.text.x               :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : num 1
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 2.2points 0points 0points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.text.x.top           :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : num 0
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 0points 2.2points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.text.x.bottom        : NULL
##  $ axis.text.y               :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : num 1
##   ..$ vjust        : NULL
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 2.2points 0points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.text.y.left          : NULL
##  $ axis.text.y.right         :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : num 0
##   ..$ vjust        : NULL
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 0points 0points 2.2points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ axis.ticks                : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ axis.ticks.x              : NULL
##  $ axis.ticks.x.top          : NULL
##  $ axis.ticks.x.bottom       : NULL
##  $ axis.ticks.y              : NULL
##  $ axis.ticks.y.left         : NULL
##  $ axis.ticks.y.right        : NULL
##  $ axis.ticks.length         : 'simpleUnit' num 2.75points
##   ..- attr(*, "unit")= int 8
##  $ axis.ticks.length.x       : NULL
##  $ axis.ticks.length.x.top   : NULL
##  $ axis.ticks.length.x.bottom: NULL
##  $ axis.ticks.length.y       : NULL
##  $ axis.ticks.length.y.left  : NULL
##  $ axis.ticks.length.y.right : NULL
##  $ axis.line                 : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ axis.line.x               : NULL
##  $ axis.line.x.top           : NULL
##  $ axis.line.x.bottom        : NULL
##  $ axis.line.y               : NULL
##  $ axis.line.y.left          : NULL
##  $ axis.line.y.right         : NULL
##  $ legend.background         : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ legend.margin             : 'margin' num [1:4] 5.5points 5.5points 5.5points 5.5points
##   ..- attr(*, "unit")= int 8
##  $ legend.spacing            : 'simpleUnit' num 11points
##   ..- attr(*, "unit")= int 8
##  $ legend.spacing.x          : NULL
##  $ legend.spacing.y          : NULL
##  $ legend.key                : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ legend.key.size           : 'simpleUnit' num 1.2lines
##   ..- attr(*, "unit")= int 3
##  $ legend.key.height         : NULL
##  $ legend.key.width          : NULL
##  $ legend.text               :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : 'rel' num 0.8
##   ..$ hjust        : NULL
##   ..$ vjust        : NULL
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : NULL
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ legend.text.align         : NULL
##  $ legend.title              :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : num 0
##   ..$ vjust        : NULL
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : NULL
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ legend.title.align        : NULL
##  $ legend.position           : chr "right"
##  $ legend.direction          : NULL
##  $ legend.justification      : chr "center"
##  $ legend.box                : NULL
##  $ legend.box.just           : NULL
##  $ legend.box.margin         : 'margin' num [1:4] 0cm 0cm 0cm 0cm
##   ..- attr(*, "unit")= int 1
##  $ legend.box.background     : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ legend.box.spacing        : 'simpleUnit' num 11points
##   ..- attr(*, "unit")= int 8
##  $ panel.background          : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ panel.border              : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ panel.spacing             : 'simpleUnit' num 5.5points
##   ..- attr(*, "unit")= int 8
##  $ panel.spacing.x           : NULL
##  $ panel.spacing.y           : NULL
##  $ panel.grid                :List of 6
##   ..$ colour       : chr "grey92"
##   ..$ size         : NULL
##   ..$ linetype     : NULL
##   ..$ lineend      : NULL
##   ..$ arrow        : logi FALSE
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_line" "element"
##  $ panel.grid.major          : NULL
##  $ panel.grid.minor          :List of 6
##   ..$ colour       : NULL
##   ..$ size         : 'rel' num 0.5
##   ..$ linetype     : NULL
##   ..$ lineend      : NULL
##   ..$ arrow        : logi FALSE
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_line" "element"
##  $ panel.grid.major.x        : NULL
##  $ panel.grid.major.y        : NULL
##  $ panel.grid.minor.x        : NULL
##  $ panel.grid.minor.y        : NULL
##  $ panel.ontop               : logi FALSE
##  $ plot.background           : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ plot.title                :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : 'rel' num 1.2
##   ..$ hjust        : num 0
##   ..$ vjust        : num 1
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 0points 5.5points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ plot.title.position       : chr "panel"
##  $ plot.subtitle             :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : num 0
##   ..$ vjust        : num 1
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 0points 0points 5.5points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ plot.caption              :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : 'rel' num 0.8
##   ..$ hjust        : num 1
##   ..$ vjust        : num 1
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 5.5points 0points 0points 0points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ plot.caption.position     : chr "panel"
##  $ plot.tag                  :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : 'rel' num 1.2
##   ..$ hjust        : num 0.5
##   ..$ vjust        : num 0.5
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : NULL
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ plot.tag.position         : chr "topleft"
##  $ plot.margin               : 'margin' num [1:4] 5.5points 5.5points 5.5points 5.5points
##   ..- attr(*, "unit")= int 8
##  $ strip.background          : list()
##   ..- attr(*, "class")= chr [1:2] "element_blank" "element"
##  $ strip.background.x        : NULL
##  $ strip.background.y        : NULL
##  $ strip.placement           : chr "inside"
##  $ strip.text                :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : chr "grey10"
##   ..$ size         : 'rel' num 0.8
##   ..$ hjust        : NULL
##   ..$ vjust        : NULL
##   ..$ angle        : NULL
##   ..$ lineheight   : NULL
##   ..$ margin       : 'margin' num [1:4] 4.4points 4.4points 4.4points 4.4points
##   .. ..- attr(*, "unit")= int 8
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ strip.text.x              : NULL
##  $ strip.text.y              :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : NULL
##   ..$ angle        : num -90
##   ..$ lineheight   : NULL
##   ..$ margin       : NULL
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ strip.switch.pad.grid     : 'simpleUnit' num 2.75points
##   ..- attr(*, "unit")= int 8
##  $ strip.switch.pad.wrap     : 'simpleUnit' num 2.75points
##   ..- attr(*, "unit")= int 8
##  $ strip.text.y.left         :List of 11
##   ..$ family       : NULL
##   ..$ face         : NULL
##   ..$ colour       : NULL
##   ..$ size         : NULL
##   ..$ hjust        : NULL
##   ..$ vjust        : NULL
##   ..$ angle        : num 90
##   ..$ lineheight   : NULL
##   ..$ margin       : NULL
##   ..$ debug        : NULL
##   ..$ inherit.blank: logi TRUE
##   ..- attr(*, "class")= chr [1:2] "element_text" "element"
##  $ y                         : chr "Percent"
##  $ fill                      : chr "Drive Train"
##  $ x                         : chr "Class"
##  - attr(*, "class")= chr [1:2] "theme" "gg"
##  - attr(*, "complete")= logi TRUE
##  - attr(*, "validate")= logi TRUE

Quantitiative + Quantitative

Scatter Plot

library(data.table)
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
data(Salaries, package="carData") 

as.data.table(Salaries) -> sal

datatable(sal)
## phd 가 salary 랑 관련이 있을까? 

ggplot(sal, aes(yrs.since.phd, salary))+
  geom_point(color="steelblue")+
  geom_smooth(method = "lm", color="indianred3")+
  theme_minimal()+
  scale_x_continuous(breaks = seq(0,50,10))+
  scale_y_continuous(limits = c(50000, 250000), labels = scales::dollar)+
  labs(x= "Year Since Phd", 
       y="Salaries",
       title = "Relation between Year since phd and Salaries ",
       subtitle = "9 month salary for 2008-2009")
## `geom_smooth()` using formula 'y ~ x'

Statistical Test - 2 연속형 변수의 관계성을 평가해보기 cor.test (상관분석)

#install.packages("pillar", type="binary")
#install.packages("ggpubr")
library("ggpubr")

# 공식 
#cor(x, y, method = c("pearson", "kendall", "spearman"))
#cor.test(x, y, method=c("pearson", "kendall", "spearman"))

cor.test(sal$yrs.since.phd,  sal$salary, method="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  sal$yrs.since.phd and sal$salary
## t = 9.1775, df = 395, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3346160 0.4971402
## sample estimates:
##       cor 
## 0.4192311

0.491211 로 상관이 있어보인다.

ggscatter(sal, x='yrs.since.phd', y='salary', 
            add = "reg.line",                                 # Add regression line
          conf.int = TRUE,                                  # Add confidence interval
          add.params = list(color = "blue",
                            fill = "lightgray"))+
  stat_cor(method = "pearson", label.x = 3, label.y = 30) 
## `geom_smooth()` using formula 'y ~ x'

남/여 그룹별 phd 와 연봉의 관계를 시각화

ggscatter(sal,  x='yrs.since.phd', y='salary', 
          add='reg.line', 
          color= 'sex', palette = 'jco',
          shape='sex',
          conf.int = TRUE                  
          )+
  stat_cor(aes(color='sex'), label.x=10)
## `geom_smooth()` using formula 'y ~ x'

ggscatter(sal,  x='yrs.since.phd', y='salary'
          , color = 'sex', shape='sex',
          ellipse = TRUE)

4.2.2 LINE PLOT

년도에 따른 그래프 그리기 Column 은 Country, continet, year, lifeExp, pop, gdpPrecap

#install.packages("gapminder") 
library(gapminder)

data(gapminder, package = "gapminder")

as.data.frame(gapminder) -> mider

DT::datatable(mider)

미국은 년도 별로 lifeExp 은 어떠한가?

mider %>%  
  filter(country == "United States") %>% 
  ggplot( aes(x=year, y=lifeExp))+
  geom_line(color="lightgrey", size=2)+
  geom_point(color="steelblue", size=3)

4.3 Categorical VS Quantitative

4.3.1 Barchart (On sumarry statistics)

예를 들어, 각 그룹별 평균 과 같은 내용을 시각화 할때 쓰임

blue <-"cornflowerblue"

sal %>% 
  group_by(rank) %>% 
  summarise(avg_sal=mean(salary)) %>% 
  ggplot(aes(x=rank, y=avg_sal))+
  geom_bar(stat = "identity", fill=blue)+
  geom_text(aes(label = dollar(avg_sal), vjust= -0.25))+
  scale_y_continuous(labels = dollar)+
  theme_minimal()+
  labs(x= "" , y=" ")

4.3.2 Grouped Kernel Density Plots

그룹 별 분포도(Density) 확인이 가능

phd 그룹을 명목형 변수로 나누어서 그룹 별 salary 분포를 보여주기

#install.packages("reshape")
library(reshape)
## 
## Attaching package: 'reshape'
## The following object is masked from 'package:data.table':
## 
##     melt
## The following object is masked from 'package:dplyr':
## 
##     rename
sal<-rename( sal, c(yrs.since.phd = "phd"))

summary(sal$phd) 
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00   12.00   21.00   22.31   32.00   56.00
#20년 단위로 쪼개기 

ifelse(sal$phd <= 20 , '20', 
       ifelse( sal$phd >=21 & sal$phd <= 40,'20~40', 
               ifelse( sal$phd >= 41 ,' Above','기타타'))) -> sal$phd_group

sal %>%  
  ggplot(aes(x=salary, fill=phd_group))+ 
  geom_density(alpha= 0.4)

4.3.3 Box_Plot

사분위수 및 이상치 검증에 사용

ggplot(sal, aes(x=phd_group, y=salary))+
  geom_boxplot(fill=blue, notch = TRUE)

Grammer : stat_compare_mean (mehtod = “t.text”, “anova” )

Ho: 집단간 임금의 차이가 없다 H1: 집단간 임금이 차이가 있다.

p < 2.2e -16 기각 : 차이가 있다

ggboxplot(sal, x= 'phd_group', y= 'salary', 
          color = 'phd_group', 
          line.color ='gray', 
          line.size= 0.4, 
          palette = 'npg')+ 
  stat_compare_means(method ="anova")

4.3.4 Category 별 분포도

#install.packages("ggridges")
library(ggridges)

ggplot(sal, aes(x=salary, y=phd_group, fill=phd_group))+
  geom_density_ridges()+
  theme_ridges()
## Picking joint bandwidth of 11300

4.3.5 MEAN/SEM Plot

Error Bar 와 함께 각 그룹별 평균의 sd, se 를 나타내 주는데 사용된다.

sal %>% 
  group_by(phd_group) %>% 
  summarise( n= n(), 
             mean = mean(salary), 
             sd = sd(salary), 
             se = sd/sqrt(n),
             ci =qt (0.975, df= n-1)* sd/sqrt(n)) -> df_2 


datatable(df_2)

ANOVA 검정으로 집단간 차이가 있다는 것을 검증 평균과 평균오차를 그림으로 나타내기

ggplot(df_2, aes(x=phd_group, y= mean, group= 1))+
  geom_point()+
  geom_line()+ 
  geom_errorbar(aes(ymin = mean - se , 
                    ymax = mean + se, 
                    width = .1))

남 여 변수 추가

sal %>% 
  group_by(phd_group, sex) %>%  # group_by 에서 sex 추가 지정 
  summarise(n = n(), 
            mean = mean(salary), 
            sd =sd (salary), 
            se= sd/sqrt(salary)) -> df_3 
## `summarise()` has grouped output by 'phd_group', 'sex'. You can override using the `.groups` argument.
ggplot(df_3,aes(x= phd_group, 
             y= mean, 
             group =sex,
             color= sex))+ 
  geom_point()+
  geom_line()+
  geom_errorbar( aes(ymin = mean - se, 
                 ymax= mean + se) , 
                 )

Rank + Sex 별 Salary 평균 차이

#df_4 table 산출 


sal %>%  
    group_by(rank, sex) %>% 
    summarise( n= n(), 
               mean = mean(salary), 
               sd = sd(salary), 
               se = sd/sqrt(salary)) -> df_4
## `summarise()` has grouped output by 'rank', 'sex'. You can override using the `.groups` argument.
ggplot(df_4, aes(x = rank, 
                 y = mean, 
                 group= sex, 
                 color= sex))+ 
    geom_point(size= 3)+ 
    geom_line(size =1)+
    geom_errorbar(aes (ymin = mean - se , 
                       ymax = mean + se))+ 
  scale_y_continuous(label = scales:: dollar)+ 
  scale_color_brewer(palette = "Set1")+ 
  theme_minimal()+ 
  labs(x = "RANK" , y =" Average Salaries by Rank and Sex", 
       title = "Mean Salary by rank and sex",
       subtitle =  "(mean +/- standard error)")

## ggpubr 는 좀 더 쉽게 나타낼 수 있음 + 통계값 

ggline(df_4 , x = "rank", 
              y= "mean", 
              color ="sex", 
              add = "mean se") + 
  stat_compare_means(aes(group= sex), label = "p.signif")

Geom_jitter 사용해보기

ggplot(sal, aes(x= rank, 
                y= salary,
                color =rank))+
  geom_jitter()+
  geom_boxplot(size = 1, 
               outlier.shape = 1, 
               outlier.color =  "black")+
  facet_wrap(~sex) + 
  theme_minimal()

Cleveland Dot Charts

각 그룹별 수치를 정리할 때 좋음 (그룹이 너무 많을때 )

