Passo 0 - Carregadar a base de dados

load("C:/Users/victo/Desktop/Base_de_dados-master/CARROS_cat.RData")
load("C:/Users/victo/Desktop/Base_de_dados-master/Game of Thrones.RData")

Passo 1 - número absoluto

#criar tabela
tabela1<-table(CARROS_cat$fabricante,CARROS_cat$classe)
tabela2<-table(CARROS_cat$fabricante,CARROS_cat$combustivel)
tabela3<-table(CARROS_cat$fabricante,CARROS_cat$transmissao)
tabela_GOT<-table(personagens_livro$Sexo1,personagens_livro$nobre1)


tabela1
##             
##              2 assentos compacto médio minivan pickup subcompacto suv
##   audi                0       15     3       0      0           0   0
##   chevrolet           5        0     5       0      0           0   9
##   dodge               0        0     0      11     19           0   7
##   ford                0        0     0       0      7           9   9
##   honda               0        0     0       0      0           9   0
##   hyundai             0        0     7       0      0           7   0
##   jeep                0        0     0       0      0           0   8
##   land rover          0        0     0       0      0           0   4
##   lincoln             0        0     0       0      0           0   3
##   mercury             0        0     0       0      0           0   4
##   nissan              0        2     7       0      0           0   4
##   pontiac             0        0     5       0      0           0   0
##   subaru              0        4     0       0      0           4   6
##   toyota              0       12     7       0      7           0   8
##   volkswagen          0       14     7       0      0           6   0
tabela2
##             
##               d  e  g  p  r
##   audi        0  0  0 18  0
##   chevrolet   1  2  0  5 11
##   dodge       0  5  0  0 32
##   ford        0  0  0  1 24
##   honda       0  0  1  2  6
##   hyundai     0  0  0  0 14
##   jeep        1  1  0  1  5
##   land rover  0  0  0  2  2
##   lincoln     0  0  0  1  2
##   mercury     0  0  0  0  4
##   nissan      0  0  0  5  8
##   pontiac     0  0  0  2  3
##   subaru      0  0  0  4 10
##   toyota      0  0  0  0 34
##   volkswagen  3  0  0 11 13
tabela3
##             
##              auto(av) auto(l3) auto(l4) auto(l5) auto(l6) auto(s4) auto(s5)
##   audi              2        0        0        5        0        0        0
##   chevrolet         0        0       14        0        0        0        0
##   dodge             0        1       16       11        2        0        0
##   ford              0        0       10        5        2        0        0
##   honda             0        0        2        2        0        0        0
##   hyundai           0        0        6        1        0        0        0
##   jeep              0        0        2        6        0        0        0
##   land rover        0        0        2        0        0        0        0
##   lincoln           0        0        2        0        1        0        0
##   mercury           0        0        1        2        1        0        0
##   nissan            3        0        3        1        0        0        1
##   pontiac           0        0        4        0        0        1        0
##   subaru            0        0        5        0        0        2        0
##   toyota            0        1       11        4        0        0        2
##   volkswagen        0        0        5        2        0        0        0
##             
##              auto(s6) manual(m5) manual(m6)
##   audi              4          4          3
##   chevrolet         2          0          3
##   dodge             0          3          4
##   ford              0          7          1
##   honda             0          4          1
##   hyundai           0          6          1
##   jeep              0          0          0
##   land rover        2          0          0
##   lincoln           0          0          0
##   mercury           0          0          0
##   nissan            0          3          2
##   pontiac           0          0          0
##   subaru            0          7          0
##   toyota            2         13          1
##   volkswagen        6         11          3
tabela_GOT
## < table of extent 0 x 0 >
library(DT)
datatable(tabela1)
datatable(tabela2)
datatable(tabela3)
datatable(tabela_GOT)

#Passo 1,5 - Manipular banco de dados

personagens_livro$Sexo1<-ifelse(personagens_livro$sexo=="femenino","Feminino", "Masculino")
personagens_livro$nobre1<-ifelse(personagens_livro$nobre=="0", "Não nobre", "Nobre")

