load("C:/Users/victo/Desktop/Base_de_dados-master/CARROS_cat.RData")
load("C:/Users/victo/Desktop/Base_de_dados-master/Game of Thrones.RData")
#criar tabela
tabela1<-table(CARROS_cat$fabricante,CARROS_cat$classe)
tabela2<-table(CARROS_cat$fabricante,CARROS_cat$combustivel)
tabela3<-table(CARROS_cat$fabricante,CARROS_cat$transmissao)
tabela_GOT<-table(personagens_livro$Sexo1,personagens_livro$nobre1)
tabela1
##
## 2 assentos compacto médio minivan pickup subcompacto suv
## audi 0 15 3 0 0 0 0
## chevrolet 5 0 5 0 0 0 9
## dodge 0 0 0 11 19 0 7
## ford 0 0 0 0 7 9 9
## honda 0 0 0 0 0 9 0
## hyundai 0 0 7 0 0 7 0
## jeep 0 0 0 0 0 0 8
## land rover 0 0 0 0 0 0 4
## lincoln 0 0 0 0 0 0 3
## mercury 0 0 0 0 0 0 4
## nissan 0 2 7 0 0 0 4
## pontiac 0 0 5 0 0 0 0
## subaru 0 4 0 0 0 4 6
## toyota 0 12 7 0 7 0 8
## volkswagen 0 14 7 0 0 6 0
tabela2
##
## d e g p r
## audi 0 0 0 18 0
## chevrolet 1 2 0 5 11
## dodge 0 5 0 0 32
## ford 0 0 0 1 24
## honda 0 0 1 2 6
## hyundai 0 0 0 0 14
## jeep 1 1 0 1 5
## land rover 0 0 0 2 2
## lincoln 0 0 0 1 2
## mercury 0 0 0 0 4
## nissan 0 0 0 5 8
## pontiac 0 0 0 2 3
## subaru 0 0 0 4 10
## toyota 0 0 0 0 34
## volkswagen 3 0 0 11 13
tabela3
##
## auto(av) auto(l3) auto(l4) auto(l5) auto(l6) auto(s4) auto(s5)
## audi 2 0 0 5 0 0 0
## chevrolet 0 0 14 0 0 0 0
## dodge 0 1 16 11 2 0 0
## ford 0 0 10 5 2 0 0
## honda 0 0 2 2 0 0 0
## hyundai 0 0 6 1 0 0 0
## jeep 0 0 2 6 0 0 0
## land rover 0 0 2 0 0 0 0
## lincoln 0 0 2 0 1 0 0
## mercury 0 0 1 2 1 0 0
## nissan 3 0 3 1 0 0 1
## pontiac 0 0 4 0 0 1 0
## subaru 0 0 5 0 0 2 0
## toyota 0 1 11 4 0 0 2
## volkswagen 0 0 5 2 0 0 0
##
## auto(s6) manual(m5) manual(m6)
## audi 4 4 3
## chevrolet 2 0 3
## dodge 0 3 4
## ford 0 7 1
## honda 0 4 1
## hyundai 0 6 1
## jeep 0 0 0
## land rover 2 0 0
## lincoln 0 0 0
## mercury 0 0 0
## nissan 0 3 2
## pontiac 0 0 0
## subaru 0 7 0
## toyota 2 13 1
## volkswagen 6 11 3
tabela_GOT
## < table of extent 0 x 0 >
library(DT)
datatable(tabela1)
datatable(tabela2)
datatable(tabela3)
datatable(tabela_GOT)
#Passo 1,5 - Manipular banco de dados
personagens_livro$Sexo1<-ifelse(personagens_livro$sexo=="femenino","Feminino", "Masculino")
personagens_livro$nobre1<-ifelse(personagens_livro$nobre=="0", "Não nobre", "Nobre")
str(CARROS_cat)