예를 들어, 각 나라별 예상 수명

head(gapminder, 4)
## # A tibble: 4 x 6
##   country     continent  year lifeExp      pop gdpPercap
##   <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
## 1 Afghanistan Asia       1952    28.8  8425333      779.
## 2 Afghanistan Asia       1957    30.3  9240934      821.
## 3 Afghanistan Asia       1962    32.0 10267083      853.
## 4 Afghanistan Asia       1967    34.0 11537966      836.
# 2007 년의 Asia 지역의 나라만 골라서 평균 수명이 각각 어떤지 나타내보기 

gapminder %>%  
    filter(continent == "Asia" & 
             year  == 2007) %>% 
  ggplot(aes(x = lifeExp, 
             y= reorder(country,lifeExp))) + 
  geom_point(color = blue)+
  geom_segment(aes(x = 40 , 
                   xend = lifeExp, 
                   y= reorder(country, lifeExp), 
                  yend = reorder(country, lifeExp)), 
               color = "lightgrey")+ 
  labs(x = "Life Expectancy in 2007", 
       y = "Countires", 
       title = "Life Expectancy by Country", 
       subtitle = "Data for Asia - 2007")+
  theme_light()

ggboxplot(gapminder, 
          x= "continent" , 
          y = "lifeExp", 
          color ="continent")+ 
  stat_compare_means(method ="anova")

cor.test(gapminder$lifeExp, gapminder$pop, method ="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  gapminder$lifeExp and gapminder$pop
## t = 2.6854, df = 1702, p-value = 0.007314
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.01752303 0.11209600
## sample estimates:
##        cor 
## 0.06495537
ggscatter(gapminder, 
          x ="lifeExp", 
          y= "pop",
          color ="continent",
          add= "reg.line",
          conf.int=TRUE)
## `geom_smooth()` using formula 'y ~ x'

gapminder %>%  
    filter(continent == "Asia" ) -> Asia_only

cor.test(Asia_only$lifeExp, Asia_only$pop, method ="pearson")
## 
##  Pearson's product-moment correlation
## 
## data:  Asia_only$lifeExp and Asia_only$pop
## t = 0.65844, df = 394, p-value = 0.5106
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.06560731  0.13127062
## sample estimates:
##        cor 
## 0.03315327
ggscatter(Asia_only, 
          x ="lifeExp", 
          y= "pop",
          add= "reg.line",
          conf.int=TRUE)+
  stat_cor(method = "pearson", label.y = 1e+09)
## `geom_smooth()` using formula 'y ~ x'

gapminder
## # A tibble: 1,704 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # ... with 1,694 more rows
ggplot(gapminder, aes (x = lifeExp, y = continent, fill = continent)) +
  geom_density_ridges2() +
  theme_ridges()
## Picking joint bandwidth of 2.23

ggplot(sal, aes( x = phd, 
                  y= salary, 
                  color = rank,
                  shape = sex, 
                 size =phd))+ 
  geom_point()

ggplot(sal, aes(x =phd, 
                y= salary, 
                color = sex))+
  geom_point(size= 2, alpha= 0.4)+
  geom_smooth(method =  "lm", 
              se = FALSE)+
  scale_y_continuous(label = scales :: dollar)+
  scale_color_brewer(palette = "Set1")+
  theme_minimal()
## `geom_smooth()` using formula 'y ~ x'

ggscatter(sal, 
          x = "phd", 
          y = "salary", 
          color ="rank",
          palette = "jco",
          add ="reg.line" , 
          conf.int = TRUE,
          fullrange = TRUE,   # Extending the regression line
          rug = TRUE )+
  stat_cor(aes(color='rank'), method ="spearman")
## `geom_smooth()` using formula 'y ~ x'

sal %>%  
  group_by(sex, rank, discipline) %>% 
  summarise( n = n(), 
             mean = mean(salary),
             sd = sd(salary), 
             se = sd/ sqrt(n)) -> df5
## `summarise()` has grouped output by 'sex', 'rank'. You can override using the `.groups` argument.
ggplot(df5, aes(x= sex, 
                y=mean, 
                color = sex))+ 
  geom_point()+
  geom_errorbar(aes(ymin = mean - se, 
                    ymax = mean + se))+ 
  facet_grid(.~rank + discipline)+
  scale_y_continuous(label = scales :: dollar)+
  theme(legend.position = "none ", 
        panel.grid.major.x = element_blank(), 
        panel.grid.major.y = element_blank())+
  scale_color_brewer(palette = "Set1")+
  theme_bw()

Cate 3- Con 1

## CPS85 데이터 활용 연습 

CPS85 %>%  
  group_by(race, married, hispanic) %>% 
  summarise( n= n(), 
             mean = mean(wage), 
             sd = sd(wage), 
             se = sd/sqrt(n)) -> df6
## `summarise()` has grouped output by 'race', 'married'. You can override using the `.groups` argument.
ggplot(df6, aes(x= married, 
                y= mean, 
                color = married))+
  geom_point()+
  geom_errorbar(aes(ymin = mean- se, 
                    ymax= mean + se))+
 facet_grid(.~ race + hispanic)+ 
  theme_bw()+ 
  scale_color_brewer(palette = "Set1")

gapminder %>%  
    filter(continent == "Americas")  -> pd_1 



ggplot(pd_1, aes(x= year, y= lifeExp))+
  geom_line(color = blue)+ 
  geom_point(color ="indianred3")+
  facet_wrap(~country)+
  theme_minimal()

Time Series

ggplot(economics, aes(x=date, y=psavert))+
  geom_line(color = "indianred3", size = 1)+
  geom_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'

#install.packages("quantmod")
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## Attaching package: 'xts'
## The following objects are masked from 'package:data.table':
## 
##     first, last
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
getSymbols("AAPL", 
           return.class = "data.frame", 
           from = "2018-01-01") -> apple
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
AAPL %>% 
  mutate(Date = as.Date(row.names(.))) %>% 
  select(Date, AAPL.Close) %>% 
  mutate(Company = "Apple") -> apple


getSymbols("FB", 
           return.class ="data.frame", 
           from = "2018-01-01") -> fb

apple <- rename(apple, c(AAPL.Close = "Close"))

#sal<-rename( sal, c(yrs.since.phd = "phd"))#

FB %>% 
  mutate(Date = as.Date(row.names(.))) %>% 
  mutate(Company = "Facebook") %>% 
  select(Date, FB.Close) %>% 
  mutate(Company = "Face Book")-> fb

fb <- rename(fb, c(FB.Close = "Close"))