Passo 2 - Estrura de dados

str(CARROS_cat)
## Classes 'tbl_df', 'tbl' and 'data.frame':    234 obs. of  11 variables:
##  $ fabricante : chr  "audi" "audi" "audi" "audi" ...
##  $ modelo     : chr  "a4" "a4" "a4" "a4" ...
##  $ cilindrada : num  1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
##  $ ano        : int  1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
##  $ cilindros  : int  4 4 4 4 6 6 6 4 4 4 ...
##  $ transmissao: chr  "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
##  $ tracao     : chr  "d" "d" "d" "d" ...
##  $ cidade     : int  18 21 20 21 16 18 18 18 16 20 ...
##  $ rodovia    : int  29 29 31 30 26 26 27 26 25 28 ...
##  $ combustivel: chr  "p" "p" "p" "p" ...
##  $ classe     : chr  "compacto" "compacto" "compacto" "compacto" ...
head(CARROS_cat)
##   fabricante modelo cilindrada  ano cilindros transmissao tracao cidade rodovia
## 1       audi     a4        1.8 1999         4    auto(l5)      d     18      29
## 2       audi     a4        1.8 1999         4  manual(m5)      d     21      29
## 3       audi     a4        2.0 2008         4  manual(m6)      d     20      31
## 4       audi     a4        2.0 2008         4    auto(av)      d     21      30
## 5       audi     a4        2.8 1999         6    auto(l5)      d     16      26
## 6       audi     a4        2.8 1999         6  manual(m5)      d     18      26
##   combustivel   classe
## 1           p compacto
## 2           p compacto
## 3           p compacto
## 4           p compacto
## 5           p compacto
## 6           p compacto
tail(CARROS_cat)
##     fabricante modelo cilindrada  ano cilindros transmissao tracao cidade
## 229 volkswagen passat        1.8 1999         4    auto(l5)      d     18
## 230 volkswagen passat        2.0 2008         4    auto(s6)      d     19
## 231 volkswagen passat        2.0 2008         4  manual(m6)      d     21
## 232 volkswagen passat        2.8 1999         6    auto(l5)      d     16
## 233 volkswagen passat        2.8 1999         6  manual(m5)      d     18
## 234 volkswagen passat        3.6 2008         6    auto(s6)      d     17
##     rodovia combustivel classe
## 229      29           p  médio
## 230      28           p  médio
## 231      29           p  médio
## 232      26           p  médio
## 233      26           p  médio
## 234      26           p  médio
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
glimpse(CARROS_cat)
## Rows: 234
## Columns: 11
## $ fabricante  <chr> "audi", "audi", "audi", "audi", "audi", "audi", "audi",...
## $ modelo      <chr> "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4 quattro",...
## $ cilindrada  <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0, ...
## $ ano         <int> 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, 2...
## $ cilindros   <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8...
## $ transmissao <chr> "auto(l5)", "manual(m5)", "manual(m6)", "auto(av)", "au...
## $ tracao      <chr> "d", "d", "d", "d", "d", "d", "d", "4", "4", "4", "4", ...
## $ cidade      <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 17, 17,...
## $ rodovia     <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 25, 25,...
## $ combustivel <chr> "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", ...
## $ classe      <chr> "compacto", "compacto", "compacto", "compacto", "compac...

Passo 3 - Percentual da linha

prop.table(tabela1,1)*100 #1 por ser linha
##             
##              2 assentos  compacto     médio   minivan    pickup subcompacto
##   audi          0.00000  83.33333  16.66667   0.00000   0.00000     0.00000
##   chevrolet    26.31579   0.00000  26.31579   0.00000   0.00000     0.00000
##   dodge         0.00000   0.00000   0.00000  29.72973  51.35135     0.00000
##   ford          0.00000   0.00000   0.00000   0.00000  28.00000    36.00000
##   honda         0.00000   0.00000   0.00000   0.00000   0.00000   100.00000
##   hyundai       0.00000   0.00000  50.00000   0.00000   0.00000    50.00000
##   jeep          0.00000   0.00000   0.00000   0.00000   0.00000     0.00000
##   land rover    0.00000   0.00000   0.00000   0.00000   0.00000     0.00000
##   lincoln       0.00000   0.00000   0.00000   0.00000   0.00000     0.00000
##   mercury       0.00000   0.00000   0.00000   0.00000   0.00000     0.00000
##   nissan        0.00000  15.38462  53.84615   0.00000   0.00000     0.00000
##   pontiac       0.00000   0.00000 100.00000   0.00000   0.00000     0.00000
##   subaru        0.00000  28.57143   0.00000   0.00000   0.00000    28.57143
##   toyota        0.00000  35.29412  20.58824   0.00000  20.58824     0.00000
##   volkswagen    0.00000  51.85185  25.92593   0.00000   0.00000    22.22222
##             
##                    suv
##   audi         0.00000
##   chevrolet   47.36842
##   dodge       18.91892
##   ford        36.00000
##   honda        0.00000
##   hyundai      0.00000
##   jeep       100.00000
##   land rover 100.00000
##   lincoln    100.00000
##   mercury    100.00000
##   nissan      30.76923
##   pontiac      0.00000
##   subaru      42.85714
##   toyota      23.52941
##   volkswagen   0.00000
prop.table(tabela_GOT,1)*100
## <0 x 0 matrix>
round(prop.table(tabela_GOT,1)*100,1)
## <0 x 0 matrix>