## Classes 'tbl_df', 'tbl' and 'data.frame': 234 obs. of 11 variables:
## $ fabricante : chr "audi" "audi" "audi" "audi" ...
## $ modelo : chr "a4" "a4" "a4" "a4" ...
## $ cilindrada : num 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
## $ ano : int 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
## $ cilindros : int 4 4 4 4 6 6 6 4 4 4 ...
## $ transmissao: chr "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
## $ tracao : chr "d" "d" "d" "d" ...
## $ cidade : int 18 21 20 21 16 18 18 18 16 20 ...
## $ rodovia : int 29 29 31 30 26 26 27 26 25 28 ...
## $ combustivel: chr "p" "p" "p" "p" ...
## $ classe : chr "compacto" "compacto" "compacto" "compacto" ...
head(CARROS_cat)
## fabricante modelo cilindrada ano cilindros transmissao tracao cidade rodovia
## 1 audi a4 1.8 1999 4 auto(l5) d 18 29
## 2 audi a4 1.8 1999 4 manual(m5) d 21 29
## 3 audi a4 2.0 2008 4 manual(m6) d 20 31
## 4 audi a4 2.0 2008 4 auto(av) d 21 30
## 5 audi a4 2.8 1999 6 auto(l5) d 16 26
## 6 audi a4 2.8 1999 6 manual(m5) d 18 26
## combustivel classe
## 1 p compacto
## 2 p compacto
## 3 p compacto
## 4 p compacto
## 5 p compacto
## 6 p compacto
tail(CARROS_cat)
## fabricante modelo cilindrada ano cilindros transmissao tracao cidade
## 229 volkswagen passat 1.8 1999 4 auto(l5) d 18
## 230 volkswagen passat 2.0 2008 4 auto(s6) d 19
## 231 volkswagen passat 2.0 2008 4 manual(m6) d 21
## 232 volkswagen passat 2.8 1999 6 auto(l5) d 16
## 233 volkswagen passat 2.8 1999 6 manual(m5) d 18
## 234 volkswagen passat 3.6 2008 6 auto(s6) d 17
## rodovia combustivel classe
## 229 29 p médio
## 230 28 p médio
## 231 29 p médio
## 232 26 p médio
## 233 26 p médio
## 234 26 p médio
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
glimpse(CARROS_cat)