rbind(apple, fb) -> mseries
mseries
##                   Date    Close   Company
## 2018-01-02  2018-01-02  43.0650     Apple
## 2018-01-03  2018-01-03  43.0575     Apple
## 2018-01-04  2018-01-04  43.2575     Apple
## 2018-01-05  2018-01-05  43.7500     Apple
## 2018-01-08  2018-01-08  43.5875     Apple
## 2018-01-09  2018-01-09  43.5825     Apple
## 2018-01-10  2018-01-10  43.5725     Apple
## 2018-01-11  2018-01-11  43.8200     Apple
## 2018-01-12  2018-01-12  44.2725     Apple
## 2018-01-16  2018-01-16  44.0475     Apple
## 2018-01-17  2018-01-17  44.7750     Apple
## 2018-01-18  2018-01-18  44.8150     Apple
## 2018-01-19  2018-01-19  44.6150     Apple
## 2018-01-22  2018-01-22  44.2500     Apple
## 2018-01-23  2018-01-23  44.2600     Apple
## 2018-01-24  2018-01-24  43.5550     Apple
## 2018-01-25  2018-01-25  42.7775     Apple
## 2018-01-26  2018-01-26  42.8775     Apple
## 2018-01-29  2018-01-29  41.9900     Apple
## 2018-01-30  2018-01-30  41.7425     Apple
## 2018-01-31  2018-01-31  41.8575     Apple
## 2018-02-01  2018-02-01  41.9450     Apple
## 2018-02-02  2018-02-02  40.1250     Apple
## 2018-02-05  2018-02-05  39.1225     Apple
## 2018-02-06  2018-02-06  40.7575     Apple
## 2018-02-07  2018-02-07  39.8850     Apple
## 2018-02-08  2018-02-08  38.7875     Apple
## 2018-02-09  2018-02-09  39.1025     Apple
## 2018-02-12  2018-02-12  40.6775     Apple
## 2018-02-13  2018-02-13  41.0850     Apple
## 2018-02-14  2018-02-14  41.8425     Apple
## 2018-02-15  2018-02-15  43.2475     Apple
## 2018-02-16  2018-02-16  43.1075     Apple
## 2018-02-20  2018-02-20  42.9625     Apple
## 2018-02-21  2018-02-21  42.7675     Apple
## 2018-02-22  2018-02-22  43.1250     Apple
## 2018-02-23  2018-02-23  43.8750     Apple
## 2018-02-26  2018-02-26  44.7425     Apple
## 2018-02-27  2018-02-27  44.5975     Apple
## 2018-02-28  2018-02-28  44.5300     Apple
## 2018-03-01  2018-03-01  43.7500     Apple
## 2018-03-02  2018-03-02  44.0525     Apple
## 2018-03-05  2018-03-05  44.2050     Apple
## 2018-03-06  2018-03-06  44.1675     Apple
## 2018-03-07  2018-03-07  43.7575     Apple
## 2018-03-08  2018-03-08  44.2350     Apple
## 2018-03-09  2018-03-09  44.9950     Apple
## 2018-03-12  2018-03-12  45.4300     Apple
## 2018-03-13  2018-03-13  44.9925     Apple
## 2018-03-14  2018-03-14  44.6100     Apple
## 2018-03-15  2018-03-15  44.6625     Apple
## 2018-03-16  2018-03-16  44.5050     Apple
## 2018-03-19  2018-03-19  43.8250     Apple
## 2018-03-20  2018-03-20  43.8100     Apple
## 2018-03-21  2018-03-21  42.8175     Apple
## 2018-03-22  2018-03-22  42.2125     Apple
## 2018-03-23  2018-03-23  41.2350     Apple
## 2018-03-26  2018-03-26  43.1925     Apple
## 2018-03-27  2018-03-27  42.0850     Apple
## 2018-03-28  2018-03-28  41.6200     Apple
## 2018-03-29  2018-03-29  41.9450     Apple
## 2018-04-02  2018-04-02  41.6700     Apple
## 2018-04-03  2018-04-03  42.0975     Apple
## 2018-04-04  2018-04-04  42.9025     Apple
## 2018-04-05  2018-04-05  43.2000     Apple
## 2018-04-06  2018-04-06  42.0950     Apple
## 2018-04-09  2018-04-09  42.5125     Apple
## 2018-04-10  2018-04-10  43.3125     Apple
## 2018-04-11  2018-04-11  43.1100     Apple
## 2018-04-12  2018-04-12  43.5350     Apple
## 2018-04-13  2018-04-13  43.6825     Apple
## 2018-04-16  2018-04-16  43.9550     Apple
## 2018-04-17  2018-04-17  44.5600     Apple
## 2018-04-18  2018-04-18  44.4600     Apple
## 2018-04-19  2018-04-19  43.2000     Apple
## 2018-04-20  2018-04-20  41.4300     Apple
## 2018-04-23  2018-04-23  41.3100     Apple
## 2018-04-24  2018-04-24  40.7350     Apple
## 2018-04-25  2018-04-25  40.9125     Apple
## 2018-04-26  2018-04-26  41.0550     Apple
## 2018-04-27  2018-04-27  40.5800     Apple
## 2018-04-30  2018-04-30  41.3150     Apple
## 2018-05-01  2018-05-01  42.2750     Apple
## 2018-05-02  2018-05-02  44.1425     Apple
## 2018-05-03  2018-05-03  44.2225     Apple
## 2018-05-04  2018-05-04  45.9575     Apple
## 2018-05-07  2018-05-07  46.2900     Apple
## 2018-05-08  2018-05-08  46.5125     Apple
## 2018-05-09  2018-05-09  46.8400     Apple
## 2018-05-10  2018-05-10  47.5100     Apple
## 2018-05-11  2018-05-11  47.1475     Apple
## 2018-05-14  2018-05-14  47.0375     Apple
## 2018-05-15  2018-05-15  46.6100     Apple
## 2018-05-16  2018-05-16  47.0450     Apple
## 2018-05-17  2018-05-17  46.7475     Apple
## 2018-05-18  2018-05-18  46.5775     Apple
## 2018-05-21  2018-05-21  46.9075     Apple
## 2018-05-22  2018-05-22  46.7900     Apple
## 2018-05-23  2018-05-23  47.0900     Apple
## 2018-05-24  2018-05-24  47.0375     Apple
## 2018-05-25  2018-05-25  47.1450     Apple
## 2018-05-29  2018-05-29  46.9750     Apple
## 2018-05-30  2018-05-30  46.8750     Apple
## 2018-05-31  2018-05-31  46.7175     Apple
## 2018-06-01  2018-06-01  47.5600     Apple
## 2018-06-04  2018-06-04  47.9575     Apple
## 2018-06-05  2018-06-05  48.3275     Apple
## 2018-06-06  2018-06-06  48.4950     Apple
## 2018-06-07  2018-06-07  48.3650     Apple
## 2018-06-08  2018-06-08  47.9250     Apple
## 2018-06-11  2018-06-11  47.8075     Apple
## 2018-06-12  2018-06-12  48.0700     Apple
## 2018-06-13  2018-06-13  47.6750     Apple
## 2018-06-14  2018-06-14  47.7000     Apple
## 2018-06-15  2018-06-15  47.2100     Apple
## 2018-06-18  2018-06-18  47.1850     Apple
## 2018-06-19  2018-06-19  46.4225     Apple
## 2018-06-20  2018-06-20  46.6250     Apple
## 2018-06-21  2018-06-21  46.3650     Apple
## 2018-06-22  2018-06-22  46.2300     Apple
## 2018-06-25  2018-06-25  45.5425     Apple
## 2018-06-26  2018-06-26  46.1075     Apple
## 2018-06-27  2018-06-27  46.0400     Apple
## 2018-06-28  2018-06-28  46.3750     Apple
## 2018-06-29  2018-06-29  46.2775     Apple
## 2018-07-02  2018-07-02  46.7950     Apple
## 2018-07-03  2018-07-03  45.9800     Apple
## 2018-07-05  2018-07-05  46.3500     Apple
## 2018-07-06  2018-07-06  46.9925     Apple
## 2018-07-09  2018-07-09  47.6450     Apple
## 2018-07-10  2018-07-10  47.5875     Apple
## 2018-07-11  2018-07-11  46.9700     Apple
## 2018-07-12  2018-07-12  47.7575     Apple
## 2018-07-13  2018-07-13  47.8325     Apple
## 2018-07-16  2018-07-16  47.7275     Apple
## 2018-07-17  2018-07-17  47.8625     Apple
## 2018-07-18  2018-07-18  47.6000     Apple
## 2018-07-19  2018-07-19  47.9700     Apple
## 2018-07-20  2018-07-20  47.8600     Apple
## 2018-07-23  2018-07-23  47.9025     Apple
## 2018-07-24  2018-07-24  48.2500     Apple
## 2018-07-25  2018-07-25  48.7050     Apple
## 2018-07-26  2018-07-26  48.5525     Apple
## 2018-07-27  2018-07-27  47.7450     Apple
## 2018-07-30  2018-07-30  47.4775     Apple
## 2018-07-31  2018-07-31  47.5725     Apple
## 2018-08-01  2018-08-01  50.3750     Apple
## 2018-08-02  2018-08-02  51.8475     Apple
## 2018-08-03  2018-08-03  51.9975     Apple
## 2018-08-06  2018-08-06  52.2675     Apple
## 2018-08-07  2018-08-07  51.7775     Apple
## 2018-08-08  2018-08-08  51.8125     Apple
## 2018-08-09  2018-08-09  52.2200     Apple
## 2018-08-10  2018-08-10  51.8825     Apple
## 2018-08-13  2018-08-13  52.2175     Apple
## 2018-08-14  2018-08-14  52.4375     Apple
## 2018-08-15  2018-08-15  52.5600     Apple
## 2018-08-16  2018-08-16  53.3300     Apple
## 2018-08-17  2018-08-17  54.3950     Apple
## 2018-08-20  2018-08-20  53.8650     Apple
## 2018-08-21  2018-08-21  53.7600     Apple
## 2018-08-22  2018-08-22  53.7625     Apple
## 2018-08-23  2018-08-23  53.8725     Apple
## 2018-08-24  2018-08-24  54.0400     Apple
## 2018-08-27  2018-08-27  54.4850     Apple
## 2018-08-28  2018-08-28  54.9250     Apple
## 2018-08-29  2018-08-29  55.7450     Apple
## 2018-08-30  2018-08-30  56.2575     Apple
## 2018-08-31  2018-08-31  56.9075     Apple
## 2018-09-04  2018-09-04  57.0900     Apple
## 2018-09-05  2018-09-05  56.7175     Apple
## 2018-09-06  2018-09-06  55.7750     Apple
## 2018-09-07  2018-09-07  55.3250     Apple
## 2018-09-10  2018-09-10  54.5825     Apple
## 2018-09-11  2018-09-11  55.9625     Apple
## 2018-09-12  2018-09-12  55.2675     Apple
## 2018-09-13  2018-09-13  56.6025     Apple
## 2018-09-14  2018-09-14  55.9600     Apple
## 2018-09-17  2018-09-17  54.4700     Apple
## 2018-09-18  2018-09-18  54.5600     Apple
## 2018-09-19  2018-09-19  54.5925     Apple
## 2018-09-20  2018-09-20  55.0075     Apple
## 2018-09-21  2018-09-21  54.4150     Apple
## 2018-09-24  2018-09-24  55.1975     Apple
## 2018-09-25  2018-09-25  55.5475     Apple
## 2018-09-26  2018-09-26  55.1050     Apple
## 2018-09-27  2018-09-27  56.2375     Apple
## 2018-09-28  2018-09-28  56.4350     Apple
## 2018-10-01  2018-10-01  56.8150     Apple
## 2018-10-02  2018-10-02  57.3200     Apple
## 2018-10-03  2018-10-03  58.0175     Apple
## 2018-10-04  2018-10-04  56.9975     Apple
## 2018-10-05  2018-10-05  56.0725     Apple
## 2018-10-08  2018-10-08  55.9425     Apple
## 2018-10-09  2018-10-09  56.7175     Apple
## 2018-10-10  2018-10-10  54.0900     Apple
## 2018-10-11  2018-10-11  53.6125     Apple
## 2018-10-12  2018-10-12  55.5275     Apple
## 2018-10-15  2018-10-15  54.3400     Apple
## 2018-10-16  2018-10-16  55.5375     Apple
## 2018-10-17  2018-10-17  55.2975     Apple
## 2018-10-18  2018-10-18  54.0050     Apple
## 2018-10-19  2018-10-19  54.8275     Apple
## 2018-10-22  2018-10-22  55.1625     Apple
## 2018-10-23  2018-10-23  55.6825     Apple
## 2018-10-24  2018-10-24  53.7725     Apple
## 2018-10-25  2018-10-25  54.9500     Apple
## 2018-10-26  2018-10-26  54.0750     Apple
## 2018-10-29  2018-10-29  53.0600     Apple
## 2018-10-30  2018-10-30  53.3250     Apple
## 2018-10-31  2018-10-31  54.7150     Apple
## 2018-11-01  2018-11-01  55.5550     Apple
## 2018-11-02  2018-11-02  51.8700     Apple
## 2018-11-05  2018-11-05  50.3975     Apple
## 2018-11-06  2018-11-06  50.9425     Apple
## 2018-11-07  2018-11-07  52.4875     Apple
## 2018-11-08  2018-11-08  52.1225     Apple
## 2018-11-09  2018-11-09  51.1175     Apple
## 2018-11-12  2018-11-12  48.5425     Apple
## 2018-11-13  2018-11-13  48.0575     Apple
## 2018-11-14  2018-11-14  46.7000     Apple
## 2018-11-15  2018-11-15  47.8525     Apple
## 2018-11-16  2018-11-16  48.3825     Apple
## 2018-11-19  2018-11-19  46.4650     Apple
## 2018-11-20  2018-11-20  44.2450     Apple
## 2018-11-21  2018-11-21  44.1950     Apple
## 2018-11-23  2018-11-23  43.0725     Apple
## 2018-11-26  2018-11-26  43.6550     Apple
## 2018-11-27  2018-11-27  43.5600     Apple
## 2018-11-28  2018-11-28  45.2350     Apple
## 2018-11-29  2018-11-29  44.8875     Apple
## 2018-11-30  2018-11-30  44.6450     Apple
## 2018-12-03  2018-12-03  46.2050     Apple
## 2018-12-04  2018-12-04  44.1725     Apple
## 2018-12-06  2018-12-06  43.6800     Apple
## 2018-12-07  2018-12-07  42.1225     Apple
## 2018-12-10  2018-12-10  42.4000     Apple
## 2018-12-11  2018-12-11  42.1575     Apple
## 2018-12-12  2018-12-12  42.2750     Apple
## 2018-12-13  2018-12-13  42.7375     Apple
## 2018-12-14  2018-12-14  41.3700     Apple
## 2018-12-17  2018-12-17  40.9850     Apple
## 2018-12-18  2018-12-18  41.5175     Apple
## 2018-12-19  2018-12-19  40.2225     Apple
## 2018-12-20  2018-12-20  39.2075     Apple
## 2018-12-21  2018-12-21  37.6825     Apple
## 2018-12-24  2018-12-24  36.7075     Apple
## 2018-12-26  2018-12-26  39.2925     Apple
## 2018-12-27  2018-12-27  39.0375     Apple
## 2018-12-28  2018-12-28  39.0575     Apple
## 2018-12-31  2018-12-31  39.4350     Apple
## 2019-01-02  2019-01-02  39.4800     Apple
## 2019-01-03  2019-01-03  35.5475     Apple
## 2019-01-04  2019-01-04  37.0650     Apple
## 2019-01-07  2019-01-07  36.9825     Apple
## 2019-01-08  2019-01-08  37.6875     Apple
## 2019-01-09  2019-01-09  38.3275     Apple
## 2019-01-10  2019-01-10  38.4500     Apple
## 2019-01-11  2019-01-11  38.0725     Apple
## 2019-01-14  2019-01-14  37.5000     Apple
## 2019-01-15  2019-01-15  38.2675     Apple
## 2019-01-16  2019-01-16  38.7350     Apple
## 2019-01-17  2019-01-17  38.9650     Apple
## 2019-01-18  2019-01-18  39.2050     Apple
## 2019-01-22  2019-01-22  38.3250     Apple
## 2019-01-23  2019-01-23  38.4800     Apple
## 2019-01-24  2019-01-24  38.1750     Apple
## 2019-01-25  2019-01-25  39.4400     Apple
## 2019-01-28  2019-01-28  39.0750     Apple
## 2019-01-29  2019-01-29  38.6700     Apple
## 2019-01-30  2019-01-30  41.3125     Apple
## 2019-01-31  2019-01-31  41.6100     Apple
## 2019-02-01  2019-02-01  41.6300     Apple
## 2019-02-04  2019-02-04  42.8125     Apple
## 2019-02-05  2019-02-05  43.5450     Apple
## 2019-02-06  2019-02-06  43.5600     Apple
## 2019-02-07  2019-02-07  42.7350     Apple
## 2019-02-08  2019-02-08  42.6025     Apple
## 2019-02-11  2019-02-11  42.3575     Apple
## 2019-02-12  2019-02-12  42.7225     Apple
## 2019-02-13  2019-02-13  42.5450     Apple
## 2019-02-14  2019-02-14  42.7000     Apple
## 2019-02-15  2019-02-15  42.6050     Apple
## 2019-02-19  2019-02-19  42.7325     Apple
## 2019-02-20  2019-02-20  43.0075     Apple
## 2019-02-21  2019-02-21  42.7650     Apple
## 2019-02-22  2019-02-22  43.2425     Apple
## 2019-02-25  2019-02-25  43.5575     Apple
## 2019-02-26  2019-02-26  43.5825     Apple
## 2019-02-27  2019-02-27  43.7175     Apple
## 2019-02-28  2019-02-28  43.2875     Apple
## 2019-03-01  2019-03-01  43.7425     Apple
## 2019-03-04  2019-03-04  43.9625     Apple
## 2019-03-05  2019-03-05  43.8825     Apple
## 2019-03-06  2019-03-06  43.6300     Apple
## 2019-03-07  2019-03-07  43.1250     Apple
## 2019-03-08  2019-03-08  43.2275     Apple
## 2019-03-11  2019-03-11  44.7250     Apple
## 2019-03-12  2019-03-12  45.2275     Apple
## 2019-03-13  2019-03-13  45.4275     Apple
## 2019-03-14  2019-03-14  45.9325     Apple
## 2019-03-15  2019-03-15  46.5300     Apple
## 2019-03-18  2019-03-18  47.0050     Apple
## 2019-03-19  2019-03-19  46.6325     Apple
## 2019-03-20  2019-03-20  47.0400     Apple
## 2019-03-21  2019-03-21  48.7725     Apple
## 2019-03-22  2019-03-22  47.7625     Apple
## 2019-03-25  2019-03-25  47.1850     Apple
## 2019-03-26  2019-03-26  46.6975     Apple
## 