Passo 4 - Percentual da coluna

prop.table(tabela1,2)*100 #2 por ser coluna
##             
##              2 assentos   compacto      médio    minivan     pickup subcompacto
##   audi         0.000000  31.914894   7.317073   0.000000   0.000000    0.000000
##   chevrolet  100.000000   0.000000  12.195122   0.000000   0.000000    0.000000
##   dodge        0.000000   0.000000   0.000000 100.000000  57.575758    0.000000
##   ford         0.000000   0.000000   0.000000   0.000000  21.212121   25.714286
##   honda        0.000000   0.000000   0.000000   0.000000   0.000000   25.714286
##   hyundai      0.000000   0.000000  17.073171   0.000000   0.000000   20.000000
##   jeep         0.000000   0.000000   0.000000   0.000000   0.000000    0.000000
##   land rover   0.000000   0.000000   0.000000   0.000000   0.000000    0.000000
##   lincoln      0.000000   0.000000   0.000000   0.000000   0.000000    0.000000
##   mercury      0.000000   0.000000   0.000000   0.000000   0.000000    0.000000
##   nissan       0.000000   4.255319  17.073171   0.000000   0.000000    0.000000
##   pontiac      0.000000   0.000000  12.195122   0.000000   0.000000    0.000000
##   subaru       0.000000   8.510638   0.000000   0.000000   0.000000   11.428571
##   toyota       0.000000  25.531915  17.073171   0.000000  21.212121    0.000000
##   volkswagen   0.000000  29.787234  17.073171   0.000000   0.000000   17.142857
##             
##                     suv
##   audi         0.000000
##   chevrolet   14.516129
##   dodge       11.290323
##   ford        14.516129
##   honda        0.000000
##   hyundai      0.000000
##   jeep        12.903226
##   land rover   6.451613
##   lincoln      4.838710
##   mercury      6.451613
##   nissan       6.451613
##   pontiac      0.000000
##   subaru       9.677419
##   toyota      12.903226
##   volkswagen   0.000000
prop.table(tabela_GOT,2)*100
## <0 x 0 matrix>
round(prop.table(tabela_GOT,2)*100,1)
## <0 x 0 matrix>

Passo 5 - gráfico

library(RColorBrewer)
AZUL<-brewer.pal(7, "Blues")
VERMELHO<-brewer.pal(7,"Reds")
GREEN<-brewer.pal(7, "Greens")
COLORIDO<-brewer.pal(7,"Set3")

tabela1<-table(CARROS_cat$classe,CARROS_cat$fabricante)
tabela1
##              
##               audi chevrolet dodge ford honda hyundai jeep land rover lincoln
##   2 assentos     0         5     0    0     0       0    0          0       0
##   compacto      15         0     0    0     0       0    0          0       0
##   médio          3         5     0    0     0       7    0          0       0
##   minivan        0         0    11    0     0       0    0          0       0
##   pickup         0         0    19    7     0       0    0          0       0
##   subcompacto    0         0     0    9     9       7    0          0       0
##   suv            0         9     7    9     0       0    8          4       3
##              
##               mercury nissan pontiac subaru toyota volkswagen
##   2 assentos        0      0       0      0      0          0
##   compacto          0      2       0      4     12         14
##   médio             0      7       5      0      7          7
##   minivan           0      0       0      0      0          0
##   pickup            0      0       0      0      7          0
##   subcompacto       0      0       0      4      0          6
##   suv               4      4       0      6      8          0
barplot(tabela1,
        beside = T,
        col = AZUL)

barplot(tabela1,
        beside = T,
        col = COLORIDO)

display.brewer.all()