## Rows: 234
## Columns: 11
## $ fabricante <chr> "audi", "audi", "audi", "audi", "audi", "audi", "audi",...
## $ modelo <chr> "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4 quattro",...
## $ cilindrada <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0, ...
## $ ano <int> 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, 2...
## $ cilindros <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8...
## $ transmissao <chr> "auto(l5)", "manual(m5)", "manual(m6)", "auto(av)", "au...
## $ tracao <chr> "d", "d", "d", "d", "d", "d", "d", "4", "4", "4", "4", ...
## $ cidade <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 17, 17,...
## $ rodovia <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 25, 25,...
## $ combustivel <chr> "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", ...
## $ classe <chr> "compacto", "compacto", "compacto", "compacto", "compac...
prop.table(tabela1,1)*100 #1 por ser linha
##
## 2 assentos compacto médio minivan pickup subcompacto
## audi 0.00000 83.33333 16.66667 0.00000 0.00000 0.00000
## chevrolet 26.31579 0.00000 26.31579 0.00000 0.00000 0.00000
## dodge 0.00000 0.00000 0.00000 29.72973 51.35135 0.00000
## ford 0.00000 0.00000 0.00000 0.00000 28.00000 36.00000
## honda 0.00000 0.00000 0.00000 0.00000 0.00000 100.00000
## hyundai 0.00000 0.00000 50.00000 0.00000 0.00000 50.00000
## jeep 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## land rover 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## lincoln 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## mercury 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
## nissan 0.00000 15.38462 53.84615 0.00000 0.00000 0.00000
## pontiac 0.00000 0.00000 100.00000 0.00000 0.00000 0.00000
## subaru 0.00000 28.57143 0.00000 0.00000 0.00000 28.57143
## toyota 0.00000 35.29412 20.58824 0.00000 20.58824 0.00000
## volkswagen 0.00000 51.85185 25.92593 0.00000 0.00000 22.22222
##
## suv
## audi 0.00000
## chevrolet 47.36842
## dodge 18.91892
## ford 36.00000
## honda 0.00000
## hyundai 0.00000
## jeep 100.00000
## land rover 100.00000
## lincoln 100.00000
## mercury 100.00000
## nissan 30.76923
## pontiac 0.00000
## subaru 42.85714
## toyota 23.52941
## volkswagen 0.00000
prop.table(tabela_GOT,1)*100
## <0 x 0 matrix>
round(prop.table(tabela_GOT,1)*100,1)
## <0 x 0 matrix>
prop.table(tabela1,2)*100 #2 por ser coluna
##
## 2 assentos compacto médio minivan pickup subcompacto
## audi 0.000000 31.914894 7.317073 0.000000 0.000000 0.000000
## chevrolet 100.000000 0.000000 12.195122 0.000000 0.000000 0.000000
## dodge 0.000000 0.000000 0.000000 100.000000 57.575758 0.000000
## ford 0.000000 0.000000 0.000000 0.000000 21.212121 25.714286
## honda 0.000000 0.000000 0.000000 0.000000 0.000000 25.714286
## hyundai 0.000000 0.000000 17.073171 0.000000 0.000000 20.000000
## jeep 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## land rover 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## lincoln 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## mercury 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
## nissan 0.000000 4.255319 17.073171 0.000000 0.000000 0.000000
## pontiac 0.000000 0.000000 12.195122 0.000000 0.000000 0.000000
## subaru 0.000000 8.510638 0.000000 0.000000 0.000000 11.428571
## toyota 0.000000 25.531915 17.073171 0.000000 21.212121 0.000000
## volkswagen 0.000000 29.787234 17.073171 0.000000 0.000000 17.142857
##
## suv
## audi 0.000000
## chevrolet 14.516129
## dodge 11.290323
## ford 14.516129
## honda 0.000000
## hyundai 0.000000
## jeep 12.903226
## land rover 6.451613
## lincoln 4.838710
## mercury 6.451613
## nissan 6.451613
## pontiac 0.000000
## subaru 9.677419
## toyota 12.903226
## volkswagen 0.000000
prop.table(tabela_GOT,2)*100
## <0 x 0 matrix>
round(prop.table(tabela_GOT,2)*100,1)
## <0 x 0 matrix>
library(RColorBrewer)
AZUL<-brewer.pal(7, "Blues")
VERMELHO<-brewer.pal(7,"Reds")
GREEN<-brewer.pal(7, "Greens")
COLORIDO<-brewer.pal(7,"Set3")
tabela1<-table(CARROS_cat$classe,CARROS_cat$fabricante)
tabela1
##
## audi chevrolet dodge ford honda hyundai jeep land rover lincoln
## 2 assentos 0 5 0 0 0 0 0 0 0
## compacto 15 0 0 0 0 0 0 0 0
## médio 3 5 0 0 0 7 0 0 0
## minivan 0 0 11 0 0 0 0 0 0
## pickup 0 0 19 7 0 0 0 0 0
## subcompacto 0 0 0 9 9 7 0 0 0
## suv 0 9 7 9 0 0 8 4 3
##
## mercury nissan pontiac subaru toyota volkswagen
## 2 assentos 0 0 0 0 0 0
## compacto 0 2 0 4 12 14
## médio 0 7 5 0 7 7
## minivan 0 0 0 0 0 0
## pickup 0 0 0 0 7 0
## subcompacto 0 0 0 4 0 6
## suv 4 4 0 6 8 0
barplot(tabela1,
beside = T,
col = AZUL)
barplot(tabela1,
beside = T,
col = COLORIDO)
display.brewer.all()