2019-03-27  2019-03-27  47.1175     Apple
## 2019-03-28  2019-03-28  47.1800     Apple
## 2019-03-29  2019-03-29  47.4875     Apple
## 2019-04-01  2019-04-01  47.8100     Apple
## 2019-04-02  2019-04-02  48.5050     Apple
## 2019-04-03  2019-04-03  48.8375     Apple
## 2019-04-04  2019-04-04  48.9225     Apple
## 2019-04-05  2019-04-05  49.2500     Apple
## 2019-04-08  2019-04-08  50.0250     Apple
## 2019-04-09  2019-04-09  49.8750     Apple
## 2019-04-10  2019-04-10  50.1550     Apple
## 2019-04-11  2019-04-11  49.7375     Apple
## 2019-04-12  2019-04-12  49.7175     Apple
## 2019-04-15  2019-04-15  49.8075     Apple
## 2019-04-16  2019-04-16  49.8125     Apple
## 2019-04-17  2019-04-17  50.7825     Apple
## 2019-04-18  2019-04-18  50.9650     Apple
## 2019-04-22  2019-04-22  51.1325     Apple
## 2019-04-23  2019-04-23  51.8700     Apple
## 2019-04-24  2019-04-24  51.7900     Apple
## 2019-04-25  2019-04-25  51.3200     Apple
## 2019-04-26  2019-04-26  51.0750     Apple
## 2019-04-29  2019-04-29  51.1525     Apple
## 2019-04-30  2019-04-30  50.1675     Apple
## 2019-05-01  2019-05-01  52.6300     Apple
## 2019-05-02  2019-05-02  52.2875     Apple
## 2019-05-03  2019-05-03  52.9375     Apple
## 2019-05-06  2019-05-06  52.1200     Apple
## 2019-05-07  2019-05-07  50.7150     Apple
## 2019-05-08  2019-05-08  50.7250     Apple
## 2019-05-09  2019-05-09  50.1800     Apple
## 2019-05-10  2019-05-10  49.2950     Apple
## 2019-05-13  2019-05-13  46.4300     Apple
## 2019-05-14  2019-05-14  47.1650     Apple
## 2019-05-15  2019-05-15  47.7300     Apple
## 2019-05-16  2019-05-16  47.5200     Apple
## 2019-05-17  2019-05-17  47.2500     Apple
## 2019-05-20  2019-05-20  45.7725     Apple
## 2019-05-21  2019-05-21  46.6500     Apple
## 2019-05-22  2019-05-22  45.6950     Apple
## 2019-05-23  2019-05-23  44.9150     Apple
## 2019-05-24  2019-05-24  44.7425     Apple
## 2019-05-28  2019-05-28  44.5575     Apple
## 2019-05-29  2019-05-29  44.3450     Apple
## 2019-05-30  2019-05-30  44.5750     Apple
## 2019-05-31  2019-05-31  43.7675     Apple
## 2019-06-03  2019-06-03  43.3250     Apple
## 2019-06-04  2019-06-04  44.9100     Apple
## 2019-06-05  2019-06-05  45.6350     Apple
## 2019-06-06  2019-06-06  46.3050     Apple
## 2019-06-07  2019-06-07  47.5375     Apple
## 2019-06-10  2019-06-10  48.1450     Apple
## 2019-06-11  2019-06-11  48.7025     Apple
## 2019-06-12  2019-06-12  48.5475     Apple
## 2019-06-13  2019-06-13  48.5375     Apple
## 2019-06-14  2019-06-14  48.1850     Apple
## 2019-06-17  2019-06-17  48.4725     Apple
## 2019-06-18  2019-06-18  49.6125     Apple
## 2019-06-19  2019-06-19  49.4675     Apple
## 2019-06-20  2019-06-20  49.8650     Apple
## 2019-06-21  2019-06-21  49.6950     Apple
## 2019-06-24  2019-06-24  49.6450     Apple
## 2019-06-25  2019-06-25  48.8925     Apple
## 2019-06-26  2019-06-26  49.9500     Apple
## 2019-06-27  2019-06-27  49.9350     Apple
## 2019-06-28  2019-06-28  49.4800     Apple
## 2019-07-01  2019-07-01  50.3875     Apple
## 2019-07-02  2019-07-02  50.6825     Apple
## 2019-07-03  2019-07-03  51.1025     Apple
## 2019-07-05  2019-07-05  51.0575     Apple
## 2019-07-08  2019-07-08  50.0050     Apple
## 2019-07-09  2019-07-09  50.3100     Apple
## 2019-07-10  2019-07-10  50.8075     Apple
## 2019-07-11  2019-07-11  50.4375     Apple
## 2019-07-12  2019-07-12  50.8250     Apple
## 2019-07-15  2019-07-15  51.3025     Apple
## 2019-07-16  2019-07-16  51.1250     Apple
## 2019-07-17  2019-07-17  50.8375     Apple
## 2019-07-18  2019-07-18  51.4150     Apple
## 2019-07-19  2019-07-19  50.6475     Apple
## 2019-07-22  2019-07-22  51.8050     Apple
## 2019-07-23  2019-07-23  52.2100     Apple
## 2019-07-24  2019-07-24  52.1675     Apple
## 2019-07-25  2019-07-25  51.7550     Apple
## 2019-07-26  2019-07-26  51.9350     Apple
## 2019-07-29  2019-07-29  52.4200     Apple
## 2019-07-30  2019-07-30  52.1950     Apple
## 2019-07-31  2019-07-31  53.2600     Apple
## 2019-08-01  2019-08-01  52.1075     Apple
## 2019-08-02  2019-08-02  51.0050     Apple
## 2019-08-05  2019-08-05  48.3350     Apple
## 2019-08-06  2019-08-06  49.2500     Apple
## 2019-08-07  2019-08-07  49.7600     Apple
## 2019-08-08  2019-08-08  50.8575     Apple
## 2019-08-09  2019-08-09  50.2475     Apple
## 2019-08-12  2019-08-12  50.1200     Apple
## 2019-08-13  2019-08-13  52.2425     Apple
## 2019-08-14  2019-08-14  50.6875     Apple
## 2019-08-15  2019-08-15  50.4350     Apple
## 2019-08-16  2019-08-16  51.6250     Apple
## 2019-08-19  2019-08-19  52.5875     Apple
## 2019-08-20  2019-08-20  52.5900     Apple
## 2019-08-21  2019-08-21  53.1600     Apple
## 2019-08-22  2019-08-22  53.1150     Apple
## 2019-08-23  2019-08-23  50.6600     Apple
## 2019-08-26  2019-08-26  51.6225     Apple
## 2019-08-27  2019-08-27  51.0400     Apple
## 2019-08-28  2019-08-28  51.3825     Apple
## 2019-08-29  2019-08-29  52.2525     Apple
## 2019-08-30  2019-08-30  52.1850     Apple
## 2019-09-03  2019-09-03  51.4250     Apple
## 2019-09-04  2019-09-04  52.2975     Apple
## 2019-09-05  2019-09-05  53.3200     Apple
## 2019-09-06  2019-09-06  53.3150     Apple
## 2019-09-09  2019-09-09  53.5425     Apple
## 2019-09-10  2019-09-10  54.1750     Apple
## 2019-09-11  2019-09-11  55.8975     Apple
## 2019-09-12  2019-09-12  55.7725     Apple
## 2019-09-13  2019-09-13  54.6875     Apple
## 2019-09-16  2019-09-16  54.9750     Apple
## 2019-09-17  2019-09-17  55.1750     Apple
## 2019-09-18  2019-09-18  55.6925     Apple
## 2019-09-19  2019-09-19  55.2400     Apple
## 2019-09-20  2019-09-20  54.4325     Apple
## 2019-09-23  2019-09-23  54.6800     Apple
## 2019-09-24  2019-09-24  54.4200     Apple
## 2019-09-25  2019-09-25  55.2575     Apple
## 2019-09-26  2019-09-26  54.9725     Apple
## 2019-09-27  2019-09-27  54.7050     Apple
## 2019-09-30  2019-09-30  55.9925     Apple
## 2019-10-01  2019-10-01  56.1475     Apple
## 2019-10-02  2019-10-02  54.7400     Apple
## 2019-10-03  2019-10-03  55.2050     Apple
## 2019-10-04  2019-10-04  56.7525     Apple
## 2019-10-07  2019-10-07  56.7650     Apple
## 2019-10-08  2019-10-08  56.1000     Apple
## 2019-10-09  2019-10-09  56.7575     Apple
## 2019-10-10  2019-10-10  57.5225     Apple
## 2019-10-11  2019-10-11  59.0525     Apple
## 2019-10-14  2019-10-14  58.9675     Apple
## 2019-10-15  2019-10-15  58.8300     Apple
## 2019-10-16  2019-10-16  58.5925     Apple
## 2019-10-17  2019-10-17  58.8200     Apple
## 2019-10-18  2019-10-18  59.1025     Apple
## 2019-10-21  2019-10-21  60.1275     Apple
## 2019-10-22  2019-10-22  59.9900     Apple
## 2019-10-23  2019-10-23  60.7950     Apple
## 2019-10-24  2019-10-24  60.8950     Apple
## 2019-10-25  2019-10-25  61.6450     Apple
## 2019-10-28  2019-10-28  62.2625     Apple
## 2019-10-29  2019-10-29  60.8225     Apple
## 2019-10-30  2019-10-30  60.8150     Apple
## 2019-10-31  2019-10-31  62.1900     Apple
## 2019-11-01  2019-11-01  63.9550     Apple
## 2019-11-04  2019-11-04  64.3750     Apple
## 2019-11-05  2019-11-05  64.2825     Apple
## 2019-11-06  2019-11-06  64.3100     Apple
## 2019-11-07  2019-11-07  64.8575     Apple
## 2019-11-08  2019-11-08  65.0350     Apple
## 2019-11-11  2019-11-11  65.5500     Apple
## 2019-11-12  2019-11-12  65.4900     Apple
## 2019-11-13  2019-11-13  66.1175     Apple
## 2019-11-14  2019-11-14  65.6600     Apple
## 2019-11-15  2019-11-15  66.4400     Apple
## 2019-11-18  2019-11-18  66.7750     Apple
## 2019-11-19  2019-11-19  66.5725     Apple
## 2019-11-20  2019-11-20  65.7975     Apple
## 2019-11-21  2019-11-21  65.5025     Apple
## 2019-11-22  2019-11-22  65.4450     Apple
## 2019-11-25  2019-11-25  66.5925     Apple
## 2019-11-26  2019-11-26  66.0725     Apple
## 2019-11-27  2019-11-27  66.9600     Apple
## 2019-11-29  2019-11-29  66.8125     Apple
## 2019-12-02  2019-12-02  66.0400     Apple
## 2019-12-03  2019-12-03  64.8625     Apple
## 2019-12-04  2019-12-04  65.4350     Apple
## 2019-12-05  2019-12-05  66.3950     Apple
## 2019-12-06  2019-12-06  67.6775     Apple
## 2019-12-09  2019-12-09  66.7300     Apple
## 2019-12-10  2019-12-10  67.1200     Apple
## 2019-12-11  2019-12-11  67.6925     Apple
## 2019-12-12  2019-12-12  67.8650     Apple
## 2019-12-13  2019-12-13  68.7875     Apple
## 2019-12-16  2019-12-16  69.9650     Apple
## 2019-12-17  2019-12-17  70.1025     Apple
## 2019-12-18  2019-12-18  69.9350     Apple
## 2019-12-19  2019-12-19  70.0050     Apple
## 2019-12-20  2019-12-20  69.8600     Apple
## 2019-12-23  2019-12-23  71.0000     Apple
## 2019-12-24  2019-12-24  71.0675     Apple
## 2019-12-26  2019-12-26  72.4775     Apple
## 2019-12-27  2019-12-27  72.4500     Apple
## 2019-12-30  2019-12-30  72.8800     Apple
## 2019-12-31  2019-12-31  73.4125     Apple
## 2020-01-02  2020-01-02  75.0875     Apple
## 2020-01-03  2020-01-03  74.3575     Apple
## 2020-01-06  2020-01-06  74.9500     Apple
## 2020-01-07  2020-01-07  74.5975     Apple
## 2020-01-08  2020-01-08  75.7975     Apple
## 2020-01-09  2020-01-09  77.4075     Apple
## 2020-01-10  2020-01-10  77.5825     Apple
## 2020-01-13  2020-01-13  79.2400     Apple
## 2020-01-14  2020-01-14  78.1700     Apple
## 2020-01-15  2020-01-15  77.8350     Apple
## 2020-01-16  2020-01-16  78.8100     Apple
## 2020-01-17  2020-01-17  79.6825     Apple
## 2020-01-21  2020-01-21  79.1425     Apple
## 2020-01-22  2020-01-22  79.4250     Apple
## 2020-01-23  2020-01-23  79.8075     Apple
## 2020-01-24  2020-01-24  79.5775     Apple
## 2020-01-27  2020-01-27  77.2375     Apple
## 2020-01-28  2020-01-28  79.4225     Apple
## 2020-01-29  2020-01-29  81.0850     Apple
## 2020-01-30  2020-01-30  80.9675     Apple
## 2020-01-31  2020-01-31  77.3775     Apple
## 2020-02-03  2020-02-03  77.1650     Apple
## 2020-02-04  2020-02-04  79.7125     Apple
## 2020-02-05  2020-02-05  80.3625     Apple
## 2020-02-06  2020-02-06  81.3025     Apple
## 2020-02-07  2020-02-07  80.0075     Apple
## 2020-02-10  2020-02-10  80.3875     Apple
## 2020-02-11  2020-02-11  79.9025     Apple
## 2020-02-12  2020-02-12  81.8000     Apple
## 2020-02-13  2020-02-13  81.2175     Apple
## 2020-02-14  2020-02-14  81.2375     Apple
## 2020-02-18  2020-02-18  79.7500     Apple
## 2020-02-19  2020-02-19  80.9050     Apple
## 2020-02-20  2020-02-20  80.0750     Apple
## 2020-02-21  2020-02-21  78.2625     Apple
## 2020-02-24  2020-02-24  74.5450     Apple
## 2020-02-25  2020-02-25  72.0200     Apple
## 2020-02-26  2020-02-26  73.1625     Apple
## 2020-02-27  2020-02-27  68.3800     Apple
## 2020-02-28  2020-02-28  68.3400     Apple
## 2020-03-02  2020-03-02  74.7025     Apple
## 2020-03-03  2020-03-03  72.3300     Apple
## 2020-03-04  2020-03-04  75.6850     Apple
## 2020-03-05  2020-03-05  73.2300     Apple
## 2020-03-06  2020-03-06  72.2575     Apple
## 2020-03-09  2020-03-09  66.5425     Apple
## 2020-03-10  2020-03-10  71.3350     Apple
## 2020-03-11  2020-03-11  68.8575     Apple
## 2020-03-12  2020-03-12  62.0575     Apple
## 2020-03-13  2020-03-13  69.4925     Apple
## 2020-03-16  2020-03-16  60.5525     Apple
## 2020-03-17  2020-03-17  63.2150     Apple
## 2020-03-18  2020-03-18  61.6675     Apple
## 2020-03-19  2020-03-19  61.1950     Apple
## 2020-03-20  2020-03-20  57.3100     Apple
## 2020-03-23  2020-03-23  56.0925     Apple
## 2020-03-24  2020-03-24  61.7200     Apple
## 2020-03-25  2020-03-25  61.3800     Apple
## 2020-03-26  2020-03-26  64.6100     Apple
## 2020-03-27  2020-03-27  61.9350     Apple
## 2020-03-30  2020-03-30  63.7025     Apple
## 2020-03-31  2020-03-31  63.5725     Apple
## 2020-04-01  2020-04-01  60.2275     Apple
## 2020-04-02  2020-04-02  61.2325     Apple
## 2020-04-03  2020-04-03  60.3525     Apple
## 2020-04-06  2020-04-06  65.6175     Apple
## 2020-04-07  2020-04-07  64.8575     Apple
## 2020-04-08  2020-04-08  66.5175     Apple
## 2020-04-09  2020-04-09  66.9975     Apple
## 2020-04-13  2020-04-13  68.3125     Apple
## 2020-04-14  2020-04-14  71.7625     Apple
## 2020-04-15  2020-04-15  71.1075     Apple
## 2020-04-16  2020-04-16  71.6725     Apple
## 2020-04-17  2020-04-17  70.7000     Apple
## 2020-04-20  2020-04-20  69.2325     Apple
## 2020-04-21  2020-04-21  67.0925     Apple
## 2020-04-22  2020-04-22  69.0250     Apple
## 2020-04-23  2020-04-23  68.7575     Apple
## 2020-04-24  2020-04-24  70.7425     Apple
## 2020-04-27  2020-04-27  70.7925     Apple
## 2020-04-28  2020-04-28  69.6450     Apple
## 2020-04-29  2020-04-29  71.9325     Apple
## 2020-04-30  2020-04-30  73.4500     Apple
## 2020-05-01  2020-05-01  72.2675     Apple
## 2020-05-04  2020-05-04  73.2900     Apple
## 2020-05-05  2020-05-05  74.3900     Apple
## 2020-05-06  2020-05-06  75.1575     Apple
## 2020-05-07  2020-05-07  75.9350     Apple
## 2020-05-08  2020-05-08  77.5325     Apple
## 2020-05-11  2020-05-11  78.7525     Apple
## 2020-05-12  2020-05-12  77.8525     Apple
## 2020-05-13  2020-05-13  76.9125     Apple
## 2020-05-14  2020-05-14  77.3850     Apple
## 2020-05-15  2020-05-15  76.9275     Apple
## 2020-05-18  2020-05-18  78.7400     Apple
## 2020-05-19  2020-05-19  78.2850     Apple
## 2020-05-20  2020-05-20  79.8075     Apple
## 2020-05-21  2020-05-21  79.2125     Apple
## 2020-05-22  2020-05-22  79.7225     Apple
## 2020-05-26  2020-05-26  79.1825     Apple
## 2020-05-27  2020-05-27  79.5275     Apple
## 2020-05-28  2020-05-28  79.5625     Apple
## 2020-05-29  2020-05-29  79.4850     Apple
## 2020-06-01  2020-06-01  80.4625     Apple
## 2020-06-02  2020-06-02  80.8350     Apple
## 2020-06-03  2020-06-03  81.2800     Apple
## 2020-06-04  2020-06-04  80.5800     Apple
## 2020-06-05  2020-06-05  82.8750     Apple
## 2020-06-08  2020-06-08  83.3650     Apple
## 2020-06-09  2020-06-09  85.9975     Apple
## 2020-06-10  2020-06-10  88.2100     Apple
## 2020-06-11  2020-06-11  83.9750     Apple
## 2020-06-12  2020-06-12  84.7000     Apple
## 2020-06-15  2020-06-15  85.7475     Apple
## 2020-06-16  2020-06-16  88.0200     Apple
## 2020-06-17  2020-06-17  87.8975     Apple
## 2020-06-18  2020-06-18  87.9325     Apple
## 2020-06-19  2020-06-19  87.4300     Apple
## 2020-06-22  2020-06-22  89.7175     Apple
## 2020-06-23  2020-06-23  91.6325     Apple
## 2020-06-24  2020-06-24  90.0150     Apple
## 2020-06-25  2020-06-25  91.2100     Apple
## 2020-06-26  2020-06-26  88.4075     Apple
## 2020-06-29  2020-06-29  90.4450     Apple
## 2020-06-30  2020-06-30  91.2000     Apple
## 2020-07-01  2020-07-01  91.0275     Apple
## 2020-07-02  2020-07-02  91.0275     Apple
## 2020-07-06  2020-07-06  93.4625     Apple
## 2020-07-07  2020-07-07  93.1725     Apple
## 2020-07-08  2020-07-08  95.3425     Apple
## 2020-07-09  2020-07-09  95.7525     Apple
## 2020-07-10  2020-07-10  95.9200     Apple
## 2020-07-13  2020-07-13  95.4775     Apple
## 2020-07-14  2020-07-14  97.0575     Apple
## 2020-07-15  2020-07-15  97.7250     Apple
## 2020-07-16  2020-07-16  96.5225     Apple
## 2020-07-17  2020-07-17  96.3275     Apple
## 2020-07-20  2020-07-20  98.3575     Apple
## 2020-07-21  2020-07-21  97.0000     Apple
## 2020-07-22  2020-07-22  97.2725     Apple
## 2020-07-23  2020-07-23  92.8450     Apple
## 2020-07-24  2020-07-24  92.6150     Apple
## 2020-07-27  2020-07-27  94.8100     Apple
## 2020-07-28  2020-07-28  93.2525     Apple
## 2020-07-29  2020-07-29  95.0400     Apple
## 2020-07-30  2020-07-30  96.1900     Apple
## 2020-07-31  2020-07-31 106.2600     Apple
## 2020-08-03  2020-08-03 108.9375     Apple
## 2020-08-04  2020-08-04 109.6650     Apple
## 2020-08-05  2020-08-05 110.0625     Apple
## 2020-08-06  2020-08-06 113.9025     Apple
## 2020-08-07  2020-08-07 111.1125     Apple
## 2020-08-10  2020-08-10 112.7275     Apple
## 2020-08-11  2020-08-11 109.3750     Apple
## 2020-08-12  2020-08-12 113.0100     Apple
## 2020-08-13  2020-08-13 115.0100     Apple
## 2020-08-14  2020-08-14 114.9075     Apple
## 2020-08-17  2020-08-17 114.6075     Apple
## 2020-08-18  2020-08-18 115.5625     Apple
## 2020-08-19  2020-08-19 115.7075     Apple
## 2020-08-20  2020-08-20 118.2750     Apple
## 2020-08-21  2020-08-21 124.3700     Apple
## 2020-08-24  2020-08-24 125.8575     Apple
## 2020-08-25  2020-08-25 124.8250     Apple
## 2020-08-26  2020-08-26 126.5225     Apple
## 2020-08-27  2020-08-27 125.0100     Apple
## 2020-08-28  2020-08-28 124.8075     Apple
## 2020-08-31  2020-08-31 129.0400     Apple
## 2020-09-01  2020-09-01 134.1800     Apple
## 2020-09-02  2020-09-02 131.4000     Apple
## 2020-09-03  2020-09-03 120.8800     Apple
## 2020-09-04  2020-09-04 120.9600     Apple
## 2020-09-08  2020-09-08 112.8200     Apple
## 2020-09-09  2020-09-09 117.3200     Apple
## 2020-09-10  2020-09-10 113.4900     Apple
## 2020-09-11  2020-09-11 112.0000     Apple
## 2020-09-14  2020-09-14 115.3600     Apple
## 2020-09-15  2020-09-15 115.5400     Apple
## 2020-09-16  2020-09-16 112.1300     Apple
## 2020-09-17  2020-09-17 110.3400     Apple
## 2020-09-18  2020-09-18 106.8400     Apple
## 2020-09-21  2020-09-21 110.0800     Apple
## 2020-09-22  2020-09-22 111.8100     Apple
## 2020-09-23  2020-09-23 107.1200     Apple
## 2020-09-24  2020-09-24 108.2200     Apple
## 2020-09-25  2020-09-25 112.2800     Apple
## 2020-09-28  2020-09-28 114.9600     Apple
## 2020-09-29  2020-09-29 114.0900     Apple
## 2020-09-30  2020-09-30 115.8100     Apple
## 2020-10-01  2020-10-01 116.7900     Apple
## 2020-10-02  2020-10-02 113.0200     Apple
## 2020-10-05  2020-10-05 116.5000     Apple
## 2020-10-06  2020-10-06 113.1600     Apple
## 2020-10-07  2020-10-07 115.0800     Apple
## 2020-10-08  2020-10-08 114.9700     Apple
## 2020-10-09  2020-10-09 116.9700     Apple
## 2020-10-12  2020-10-12 124.4000     Apple
## 2020-10-13  2020-10-13 121.1000     Apple
## 2020-10-14  2020-10-14 121.1900     Apple
## 2020-10-15  2020-10-15 120.7100     Apple
## 2020-10-16  2020-10-16 119.0200     Apple
## 2020-10-19  2020-10-19 115.9800     Apple
## 2020-10-20  2020-10-20 117.5100     Apple
## 2020-10-21  2020-10-21 116.8700     Apple
## 2020-10-22  2020-10-22 115.7500     Apple
## 2020-10-23  2020-10-23 115.0400     Apple
## 2020-10-26  2020-10-26 115.0500     Apple
## 2020-10-27  2020-10-27 116.6000     Apple
## 2020-10-28  2020-10-28 111.2000     Apple
## 2020-10-29  2020-10-29 115.3200     Apple
## 2020-10-30  2020-10-30 108.8600     Apple
## 2020-11-02  2020-11-02 108.7700     Apple
## 2020-11-03  2020-11-03 110.4400     Apple
## 2020-11-04  2020-11-04 114.9500     Apple
## 2020-11-05  2020-11-05 119.0300     Apple
## 2020-11-06  2020-11-06 118.6900     Apple
## 2020-11-09  2020-11-09 116.3200     Apple
## 2020-11-10  2020-11-10 115.9700     Apple
## 2020-11-11  2020-11-11 119.4900     Apple
## 2020-11-12  2020-11-12 119.2100     Apple
## 2020-11-13  2020-11-13 119.2600     Apple
## 2020-11-16  2020-11-16 120.3000     Apple
## 2020-11-17  2020-11-17 119.3900     Apple
## 2020-11-18  2020-11-18 118.0300     Apple
## 2020-11-19  2020-11-19 118.6400     Apple
## 2020-11-20  2020-11-20 117.3400     Apple
## 2020-11-23  2020-11-23 113.8500     Apple
## 2020-11-24  2020-11-24 115.1700     Apple
## 2020-11-25  2020-11-25 116.0300     Apple
## 2020-11-27  2020-11-27 116.5900     Apple
## 2020-11-30  2020-11-30 119.0500     Apple
## 2020-12-01  2020-12-01 122.7200     Apple
## 2020-12-02  2020-12-02 123.0800     Apple
## 2020-12-03  2020-12-03 122.9400     Apple
## 2020-12-04  2020-12-04 122.2500     Apple
## 2020-12-07  2020-12-07 123.7500     Apple
## 2020-12-08  2020-12-08 124.3800     Apple
## 2020-12-09  2020-12-09 121.7800     Apple
## 2020-12-10  2020-12-10 123.2400     Apple
## 2020-12-11  2020-12-11 122.4100     Apple
## 2020-12-14  2020-12-14 121.7800     Apple
## 2020-12-15  2020-12-15 127.8800     Apple
## 2020-12-16  2020-12-16 127.8100     Apple
## 2020-12-17  2020-12-17 128.7000     Apple
## 2020-12-18  2020-12-18 126.6600     Apple
## 2020-12-21  2020-12-21 128.2300     Apple
## 2020-12-22  2020-12-22 131.8800     Apple
## 2020-12-23  2020-12-23 130.9600     Apple
## 2020-12-24  2020-12-24 131.9700     Apple
## 2020-12-28  2020-12-28 136.6900     Apple
## 2020-12-29  2020-12-29 134.8700     Apple
## 2020-12-30  2020-12-30 133.7200     Apple
## 2020-12-31  2020-12-31 132.6900     Apple
## 2021-01-04  2021-01-04 129.4100     Apple
## 2021-01-05  2021-01-05 131.0100     Apple
## 2021-01-06  2021-01-06 126.6000     Apple
## 2021-01-07  2021-01-07 130.9200     Apple
## 2021-01-08  2021-01-08 132.0500     Apple
## 2021-01-11  2021-01-11 128.9800     Apple
## 2021-01-12  2021-01-12 128.8000     Apple
## 2021-01-13  2021-01-13 130.8900     Apple
## 2021-01-14  2021-01-14 128.9100     Apple
## 2021-01-15  2021-01-15 127.1400     Apple
## 2021-01-19  2021-01-19 127.8300     Apple
## 2021-01-20  2021-01-20 132.0300     Apple
## 2021-01-21  2021-01-21 136.8700     Apple
## 2021-01-22  2021-01-22 139.0700     Apple
## 2021-01-25  2021-01-25 142.9200     Apple
## 2021-01-26  2021-01-26 143.1600     Apple
## 2021-01-27  2021-01-27 142.0600     Apple
## 2021-01-28  2021-01-28 137.0900     Apple
## 2021-01-29  2021-01-29 131.9600     Apple
## 2021-02-01  2021-02-01 134.2301     Apple
## 2018-01-021 2018-01-02 181.4200 Face Book
## 2018-01-031 2018-01-03 184.6700 Face Book
## 2018-01-041 2018-01-04 184.3300 Face Book
## 2018-01-051 2018-01-05 186.8500 Face Book
## 2018-01-081 2018-01-08 188.2800 Face Book
## 2018-01-091 2018-01-09 187.8700 Face Book
## 2018-01-101 2018-01-10 187.8400 Face Book
## 2018-01-111 2018-01-11 187.7700 Face Book
## 2018-01-121 2018-01-12 179.3700 Face Book
## 2018-01-161 2018-01-16 178.3900 Face Book
## 2018-01-171 2018-01-17 177.6000 Face Book
## 2018-01-181 2018-01-18 179.8000 Face Book
## 2018-01-191 2018-01-19 181.2900 Face Book
## 2018-01-221 2018-01-22 185.3700 Face Book
## 2018-01-231 2018-01-23 189.3500 Face Book
## 2018-01-241 2018-01-24 186.5500 Face Book
## 2018-01-251 2018-01-25 187.4800 Face Book
## 2018-01-261 2018-01-26 190.0000 Face Book
## 2018-01-291 2018-01-29 185.9800 Face Book
## 2018-01-301 2018-01-30 187.1200 Face Book
## 2018-01-311 2018-01-31 186.8900 Face Book
## 2018-02-011 2018-02-01 193.0900 Face Book
## 2018-02-021 2018-02-02 190.2800 Face Book
## 2018-02-051 2018-02-05 181.2600 Face Book
## 2018-02-061 2018-02-06 185.3100 Face Book
## 2018-02-071 2018-02-07 180.1800 Face Book
## 2018-02-081 2018-02-08 171.5800 Face Book
## 2018-02-091 2018-02-09 176.1100 Face Book
## 2018-02-121 2018-02-12 176.4100 Face Book
## 2018-02-131 2018-02-13 173.1500 Face Book
## 2018-02-141 2018-02-14 179.5200 Face Book
## 2018-02-151 2018-02-15 179.9600 Face Book
## 2018-02-161 2018-02-16 177.3600 Face Book
## 2018-02-201 2018-02-20 176.0100 Face Book
## 2018-02-211 2018-02-21 177.9100 Face Book
## 2018-02-221 2018-02-22 178.9900 Face Book
## 2018-02-231 2018-02-23 183.2900 Face Book
## 2018-02-261 2018-02-26 184.9300 Face Book
## 2018-02-271 2018-02-27 181.4600 Face Book
## 2018-02-281 2018-02-28 178.3200 Face Book
## 2018-03-011 2018-03-01 175.9400 Face Book
## 2018-03-021 2018-03-02 176.6200 Face Book
## 2018-03-051 2018-03-05 180.4000 Face Book
## 2018-03-061 2018-03-06 179.7800 Face Book
## 2018-03-071 2018-03-07 183.7100 Face Book
## 2018-03-081 2018-03-08 182.3400 Face Book
## 2018-03-091 2018-03-09 185.2300 Face Book
## 2018-03-121 2018-03-12 184.7600 Face Book
## 2018-03-131 2018-03-13 181.8800 Face Book
## 2018-03-141 2018-03-14 184.1900 Face Book
## 2018-03-151 2018-03-15 183.8600 Face Book
## 2018-03-161 2018-03-16 185.0900 Face Book
## 2018-03-191 2018-03-19 172.5600 Face Book
## 2018-03-201 2018-03-20 168.1500 Face Book
## 2018-03-211 2018-03-21 169.3900 Face Book
## 2018-03-221 2018-03-22 164.8900 Face Book
## 2018-03-231 2018-03-23 159.3900 Face Book
## 2018-03-261 2018-03-26 160.0600 Face Book
## 2018-03-271 2018-03-27 152.2200 Face Book
## 2018-03-281 2018-03-28 153.0300 Face Book
## 2018-03-291 2018-03-29 159.7900 Face Book
## 2018-04-021 2018-04-02 155.3900 Face Book
## 2018-04-031 2018-04-03 156.1100 Face Book
## 2018-04-041 2018-04-04 155.1000 Face Book
## 2018-04-051 2018-04-05 159.3400 Face Book
## 2018-04-061 2018-04-06 157.2000 Face Book
## 2018-04-091 2018-04-09 157.9300 Face Book
## 2018-04-101 2018-04-10 165.0400 Face Book
## 2018-04-111 2018-04-11 166.3200 Face Book
## 2018-04-121 2018-04-12 163.8700 Face Book
## 2018-04-131 2018-04-13 164.5200 Face Book
## 2018-04-161 2018-04-16 164.8300 Face Book
## 2018-04-171 2018-04-17 168.6600 Face Book
## 2018-04-181 2018-04-18 166.3600 Face Book
## 2018-04-191 2018-04-19 168.1000 Face Book
## 2018-04-201 2018-04-20 166.2800 Face Book
## 2018-04-231 2018-04-23 165.8400 Face Book
## 2018-04-241 2018-04-24 159.6900 Face Book
## 2018-04-251 2018-04-25 159.6900 Face Book
## 2018-04-261 2018-04-26 174.1600 Face Book
## 2018-04-271 2018-04-27 173.5900 Face Book
## 2018-04-301 2018-04-30 172.0000 Face Book
## 2018-05-011 2018-05-01 173.8600 Face Book
## 2018-05-021 2018-05-02 176.0700 Face Book
## 2018-05-031 2018-05-03 174.0200 Face Book
## 2018-05-041 2018-05-04 176.6100 Face Book
## 2018-05-071 2018-05-07 177.9700 Face Book
## 2018-05-081 2018-05-08 178.9200 Face Book
## 2018-05-091 2018-05-09 182.6600 Face Book
## 2018-05-101 2018-05-10 185.5300 Face Book
## 2018-05-111 2018-05-11 186.9900 Face Book
## 2018-05-141 2018-05-14 186.6400 Face Book
## 2018-05-151 2018-05-15 184.3200 Face Book
## 2018-05-161 2018-05-16 183.2000 Face Book
## 2018-05-171 2018-05-17 183.7600 Face Book
## 2018-05-181 2018-05-18 182.6800 Face Book
## 2018-05-211 2018-05-21 184.4900 Face Book
## 2018-05-221 2018-05-22 183.8000 Face Book
## 2018-05-231 2018-05-23 186.9000 Face Book
## 2018-05-241 2018-05-24 185.9300 Face Book
## 2018-05-251 2018-05-25 184.9200 Face Book
## 2018-05-291 2018-05-29 185.7400 Face Book
## 2018-05-301 2018-05-30 187.6700 Face Book
## 2018-05-311 2018-05-31 191.7800 Face Book
## 2018-06-011 2018-06-01 193.9900 Face Book
## 2018-06-041 2018-06-04 193.2800 Face Book
## 2018-06-051 2018-06-05 192.9400 Face Book
## 2018-06-061 2018-06-06 191.3400 Face Book
## 2018-06-071 2018-06-07 188.1800 Face Book
## 2018-06-081 2018-06-08 189.1000 Face Book
## 2018-06-111 2018-06-11 191.5400 Face Book
## 2018-06-121 2018-06-12 192.4000 Face Book
## 2018-06-131 2018-06-13 192.4100 Face Book
## 2018-06-141 2018-06-14 196.8100 Face Book
## 2018-06-151 2018-06-15 195.8500 Face Book
## 2018-06-181 2018-06-18 198.3100 Face Book
## 2018-06-191 2018-06-19 197.4900 Face Book
## 2018-06-201 2018-06-20 202.0000 Face Book
## 2018-06-211 2018-06-21 201.5000 Face Book
## 2018-06-221 2018-06-22 201.7400 Face Book
## 2018-06-251 2018-06-25 196.3500 Face Book
## 2018-06-261 2018-06-26 199.0000 Face Book
## 2018-06-271 2018-06-27 195.8400 Face Book
## 2018-06-281 2018-06-28 196.2300 Face Book
## 2018-06-291 2018-06-29 194.3200 Face Book
## 2018-07-021 2018-07-02 197.3600 Face Book
## 2018-07-031 2018-07-03 192.7300 Face Book
## 2018-07-051 2018-07-05 198.4500 Face Book
## 2018-07-061 2018-07-06 203.2300 Face Book
## 2018-07-091 2018-07-09 204.7400 Face Book
## 2018-07-101 2018-07-10 203.5400 Face Book
## 2018-07-111 2018-07-11 202.5400 Face Book
## 2018-07-121 2018-07-12 206.9200 Face Book
## 2018-07-131 2018-07-13 207.3200 Face Book
## 2018-07-161 2018-07-16 207.2300 Face Book
## 2018-07-171 2018-07-17 209.9900 Face Book
## 2018-07-181 2018-07-18 209.3600 Face Book
## 2018-07-191 2018-07-19 208.0900 Face Book
## 2018-07-201 2018-07-20 209.9400 Face Book
## 2018-07-231 2018-07-23 210.9100 Face Book
## 2018-07-241 2018-07-24 214.6700 Face Book
## 2018-07-251 2018-07-25 217.5000 Face Book
## 2018-07-261 2018-07-26 176.2600 Face Book
## 2018-07-271 2018-07-27 174.8900 Face Book
## 2018-07-301 2018-07-30 171.0600 Face Book
## 2018-07-311 2018-07-31 172.5800 Face Book
## 2018-08-011 2018-08-01 171.6500 Face Book
## 2018-08-021 2018-08-02 176.3700 Face Book
## 2018-08-031 2018-08-03 177.7800 Face Book
## 2018-08-061 2018-08-06 185.6900 Face Book
## 2018-08-071 2018-08-07 183.8100 Face Book
## 2018-08-081 2018-08-08 185.1800 Face Book
## 2018-08-091 2018-08-09 183.0900 Face Book
## 2018-08-101 2018-08-10 180.2600 Face Book
## 2018-08-131 2018-08-13 180.0500 Face Book
## 2018-08-141 2018-08-14 181.1100 Face Book
## 2018-08-151 2018-08-15 179.5300 Face Book
## 2018-08-161 2018-08-16 174.7000 Face Book
## 2018-08-171 2018-08-17 173.8000 Face Book
## 2018-08-201 2018-08-20 172.5000 Face Book
## 2018-08-211 2018-08-21 172.6200 Face Book
## 2018-08-221 2018-08-22 173.6400 Face Book
## 2018-08-231 2018-08-23 172.9000 Face Book
## 2018-08-241 2018-08-24 174.6500 Face Book
## 2018-08-271 2018-08-27 177.4600 Face Book
## 2018-08-281 2018-08-28 176.2600 Face Book
## 2018-08-291 2018-08-29 175.9000 Face Book
## 2018-08-301 2018-08-30 177.6400 Face Book
## 2018-08-311 2018-08-31 175.7300 Face Book
## 2018-09-041 2018-09-04 171.1600 Face Book
## 2018-09-051 2018-09-05 167.1800 Face Book
## 2018-09-061 2018-09-06 162.5300 Face Book
## 2018-09-071 2018-09-07 163.0400 Face Book
## 2018-09-101 2018-09-10 164.1800 Face Book
## 2018-09-111 2018-09-11 165.9400 Face Book
## 2018-09-121 2018-09-12 162.0000 Face Book
## 2018-09-131 2018-09-13 161.3600 Face Book
## 2018-09-141 2018-09-14 162.3200 Face Book
## 2018-09-171 2018-09-17 160.5800 Face Book
## 2018-09-181 2018-09-18 160.3000 Face Book
## 2018-09-191 2018-09-19 163.0600 Face Book
## 2018-09-201 2018-09-20 166.0200 Face Book
## 2018-09-211 2018-09-21 162.9300 Face Book
## 2018-09-241 2018-09-24 165.4100 Face Book
## 2018-09-251 2018-09-25 164.9100 Face Book
## 2018-09-261 2018-09-26 166.9500 Face Book
## 2018-09-271 2018-09-27 168.8400 Face Book
## 2018-09-281 2018-09-28 164.4600 Face Book
## 2018-10-011 2018-10-01 162.4400 Face Book
## 2018-10-021 2018-10-02 159.3300 Face Book
## 2018-10-031 2018-10-03 162.4300 Face Book
## 2018-10-041 2018-10-04 158.8500 Face Book
## 2018-10-051 2018-10-05 157.3300 Face Book
## 2018-10-081 2018-10-08 157.2500 Face Book
## 2018-10-091 2018-10-09 157.9000 Face Book
## 2018-10-101 2018-10-10 151.3800 Face Book
## 2018-10-111 2018-10-11 153.3500 Face Book
## 2018-10-121 2018-10-12 153.7400 Face Book
## 2018-10-151 2018-10-15 153.5200 Face Book
## 2018-10-161 2018-10-16 158.7800 Face Book
## 2018-10-171 2018-10-17 159.4200 Face Book
## 2018-10-181 2018-10-18 154.9200 Face Book
## 2018-10-191 2018-10-19 154.0500 Face Book
## 2018-10-221 2018-10-22 154.7800 Face Book
## 2018-10-231 2018-10-23 154.3900 Face Book
## 2018-10-241 2018-10-24 146.0400 Face Book
## 2018-10-251 2018-10-25 150.9500 Face Book
## 2018-10-261 2018-10-26 145.3700 Face Book
## 2018-10-291 2018-10-29 142.0900 Face Book
## 2018-10-301 2018-10-30 146.2200 Face Book
## 2018-10-311 2018-10-31 151.7900 Face Book
## 2018-11-011 2018-11-01 151.7500 Face Book
## 2018-11-021 2018-11-02 150.3500 Face Book
## 2018-11-051 2018-11-05 148.6800 Face Book
## 2018-11-061 2018-11-06 149.9400 Face Book
## 2018-11-071 2018-11-07 151.5300 Face Book
## 2018-11-081 2018-11-08 147.8700 Face Book
## 2018-11-091 2018-11-09 144.9600 Face Book
## 2018-11-121 2018-11-12 141.5500 Face Book
## 2018-11-131 2018-11-13 142.1600 Face Book
## 2018-11-141 2018-11-14 144.2200 Face Book
## 2018-11-151 2018-11-15 143.8500 Face Book
## 2018-11-161 2018-11-16 139.5300 Face Book
## 2018-11-191 2018-11-19 131.5500 Face Book
## 2018-11-201 2018-11-20 132.4300 Face Book
## 2018-11-211 2018-11-21 134.8200 Face Book
## 2018-11-231 2018-11-23 131.7300 Face Book
## 2018-11-261 2018-11-26 136.3800 Face Book
## 2018-11-271 2018-11-27 135.0000 Face Book
## 2018-11-281 2018-11-28 136.7600 Face Book
## 2018-11-291 2018-11-29 138.6800 Face Book
## 2018-11-301 2018-11-30 140.6100 Face Book
## 2018-12-031 2018-12-03 141.0900 Face Book
## 2018-12-041 2018-12-04 137.9300 Face Book
## 2018-12-061 2018-12-06 139.6300 Face Book
## 2018-12-071 2018-12-07 137.4200 Face Book
## 2018-12-101 2018-12-10 141.8500 Face Book
## 2018-12-111 2018-12-11 142.0800 Face Book
## 2018-12-121 2018-12-12 144.5000 Face Book
## 2018-12-131 2018-12-13 145.0100 Face Book
## 2018-12-141 2018-12-14 144.0600 Face Book
## 2018-12-171 2018-12-17 140.1900 Face Book
## 2018-12-181 2018-12-18 143.6600 Face Book
## 2018-12-191 2018-12-19 133.2400 Face Book
## 2018-12-201 2018-12-20 133.4000 Face Book
## 2018-12-211 2018-12-21 124.9500 Face Book
## 2018-12-241 2018-12-24 124.0600 Face Book
## 2018-12-261 2018-12-26 134.1800 Face Book
## 2018-12-271 2018-12-27 134.5200 Face Book
## 2018-12-281 2018-12-28 133.2000 Face Book
## 2018-12-311 2018-12-31 131.0900 Face Book
## 2019-01-021 2019-01-02 135.6800 Face Book
## 2019-01-031 2019-01-03 131.7400 Face Book
## 2019-01-041 2019-01-04 137.9500 Face Book
## 2019-01-071 2019-01-07 138.0500 Face Book
## 2019-01-081 2019-01-08 142.5300 Face Book
## 2019-01-091 2019-01-09 144.2300 Face Book
## 2019-01-101 2019-01-10 144.2000 Face Book
## 2019-01-111 2019-01-11 143.8000 Face Book
## 2019-01-141 2019-01-14 145.3900 Face Book
## 2019-01-151 2019-01-15 148.9500 Face Book
## 2019-01-161 2019-01-16 147.5400 Face Book
## 2019-01-171 2019-01-17 148.3000 Face Book
## 2019-01-181 2019-01-18 150.0400 Face Book
## 2019-01-221 2019-01-22 147.5700 Face Book
## 2019-01-231 2019-01-23 144.3000 Face Book
## 2019-01-241 2019-01-24 145.8300 Face Book
## 2019-01-251 2019-01-25 149.0100 Face Book
## 2019-01-281 2019-01-28 147.4700 Face Book
## 2019-01-291 2019-01-29 144.1900 Face Book
## 2019-01-301 2019-01-30 150.4200 Face Book
## 2019-01-311 2019-01-31 166.6900 Face Book
## 2019-02-011 2019-02-01 165.7100 Face Book
## 2019-02-041 2019-02-04 169.2500 Face Book
## 2019-02-051 2019-02-05 171.1600 Face Book
## 2019-02-061 2019-02-06 170.4900 Face Book
## 2019-02-071 2019-02-07 166.3800 Face Book
## 2019-02-081 2019-02-08 167.3300 Face Book
## 2019-02-111 2019-02-11 165.7900 Face Book
## 2019-02-121 2019-02-12 165.0400 Face Book
## 2019-02-131 2019-02-13 164.0700 Face Book
## 2019-02-141 2019-02-14 163.9500 Face Book
## 2019-02-151 2019-02-15 162.5000 Face Book
## 2019-02-191 2019-02-19 162.2900 Face Book
## 2019-02-201 2019-02-20 162.5600 Face Book
## 2019-02-211 2019-02-21 160.0400 Face Book
## 2019-02-221 2019-02-22 161.8900 Face Book
## 2019-02-251 2019-02-25 164.6200 Face Book
## 2019-02-261 2019-02-26 164.1300 Face Book
## 2019-02-271 2019-02-27 162.8100 Face Book
## 2019-02-281 2019-02-28 161.4500 Face Book
## 2019-03-011 2019-03-01 162.2800 Face Book
## 2019-03-041 2019-03-04 167.3700 Face Book
## 2019-03-051 2019-03-05 171.2600 Face Book
## 2019-03-061 2019-03-06 172.5100 Face Book
## 2019-03-071 2019-03-07 169.1300 Face Book
## 2019-03-081 2019-03-08 169.6000 Face Book
## 2019-03-111 2019-03-11 172.0700 Face Book
## 2019-03-121 2019-03-12 171.9200 Face Book
## 2019-03-131 2019-03-13 173.3700 Face Book
## 2019-03-141 2019-03-14 170.1700 Face Book
## 2019-03-151 2019-03-15 165.9800 Face Book
## 2019-03-181 2019-03-18 160.4700 Face Book
## 2019-03-191 2019-03-19 161.5700 Face Book
## 2019-03-201 2019-03-20 165.4400 Face Book
## 2019-03-211 2019-03-21 166.0800 Face Book
## 2019-03-221 2019-03-22 164.3400 Face Book
## 2019-03-251 2019-03-25 166.2900 Face Book
## 2019-03-261 2019-03-26 167.6800 Face Book
## 2019-03-271 2019-03-27 165.8700 Face Book
## 2019-03-281 2019-03-28 165.5500 Face Book
## 2019-03-291 2019-03-29 166.6900 Face Book
## 2019-04-011 2019-04-01 168.7000 Face Book
## 2019-04-021 2019-04-02 174.2000 Face Book
## 2019-04-031 2019-04-03 173.5400 Face Book
## 2019-04-041 2019-04-04 176.0200 Face Book
## 2019-04-051 2019-04-05 175.7200 Face Book
## 2019-04-081 2019-04-08 174.9300 Face Book
## 2019-04-091 2019-04-09 177.5800 Face Book
## 2019-04-101 2019-04-10 177.8200 Face Book
## 2019-04-111 2019-04-11 177.5100 Face Book
## 2019-04-121 2019-04-12 179.1000 Face Book
## 2019-04-151 2019-04-15 179.6500 Face Book
## 2019-04-161 2019-04-16 178.8700 Face Book
## 2019-04-171 2019-04-17 178.7800 Face Book
## 2019-04-181 2019-04-18 178.2800 Face Book
## 2019-04-221 2019-04-22 181.4400 Face Book
## 2019-04-231 2019-04-23 183.7800 Face Book
## 2019-04-241 2019-04-24 182.5800 Face Book
## 2019-04-251 2019-04-25 193.2600 Face Book
## 2019-04-261 2019-04-26 191.4900 Face Book
## 2019-04-291 2019-04-29 194.7800 Face Book
## 2019-04-301 2019-04-30 193.4000 Face Book
## 2019-05-011 2019-05-01 193.0300 Face Book
## 2019-05-021 2019-05-02 192.5300 Face Book
## 2019-05-031 2019-05-03 195.4700 Face Book
## 2019-05-061 2019-05-06 193.8800 Face Book
## 2019-05-071 2019-05-07 189.7700 Face Book
## 2019-05-081 2019-05-08 189.5400 Face Book
## 2019-05-091 2019-05-09 188.6500 Face Book
## 2019-05-101 2019-05-10 188.3400 Face Book
## 2019-05-131 2019-05-13 181.5400 Face Book
## 2019-05-141 2019-05-14 180.7300 Face Book
## 2019-05-151 2019-05-15 186.2700 Face Book
## 2019-05-161 2019-05-16 186.9900 Face Book
## 2019-05-171 2019-05-17 185.3000 Face Book
## 2019-05-201 2019-05-20 182.7200 Face Book
## 2019-05-211 2019-05-21 184.8200 Face Book
## 2019-05-221 2019-05-22 185.3200 Face Book
## 2019-05-231 2019-05-23 180.8700 Face Book
## 2019-05-241 2019-05-24 181.0600 Face Book
## 2019-05-281 2019-05-28 184.3100 Face Book
## 2019-05-291 2019-05-29 182.1900 Face Book
## 2019-05-301 2019-05-30 183.0100 Face Book
## 2019-05-311 2019-05-31 177.4700 Face Book
## 2019-06-031 2019-06-03 164.1500 Face Book
## 2019-06-041 2019-06-04 167.5000 Face Book
## 2019-06-051 2019-06-05 168.1700 Face Book
## 2019-06-061 2019-06-06 168.3300 Face Book
## 2019-06-071 2019-06-07 173.3500 Face Book
## 2019-06-101 2019-06-10 174.8200 Face Book
## 2019-06-111 2019-06-11 178.1000 Face Book
## 2019-06-121 2019-06-12 175.0400 Face Book
## 2019-06-131 2019-06-13 177.4700 Face Book
## 2019-06-141 2019-06-14 181.3300 Face Book
## 2019-06-171 2019-06-17 189.0100 Face Book
## 2019-06-181 2019-06-18 188.4700 Face Book
## 2019-06-191 2019-06-19 187.4800 Face Book
## 2019-06-201 2019-06-20 189.5300 Face Book
## 2019-06-211 2019-06-21 191.1400 Face Book
## 2019-06-241 2019-06-24 192.6000 Face Book
## 2019-06-251 2019-06-25 188.8400 Face Book
## 2019-06-261 2019-06-26 187.6600 Face Book
## 2019-06-271 2019-06-27 189.5000 Face Book
## 2019-06-281 2019-06-28 193.0000 Face Book
## 2019-07-011 2019-07-01 193.0000 Face Book
## 2019-07-021 2019-07-02 195.0000 Face Book
## 2019-07-031 2019-07-03 197.2000 Face Book
## 2019-07-051 2019-07-05 196.4000 Face Book
## 2019-07-081 2019-07-08 195.7600 Face Book
## 2019-07-091 2019-07-09 199.2100 Face Book
## 2019-07-101 2019-07-10 202.7300 Face Book
## 2019-07-111 2019-07-11 201.2300 Face Book
## 2019-07-121 2019-07-12 204.8700 Face Book
## 2019-07-151 2019-07-15 203.9100 Face Book
## 2019-07-161 2019-07-16 203.8400 Face Book
## 2019-07-171 2019-07-17 201.8000 Face Book
## 2019-07-181 2019-07-18 200.7800 Face Book
## 2019-07-191 2019-07-19 198.3600 Face Book
## 2019-07-221 2019-07-22 202.3200 Face Book
## 2019-07-231 2019-07-23 202.3600 Face Book
## 2019-07-241 2019-07-24 204.6600 Face Book
## 2019-07-251 2019-07-25 200.7100 Face Book
## 2019-07-261 2019-07-26 199.7500 Face Book
## 2019-07-291 2019-07-29 195.9400 Face Book
## 2019-07-301 2019-07-30 197.0400 Face Book
## 2019-07-311 2019-07-31 194.2300 Face Book
## 2019-08-011 2019-08-01 192.7300 Face Book
## 2019-08-021 2019-08-02 189.0200 Face Book
## 2019-08-051 2019-08-05 181.7300 Face Book
## 2019-08-061 2019-08-06 184.5100 Face Book
## 2019-08-071 2019-08-07 185.1500 Face Book
## 2019-08-081 2019-08-08 190.1600 Face Book
## 2019-08-091 2019-08-09 187.8500 Face Book
## 2019-08-121 2019-08-12 185.3700 Face Book
## 2019-08-131 2019-08-13 188.4500 Face Book
## 2019-08-141 2019-08-14 179.7100 Face Book
## 2019-08-151 2019-08-15 182.5900 Face Book
## 2019-08-161 2019-08-16 183.7000 Face Book
## 2019-08-191 2019-08-19 186.1700 Face Book
## 2019-08-201 2019-08-20 183.8100 Face Book
## 2019-08-211 2019-08-21 183.5500 Face Book
## 2019-08-221 2019-08-22 182.0400 Face Book
## 2019-08-231 2019-08-23 177.7500 Face Book
## 2019-08-261 2019-08-26 180.3600 Face Book
## 2019-08-271 2019-08-27 181.3000 Face Book
## 2019-08-281 2019-08-28 181.7600 Face Book
## 2019-08-291 2019-08-29 185.5700 Face Book
## 2019-08-301 2019-08-30 185.6700 Face Book
## 2019-09-031 2019-09-03 182.3900 Face Book
## 2019-09-041 2019-09-04 187.1400 Face Book
## 2019-09-051 2019-09-05 190.9000 Face Book
## 2019-09-061 2019-09-06 187.4900 Face Book
## 2019-09-091 2019-09-09 188.7600 Face Book
## 2019-09-101 2019-09-10 186.1700 Face Book
## 2019-09-111 2019-09-11 188.4900 Face Book
## 2019-09-121 2019-09-12 187.4700 Face Book
## 2019-09-131 2019-09-13 187.1900 Face Book
## 2019-09-161 2019-09-16 186.2200 Face Book
## 2019-09-171 2019-09-17 188.0800 Face Book
## 2019-09-181 2019-09-18 188.1400 Face Book
## 2019-09-191 2019-09-19 190.1400 Face Book
## 2019-09-201 2019-09-20 189.9300 Face Book
## 2019-09-231 2019-09-23 186.8200 Face Book
## 2019-09-241 2019-09-24 181.2800 Face Book
## 2019-09-251 2019-09-25 182.8000 Face Book
## 2019-09-261 2019-09-26 180.1100 Face Book
## 2019-09-271 2019-09-27 177.1000 Face Book
## 2019-09-301 2019-09-30 178.0800 Face Book
## 2019-10-011 2019-10-01 175.8100 Face Book
## 2019-10-021 2019-10-02 174.6000 Face Book
## 2019-10-031 2019-10-03 179.3800 Face Book
## 2019-10-041 2019-10-04 180.4500 Face Book
## 2019-10-071 2019-10-07 179.6800 Face Book
## 2019-10-081 2019-10-08 177.7500 Face Book
## 2019-10-091 2019-10-09 179.8500 Face Book
## 2019-10-101 2019-10-10 180.0300 Face Book
## 2019-10-111 2019-10-11 184.1900 Face Book
## 2019-10-141 2019-10-14 183.2800 Face Book
## 2019-10-151 2019-10-15 188.8900 Face Book
## 2019-10-161 2019-10-16 189.5500 Face Book
## 2019-10-171 2019-10-17 190.3900 Face Book
## 2019-10-181 2019-10-18 185.8500 Face Book
## 2019-10-211 2019-10-21 189.7600 Face Book
## 2019-10-221 2019-10-22 182.3400 Face Book
## 2019-10-231 2019-10-23 186.1500 Face Book
## 2019-10-241 2019-10-24 186.3800 Face Book
## 2019-10-251 2019-10-25 187.8900 Face Book
## 2019-10-281 2019-10-28 189.4000 Face Book
## 2019-10-291 2019-10-29 189.3100 Face Book
## 2019-10-301 2019-10-30 188.2500 Face Book
## 2019-10-311 2019-10-31 191.6500 Face Book
## 2019-11-011 2019-11-01 193.6200 Face Book
## 2019-11-041 2019-11-04 194.7200 Face Book
## 2019-11-051 2019-11-05 194.3200 Face Book
## 2019-11-061 2019-11-06 191.5500 Face Book
## 2019-11-071 2019-11-07 190.4200 Face Book
## 2019-11-081 2019-11-08 190.8400 Face Book
## 2019-11-111 2019-11-11 189.6100 Face Book
## 2019-11-121 2019-11-12 194.4700 Face Book
## 2019-11-131 2019-11-13 193.1900 Face Book
## 2019-11-141 2019-11-14 193.1500 Face Book
## 2019-11-151 2019-11-15 195.1000 Face Book
## 2019-11-181 2019-11-18 197.4000 Face Book
## 2019-11-191 2019-11-19 199.3200 Face Book
## 2019-11-201 2019-11-20 197.5100 Face Book
## 2019-11-211 2019-11-21 197.9300 Face Book
## 2019-11-221 2019-11-22 198.8200 Face Book
## 2019-11-251 2019-11-25 199.7900 Face Book
## 2019-11-261 2019-11-26 198.9700 Face Book
## 2019-11-271 2019-11-27 202.0000 Face Book
## 2019-11-291 2019-11-29 201.6400 Face Book
## 2019-12-021 2019-12-02 199.7000 Face Book
## 2019-12-031 2019-12-03 198.8200 Face Book
## 2019-12-041 2019-12-04 198.7100 Face Book
## 2019-12-051 2019-12-05 199.3600 Face Book
## 2019-12-061 2019-12-06 201.0500 Face Book
## 2019-12-091 2019-12-09 201.3400 Face Book
## 2019-12-101 2019-12-10 200.8700 Face Book
## 2019-12-111 2019-12-11 202.2600 Face Book
## 2019-12-121 2019-12-12 196.7500 Face Book
## 2019-12-131 2019-12-13 194.1100 Face Book
## 2019-12-161 2019-12-16 197.9200 Face Book
## 2019-12-171 2019-12-17 198.3900 Face Book
## 2019-12-181 2019-12-18 202.5000 Face Book
## 2019-12-191 2019-12-19 206.0600 Face Book
## 2019-12-201 2019-12-20 206.3000 Face Book
## 2019-12-231 2019-12-23 206.1800 Face Book
## 2019-12-241 2019-12-24 205.1200 Face Book
## 2019-12-261 2019-12-26 207.7900 Face Book
## 2019-12-271 2019-12-27 208.1000 Face Book
## 2019-12-301 2019-12-30 204.4100 Face Book
## 2019-12-311 2019-12-31 205.2500 Face Book
## 2020-01-021 2020-01-02 209.7800 Face Book
## 2020-01-031 2020-01-03 208.6700 Face Book
## 2020-01-061 2020-01-06 212.6000 Face Book
## 2020-01-071 2020-01-07 213.0600 Face Book
## 2020-01-081 2020-01-08 215.2200 Face Book
## 2020-01-091 2020-01-09 218.3000 Face Book
## 2020-01-101 2020-01-10 218.0600 Face Book
## 2020-01-131 2020-01-13 221.9100 Face Book
## 2020-01-141 2020-01-14 219.0600 Face Book
## 2020-01-151 2020-01-15 221.1500 Face Book
## 2020-01-161 2020-01-16 221.7700 Face Book
## 2020-01-171 2020-01-17 222.1400 Face Book
## 2020-01-211 2020-01-21 221.4400 Face Book
## 2020-01-221 2020-01-22 221.3200 Face Book
## 2020-01-231 2020-01-23 219.7600 Face Book
## 2020-01-241 2020-01-24 217.9400 Face Book
## 2020-01-271 2020-01-27 214.8700 Face Book
## 2020-01-281 2020-01-28 217.7900 Face Book
## 2020-01-291 2020-01-29 223.2300 Face Book
## 2020-01-301 2020-01-30 209.5300 Face Book
## 2020-01-311 2020-01-31 201.9100 Face Book
## 2020-02-031 2020-02-03 204.1900 Face Book
## 2020-02-041 2020-02-04 209.8300 Face Book
## 2020-02-051 2020-02-05 210.1100 Face Book
## 2020-02-061 2020-02-06 210.8500 Face Book
## 2020-02-071 2020-02-07 212.3300 Face Book
## 2020-02-101 2020-02-10 213.0600 Face Book
## 2020-02-111 2020-02-11 207.1900 Face Book
## 2020-02-121 2020-02-12 210.7600 Face Book
## 2020-02-131 2020-02-13 213.1400 Face Book
## 2020-02-141 2020-02-14 214.1800 Face Book
## 2020-02-181 2020-02-18 217.8000 Face Book
## 2020-02-191 2020-02-19 217.4900 Face Book
## 2020-02-201 2020-02-20 214.5800 Face Book
## 2020-02-211 2020-02-21 210.1800 Face Book
## 2020-02-241 2020-02-24 200.7200 Face Book
## 2020-02-251 2020-02-25 196.7700 Face Book
## 2020-02-261 2020-02-26 197.2000 Face Book
## 2020-02-271 2020-02-27 189.7500 Face Book
## 2020-02-281 2020-02-28 192.4700 Face Book
## 2020-03-021 2020-03-02 196.4400 Face Book
## 2020-03-031 2020-03-03 185.8900 Face Book
## 2020-03-041 2020-03-04 191.7600 Face Book
## 2020-03-051 2020-03-05 185.1700 Face Book
## 2020-03-061 2020-03-06 181.0900 Face Book
## 2020-03-091 2020-03-09 169.5000 Face Book
## 2020-03-101 2020-03-10 178.1900 Face Book
## 2020-03-111 2020-03-11 170.2400 Face Book
## 2020-03-121 2020-03-12 154.4700 Face Book
## 2020-03-131 2020-03-13 170.2800 Face Book
## 2020-03-161 2020-03-16 146.0100 Face Book
## 2020-03-171 2020-03-17 149.4200 Face Book
## 2020-03-181 2020-03-18 146.9600 Face Book
## 2020-03-191 2020-03-19 153.1300 Face Book
## 2020-03-201 2020-03-20 149.7300 Face Book
## 2020-03-231 2020-03-23 148.1000 Face Book
## 2020-03-241 2020-03-24 160.9800 Face Book
## 2020-03-251 2020-03-25 156.2100 Face Book
## 2020-03-261 2020-03-26 163.3400 Face Book
## 2020-03-271 2020-03-27 156.7900 Face Book
## 2020-03-301 2020-03-30 165.9500 Face Book
## 2020-03-311 2020-03-31 166.8000 Face Book
## 2020-04-011 2020-04-01 159.6000 Face Book
## 2020-04-021 2020-04-02 158.1900 Face Book
## 2020-04-031 2020-04-03 154.1800 Face Book
## 2020-04-061 2020-04-06 165.5500 Face Book
## 2020-04-071 2020-04-07 168.8300 Face Book
## 2020-04-081 2020-04-08 174.2800 Face Book
## 2020-04-091 2020-04-09 175.1900 Face Book
## 2020-04-131 2020-04-13 174.7900 Face Book
## 2020-04-141 2020-04-14 178.1700 Face Book
## 2020-04-151 2020-04-15 176.9700 Face Book
## 2020-04-161 2020-04-16 176.2500 Face Book
## 2020-04-171 2020-04-17 179.2400 Face Book
## 2020-04-201 2020-04-20 178.2400 Face Book
## 2020-04-211 2020-04-21 170.8000 Face Book
## 2020-04-221 2020-04-22 182.2800 Face Book
## 2020-04-231 2020-04-23 185.1300 Face Book
## 2020-04-241 2020-04-24 190.0700 Face Book
## 2020-04-271 2020-04-27 187.5000 Face Book
## 2020-04-281 2020-04-28 182.9100 Face Book
## 2020-04-291 2020-04-29 194.1900 Face Book
## 2020-04-301 2020-04-30 204.7100 Face Book
## 2020-05-011 2020-05-01 202.2700 Face Book
## 2020-05-041 2020-05-04 205.2600 Face Book
## 2020-05-051 2020-05-05 207.0700 Face Book
## 2020-05-061 2020-05-06 208.4700 Face Book
## 2020-05-071 2020-05-07 211.2600 Face Book
## 2020-05-081 2020-05-08 212.3500 Face Book
## 2020-05-111 2020-05-11 213.1800 Face Book
## 2020-05-121 2020-05-12 210.1000 Face Book
## 2020-05-131 2020-05-13 205.1000 Face Book
## 2020-05-141 2020-05-14 206.8100 Face Book
## 2020-05-151 2020-05-15 210.8800 Face Book
## 2020-05-181 2020-05-18 213.1900 Face Book
## 2020-05-191 2020-05-19 216.8800 Face Book
## 2020-05-201 2020-05-20 229.9700 Face Book
## 2020-05-211 2020-05-21 231.3900 Face Book
## 2020-05-221 2020-05-22 234.9100 Face Book
## 2020-05-261 2020-05-26 232.2000 Face Book
## 2020-05-271 2020-05-27 229.1400 Face Book
## 2020-05-281 2020-05-28 225.4600 Face Book
## 2020-05-291 2020-05-29 225.0900 Face Book
## 2020-06-011 2020-06-01 231.9100 Face Book
## 2020-06-021 2020-06-02 232.7200 Face Book
## 2020-06-031 2020-06-03 230.1600 Face Book
## 2020-06-041 2020-06-04 226.2900 Face Book
## 2020-06-051 2020-06-05 230.7700 Face Book
## 2020-06-081 2020-06-08 231.4000 Face Book
## 2020-06-091 2020-06-09 238.6700 Face Book
## 2020-06-101 2020-06-10 236.7300 Face Book
## 2020-06-111 2020-06-11 224.4300 Face Book
## 2020-06-121 2020-06-12 228.5800 Face Book
## 2020-06-151 2020-06-15 232.5000 Face Book
## 2020-06-161 2020-06-16 235.6500 Face Book
## 2020-06-171 2020-06-17 235.5300 Face Book
## 2020-06-181 2020-06-18 235.9400 Face Book
## 2020-06-191 2020-06-19 238.7900 Face Book
## 2020-06-221 2020-06-22 239.2200 Face Book
## 2020-06-231 2020-06-23 242.2400 Face Book
## 2020-06-241 2020-06-24 234.0200 Face Book
## 2020-06-251 2020-06-25 235.6800 Face Book
## 2020-06-261 2020-06-26 216.0800 Face Book
## 2020-06-291 2020-06-29 220.6400 Face Book
## 2020-06-301 2020-06-30 227.0700 Face Book
## 2020-07-011 2020-07-01 237.5500 Face Book
## 2020-07-021 2020-07-02 233.4200 Face Book
## 2020-07-061 2020-07-06 240.2800 Face Book
## 2020-07-071 2020-07-07 240.8600 Face Book
## 2020-07-081 2020-07-08 243.5800 Face Book
## 2020-07-091 2020-07-09 244.5000 Face Book
## 2020-07-101 2020-07-10 245.0700 Face Book
## 2020-07-131 2020-07-13 239.0000 Face Book
## 2020-07-141 2020-07-14 239.7300 Face Book
## 2020-07-151 2020-07-15 240.2800 Face Book
## 2020-07-161 2020-07-16 240.9300 Face Book
## 2020-07-171 2020-07-17 242.0300 Face Book
## 2020-07-201 2020-07-20 245.4200 Face Book
## 2020-07-211 2020-07-21 241.7500 Face Book
## 2020-07-221 2020-07-22 239.8700 Face Book
## 2020-07-231 2020-07-23 232.6000 Face Book
## 2020-07-241 2020-07-24 230.7100 Face Book
## 2020-07-271 2020-07-27 233.5000 Face Book
## 2020-07-281 2020-07-28 230.1200 Face Book
## 2020-07-291 2020-07-29 233.2900 Face Book
## 2020-07-301 2020-07-30 234.5000 Face Book
## 2020-07-311 2020-07-31 253.6700 Face Book
## 2020-08-031 2020-08-03 251.9600 Face Book
## 2020-08-041 2020-08-04 249.8300 Face Book
## 2020-08-051 2020-08-05 249.1200 Face Book
## 2020-08-061 2020-08-06 265.2800 Face Book
## 2020-08-071 2020-08-07 268.4400 Face Book
## 2020-08-101 2020-08-10 263.0000 Face Book
## 2020-08-111 2020-08-11 256.1300 Face Book
## 2020-08-121 2020-08-12 259.8900 Face Book
## 2020-08-131 2020-08-13 261.3000 Face Book
## 2020-08-141 2020-08-14 261.2400 Face Book
## 2020-08-171 2020-08-17 261.1600 Face Book
## 2020-08-181 2020-08-18 262.3400 Face Book
## 2020-08-191 2020-08-19 262.5900 Face Book
## 2020-08-201 2020-08-20 269.0100 Face Book
## 2020-08-211 2020-08-21 267.0100 Face Book
## 2020-08-241 2020-08-24 271.3900 Face Book
## 2020-08-251 2020-08-25 280.8200 Face Book
## 2020-08-261 2020-08-26 303.9100 Face Book
## 2020-08-271 2020-08-27 293.2200 Face Book
## 2020-08-281 2020-08-28 293.6600 Face Book
## 2020-08-311 2020-08-31 293.2000 Face Book
## 2020-09-011 2020-09-01 295.4400 Face Book
## 2020-09-021 2020-09-02 302.5000 Face Book
## 2020-09-031 2020-09-03 291.1200 Face Book
## 2020-09-041 2020-09-04 282.7300 Face Book
## 2020-09-081 2020-09-08 271.1600 Face Book
## 2020-09-091 2020-09-09 273.7200 Face Book
## 2020-09-101 2020-09-10 268.0900 Face Book
## 2020-09-111 2020-09-11 266.6100 Face Book
## 2020-09-141 2020-09-14 266.1500 Face Book
## 2020-09-151 2020-09-15 272.4200 Face Book
## 2020-09-161 2020-09-16 263.5200 Face Book
## 2020-09-171 2020-09-17 254.8200 Face Book
## 2020-09-181 2020-09-18 252.5300 Face Book
## 2020-09-211 2020-09-21 248.1500 Face Book
## 2020-09-221 2020-09-22 254.7500 Face Book
## 2020-09-231 2020-09-23 249.0200 Face Book
## 2020-09-241 2020-09-24 249.5300 Face Book
## 2020-09-251 2020-09-25 254.8200 Face Book
## 2020-09-281 2020-09-28 256.8200 Face Book
## 2020-09-291 2020-09-29 261.7900 Face Book
## 2020-09-301 2020-09-30 261.9000 Face Book
## 2020-10-011 2020-10-01 266.6300 Face Book
## 2020-10-021 2020-10-02 259.9400 Face Book
## 2020-10-051 2020-10-05 264.6500 Face Book
## 2020-10-061 2020-10-06 258.6600 Face Book
## 2020-10-071 2020-10-07 258.1200 Face Book
## 2020-10-081 2020-10-08 263.7600 Face Book
## 2020-10-091 2020-10-09 264.4500 Face Book
## 2020-10-121 2020-10-12 275.7500 Face Book
## 2020-10-131 2020-10-13 276.1400 Face Book
## 2020-10-141 2020-10-14 271.8200 Face Book
## 2020-10-151 2020-10-15 266.7200 Face Book
## 2020-10-161 2020-10-16 265.9300 Face Book
## 2020-10-191 2020-10-19 261.4000 Face Book
## 2020-10-201 2020-10-20 267.5600 Face Book
## 2020-10-211 2020-10-21 278.7300 Face Book
## 2020-10-221 2020-10-22 278.1200 Face Book
## 2020-10-231 2020-10-23 284.7900 Face Book
## 2020-10-261 2020-10-26 277.1100 Face Book
## 2020-10-271 2020-10-27 283.2900 Face Book
## 2020-10-281 2020-10-28 267.6700 Face Book
## 2020-10-291 2020-10-29 280.8300 Face Book
## 2020-10-301 2020-10-30 263.1100 Face Book
## 2020-11-021 2020-11-02 261.3600 Face Book
## 2020-11-031 2020-11-03 265.3000 Face Book
## 2020-11-041 2020-11-04 287.3800 Face Book
## 2020-11-051 2020-11-05 294.6800 Face Book
## 2020-11-061 2020-11-06 293.4100 Face Book
## 2020-11-091 2020-11-09 278.7700 Face Book
## 2020-11-101 2020-11-10 272.4300 Face Book
## 2020-11-111 2020-11-11 276.4800 Face Book
## 2020-11-121 2020-11-12 275.0800 Face Book
## 2020-11-131 2020-11-13 276.9500 Face Book
## 2020-11-161 2020-11-16 278.9600 Face Book
## 2020-11-171 2020-11-17 275.0000 Face Book
## 2020-11-181 2020-11-18 271.9700 Face Book
## 2020-11-191 2020-11-19 272.9400 Face Book
## 2020-11-201 2020-11-20 269.7000 Face Book
## 2020-11-231 2020-11-23 268.4300 Face Book
## 2020-11-241 2020-11-24 276.9200 Face Book
## 2020-11-251 2020-11-25 275.5900 Face Book
## 2020-11-271 2020-11-27 277.8100 Face Book
## 2020-11-301 2020-11-30 276.9700 Face Book
## 2020-12-011 2020-12-01 286.5500 Face Book
## 2020-12-021 2020-12-02 287.5200 Face Book
## 2020-12-031 2020-12-03 281.8500 Face Book
## 2020-12-041 2020-12-04 279.7000 Face Book
## 2020-12-071 2020-12-07 285.5800 Face Book
## 2020-12-081 2020-12-08 283.4000 Face Book
## 2020-12-091 2020-12-09 277.9200 Face Book
## 2020-12-101 2020-12-10 277.1200 Face Book
## 2020-12-111 2020-12-11 273.5500 Face Book
## 2020-12-141 2020-12-14 274.1900 Face Book
## 2020-12-151 2020-12-15 275.5500 Face Book
## 2020-12-161 2020-12-16 275.6700 Face Book
## 2020-12-171 2020-12-17 274.4800 Face Book
## 2020-12-181 2020-12-18 276.4000 Face Book
## 2020-12-211 2020-12-21 272.7900 Face Book
## 2020-12-221 2020-12-22 267.0900 Face Book
## 2020-12-231 2020-12-23 268.1100 Face Book
## 2020-12-241 2020-12-24 267.4000 Face Book
## 2020-12-281 2020-12-28 277.0000 Face Book
## 2020-12-291 2020-12-29 276.7800 Face Book
## 2020-12-301 2020-12-30 271.8700 Face Book
## 2020-12-311 2020-12-31 273.1600 Face Book
## 2021-01-041 2021-01-04 268.9400 Face Book
## 2021-01-051 2021-01-05 270.9700 Face Book
## 2021-01-061 2021-01-06 263.3100 Face Book
## 2021-01-071 2021-01-07 268.7400 Face Book
## 2021-01-081 2021-01-08 267.5700 Face Book
## 2021-01-111 2021-01-11 256.8400 Face Book
## 2021-01-121 2021-01-12 251.0900 Face Book
## 2021-01-131 2021-01-13 251.6400 Face Book
## 2021-01-141 2021-01-14 245.6400 Face Book
## 2021-01-151 2021-01-15 251.3600 Face Book
## 2021-01-191 2021-01-19 261.1000 Face Book
## 2021-01-201 2021-01-20 267.4800 Face Book
## 2021-01-211 2021-01-21 272.8700 Face Book
## 2021-01-221 2021-01-22 274.5000 Face Book
## 2021-01-251 2021-01-25 278.0100 Face Book
## 2021-01-261 2021-01-26 282.0500 Face Book
## 2021-01-271 2021-01-27 272.1400 Face Book
## 2021-01-281 2021-01-28 265.0000 Face Book
## 2021-01-291 2021-01-29 258.3300 Face Book
## 2021-02-011 2021-02-01 259.0450 Face Book
merge(apple, fb,  by = 'Date') -> merge_table


head(merge_table)
##         Date Close.x Company.x Close.y Company.y
## 1 2018-01-02 43.0650     Apple  181.42 Face Book
## 2 2018-01-03 43.0575     Apple  184.67 Face Book
## 3 2018-01-04 43.2575     Apple  184.33 Face Book
## 4 2018-01-05 43.7500     Apple  186.85 Face Book
## 5 2018-01-08 43.5875     Apple  188.28 Face Book
## 6 2018-01-09 43.5825     Apple  187.87 Face Book
ggplot(mseries, aes(x= Date, y =Close, color=Company ))+
  geom_line()+
  scale_x_date(date_breaks = '1 month', 
             labels = scales :: date_format("%b"))+ 
  theme_minimal()+ 
  scale_color_brewer(palette = "Dark2")+
  labs(title = "NSDAQ Closting Price", 
       subtitle = "Jan-Aug 2018", 
       y= "Closing Price")

Dummmbell Charts

x= year y= country value = lifeExp

x 축 : 구간 y 축 : Categorical value : dummbell

#install.packages("ggalt")
library(ggalt)
## Registered S3 methods overwritten by 'ggalt':
##   method                  from   
##   grid.draw.absoluteGrob  ggplot2
##   grobHeight.absoluteGrob ggplot2
##   grobWidth.absoluteGrob  ggplot2
##   grobX.absoluteGrob      ggplot2
##   grobY.absoluteGrob      ggplot2
library(tidyr)
## 
## Attaching package: 'tidyr'
## The following objects are masked from 'package:reshape':
## 
##     expand, smiths
gapminder %>%  
  filter(continent == "Americas" & 
           year %in% c(1952, 2007)) %>%  
  select(country, year, lifeExp) -> plot_long

head(plot_long)  
## # A tibble: 6 x 3
##   country    year lifeExp
##   <fct>     <int>   <dbl>
## 1 Argentina  1952    62.5
## 2 Argentina  2007    75.3
## 3 Bolivia    1952    40.4
## 4 Bolivia    2007    65.6
## 5 Brazil     1952    50.9
## 6 Brazil     2007    72.4
plot_wide <- spread(plot_long, year, lifeExp) #spread  1952 와 2007 부분이 따로 구분해되서 나옴  year 변수가 2 컬럼으로 spread 됨 
datatable(plot_wide)
## 숫자형 이름을 문자형으로 만들어줘야함 
names(plot_wide) <- c("country", "y1952", "y2007")
head(plot_wide)
## # A tibble: 6 x 3
##   country   y1952 y2007
##   <fct>     <dbl> <dbl>
## 1 Argentina  62.5  75.3
## 2 Bolivia    40.4  65.6
## 3 Brazil     50.9  72.4
## 4 Canada     68.8  80.7
## 5 Chile      54.7  78.6
## 6 Colombia   50.6  72.9
ggplot(plot_wide, aes(x= y1952,
                      xend =y2007, 
                      y = reorder(country, y1952))) + 
  geom_dumbbell(size = 1.2, 
                size_x = 3, 
                size_xend = 3, 
                colour= "grey", 
                colour_x = "blue", 
                colour_xend = "red")+ 
  theme_minimal()+
  labs(x = "Life Expectancy (Year)", 
       y= "")

Slope Charts

구간을 끊어서 각 나라별 lifeExp 를 나타낸다 x= year, y= country value= lifeExp

#install.packages("CGPfunctions")
library(CGPfunctions)
## Registered S3 methods overwritten by 'lme4':
##   method                          from
##   cooks.distance.influence.merMod car 
##   influence.merMod                car 
##   dfbeta.influence.merMod         car 
##   dfbetas.influence.merMod        car
gapminder %>%  
  filter(year %in% c (1992, 1997, 2002, 2007) &
           country %in% c("Panama", "Costa Rica", "Nicaragua", "Honduras", 
                          "El Salvador", "Guatemala", "Belize")) %>% 
  mutate(year = factor(year), 
         lifeExp = round(lifeExp)) -> slope_df


newggslopegraph(slope_df, year, lifeExp, country)+
  labs(title = "Life Expency by Country", 
       subtitle = "Central America", 
       caption = "Data Source : Gapminder")
## 
## Converting 'year' to an ordered factor

Area Charts - Density Chart

datatable(economics)
ggplot(economics, aes(x= date, y= psavert))+ 
  geom_area(fill= "lightblue", color ="black")

Statistical Model

1.1 Correlation plots

#install.packages("ggcorrplot")
library(ggcorrplot)

df_economic <- economics[, c(2:5)]


round(cor(df_economic, use = "complete.obs"),2) -> cor_da

ggcorrplot(cor_da, 
           type = "lower", 
           lab = TRUE)

## selec_if (data, is_numeric) 숫자형 변수만 뽑아라 
select_if(SaratogaHouses, is.numeric) -> cor_da_1


cor(cor_da_1, use = "complete.obs")-> cor_matrix

ggcorrplot(cor_matrix, 
           type = "lower", 
           lab= TRUE)

1.2 Linear Regression

  1. Set the regression calculation
  2. visreg package
#install.packages("visreg")
library(visreg)

lm(price ~ lotSize + age + landValue + livingArea + bedrooms +bathrooms + waterfront, 
    data = SaratogaHouses) -> house_lm

visreg 함수는 안에 각 변수를 바꿔주면서 x 에 대한 price 정보만을 시각화 전체 회귀식의 그래프는 아님

#gg= TRUE: ggplot 함수를 사용할 수 있게 해줌 
visreg::visreg(house_lm, "livingArea", gg=TRUE)+
  scale_y_continuous(label = scales ::dollar)

1.2 Linear Regression

CPS85 에서 결혼을 한다/ 안한다 logistic 식 세우기 sex + race + sector 전부 categorical 변수 / age 아님

glm(married ~ sex + age + race + sector, family = "binomial", data=CPS85) -> glm_cps85

glm_cps85
## 
## Call:  glm(formula = married ~ sex + age + race + sector, family = "binomial", 
##     data = CPS85)
## 
## Coefficients:
##   (Intercept)           sexM            age          raceW    sectorconst  
##       1.77034        0.01404       -0.05722       -0.21608       -0.32020  
##   sectormanag    sectormanuf    sectorother     sectorprof    sectorsales  
##      -0.25537       -0.45568       -0.08359       -0.39546       -0.73076  
## sectorservice  
##       0.18357  
## 
## Degrees of Freedom: 533 Total (i.e. Null);  523 Residual
## Null Deviance:       687.8 
## Residual Deviance: 634.9     AIC: 656.9
visreg(glm_cps85, "age", gg=TRUE, scale = "response")

1.3 Biplots

각 변수 간의 거리를 보여주는 그래프 2 차원에서 보여줌 factoextra 사용

library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
data(mtcars)

# PCA 구성 모델 생성 
prcomp(x=mtcars, 
       center = TRUE, 
       scale = TRUE) -> fit


fviz_pca(fit, 
         repel = TRUE, 
         labelsize= 3)+ 
  theme_bw()
## Warning: ggrepel: 6 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Forrest Yong 의 설명을 찾아야함

그래프 해석 ) dim1 - 전체 변동량의 60%를 설명한다. dim2 - 전체 변동량의 24%를 설명한다. dim1 + dim2 = 84% 를 설명한다.

  1. 점의 위치 : 중앙으로 부터 비슷한 거리에 있는 점들 Honda Civic & Toyota Corolla 비슷하다

  2. 각도 : 각 뻗어나가는 두 선의 각도가 90도면 양의 상관 (gear, carb) 각도가 더 벌어지면 음의 상관 (gear, wt)

  3. 뻗어나아가는 선과 점의 위치 : Duster 360 은 cyl 값이 높다. Toyota Corona 는 gsec 값이 높다.

1.4 Bubble Chart

언제 쓰면 좋은가? x, y가 연속형 축으로 놓고, 연속형을 볼 때 (size 로 지정 ), 보통 fill= 그룹 지정을 해주는데 그러면 각 그룹별 x,y 의 산점도가 나온다. bubble 은 x, y, 알고자 하는 값이 전부 연속형이면 굿굿

ggplot(mtcars, 
       aes(x= wt, 
           y= mpg, 
           size= hp ))+ 
  geom_point(alpha= .5, 
             fill= blue, 
             shape=21)+
  scale_y_continuous(breaks = seq(0,50,10))

  labs(x= "Weight (1000 lbs)", 
       y="Miles/(US) gallon", 
       size = "Gross Horsepower")
## $x
## [1] "Weight (1000 lbs)"
## 
## $y
## [1] "Miles/(US) gallon"
## 
## $size
## [1] "Gross Horsepower"
## 
## attr(,"class")
## [1] "labels"

1.5 Sankey diagrams

변수의 관계를 흐름으로 보여준다, 노드들의 네트워크로 보여주는 것들 UK 에너지 예측 데이터 활용 - 에너지 생산과 소비 예상 2050년도

#load("Energy.RData")
#head(node)

#library(networkD3)
#sankeyNetwork(Links = links, 
#               Source = "Source", 
#               Target = "target", 
#                Value = "value", 
#               NodeId= "name", 
#               units="TWh",
#               fontSize=12, 
#               nodeWidth = 30)

1.5 Alluvial diagra

각 범주형 변수들의 관계성을 보여주는 것.

Marriage 데이터 사용 : prevconc 이혼하거나 혹은 죽거나 (NA 값이 있음으로 일단 제외)

각 여러 범주형 변수들이 : 이혼과 죽음에 어떻게 영향을 가지는가에 대해서 살펴보기

#install.packages("ggalluvial")
library(ggalluvial)

# 생략된 변수 제거 
na.omit(Marriage)-> na_x_marriage

# 범주형만 선택하기 

select_if(na_x_marriage, is.factor) %>% 
  select(-1) -> all_data

# 중요한 점 : count 기준 연결된다 COUNT!!!! group_by 는 끝에 보고자 하는 걸로 놓는다 

all_data %>%  
  group_by(officialTitle, person, race, sign, prevconc) %>%  
  count() -> all_table


ggplot(all_table, aes(axis1 = officialTitle, 
                      axis2 = person, 
                      axis4= sign, 
                      axis5=prevconc,
                      y=n))+ 
  geom_alluvium(aes(fill=race)) +
  geom_stratum()+
  geom_text(stat = "stratum", 
            aes(label = after_stat(stratum)))

table(all_table$prevconc)
## 
##   Death Divorce 
##       6      36

재미있는 사실 : 백인과 흑인 중 death 가 뜬 특정 별자리가 있다. (순서를 바꿔서 보면 좋을것 같지만 생략 )