Habilidade competitiva

Aplicações continuas de mesmos fungicidas exercem presão de seleção sob as populações fúngicas presentes. A frequencias dos isolados integrantes da população vem sendo modificadas. Isolados com caracteristicas que permite sobreviver e se reproduzir nessa condição (“resistentes”) aumentam sua proporção.

O objetivo de este trabalho é verficar se retirando a pressão de seleção (uso continuo de um mesmo fungicida) a frequencia de isolados original da populaçao pode ser reestabelecida.

Para isso foram feitos tres experimentos (por duplicado) inoculando (concentração padrao )frutos de pessegos com um isolado resistente (SP09) e um isolado sensivel (PR09) ao longo de 5 transferencias.

Experimento 1 e 2: as unidades experimentales foram frutos de pessego frescos (variedade dorado). No exp1 foi avaliado unidades formadoras de colonia e no exp2 foi medida a germinação dos esporos dos conidios em meio de cultura com BDA com ou sem fungicida.

Experimento 3: as unidades experimentales foram pedaços de pessego enlatados. A variavel medida foi germinação dos esporos dos conidios em meio de cultura com BDA com ou sem fungicida.

Um objetivo secundario do trabalho foi testar se as diferentes metodologias conduzem a conclusões semelhantes.

1- Unidades formadoras de colonias

##   exp rep subrep bda0 f0 bda1 f1 bda2 f2 bda3 f3 bda4 f4 bda5 f5
## 1   1   1      1   NA 42   65 22   NA 50   43 NA   28 11   47 NA
## 2   1   1      2   NA 46   58 23   77 75   42 NA   42  6   45 26
## 3   1   1      3   14 60   78 28   81 59   34 35   42 NA   45 29
## 4   1   1      4   14 39  123 27   82 62   50 38   NA 22   32 35
## 5   1   1      5   24 46  104 21   83 23   55 45   42 29   37 26
## 6   1   2      1   15 30   44 NA   48 31   42 NA   59 28   NA 25
##   uf_bda     uf_f 
## 38.31373 32.92500
##   exp rep subrep transf uf_bda uf_f
## 1   1   1      1      0     NA   42
## 2   1   1      2      0     NA   46
## 3   1   1      3      0     14   60
## 4   1   1      4      0     14   39
## 5   1   1      5      0     24   46
## 6   1   2      1      0     15   30
##   exp rep transf   uf_bda     uf_f
## 1   1   1      0 17.33333 48.33333
## 2   2   1      0 32.00000  6.00000
## 3   1   2      0 17.50000 55.50000
## 4   1   3      0 43.66667 34.00000
## 5   2   3      0 38.00000 15.25000
## 6   1   4      0 67.00000 44.00000

##   transf  N     resp1        sd         se         ci
## 1      0 11 0.5574234 0.2493662 0.07518674 0.16752651
## 2      1 10 0.5452725 0.3099769 0.09802331 0.22174413
## 3      2 12 0.8524925 0.1118509 0.03228858 0.07106668
## 4      3 11 0.7914081 0.1839360 0.05545878 0.12356986
## 5      4 12 0.6748809 0.2551326 0.07365043 0.16210351
## 6      5 10 0.7912357 0.1357157 0.04291707 0.09708516

## Analysis of Variance Table
## 
## Response: resp1
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## transf     4 0.63560 0.15890  5.1361 0.001549 **
## exp        1 0.33612 0.33612 10.8645 0.001828 **
## Residuals 49 1.51596 0.03094                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## $`Analysis of variance`
##            df type III SS mean square F value    p>F
## treatments  4      0.5673      0.1418  4.5838 0.0032
## blocks      1      0.3361      0.3361 10.8645 0.0018
## Residuals  49      1.5160      0.0309       -      -
## 
## $`Adjusted means`
##   treatment adjusted.mean standard.error tukey snk duncan  t scott_knott
## 1         2        0.8525         0.0508     a   a      a  a           a
## 2         5        0.7912         0.0556     a   a     ab ab           a
## 3         3        0.7843         0.0531     a   a     ab ab           a
## 4         4        0.6749         0.0508    ab  ab     bc bc           b
## 5         1        0.5610         0.0558     b   b      c  c           b
## 
## $`Multiple comparison test`
##     pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1  2 - 5   0.0613   0.9251 0.4196    0.4196 0.4196
## 2  2 - 3   0.0682   0.8846 0.6253    0.3879 0.3579
## 3  2 - 4   0.1776   0.1139 0.0771    0.0264 0.0170
## 4  2 - 1   0.2915   0.0029 0.0029    0.0007 0.0003
## 5  5 - 3   0.0069   1.0000 0.9289    0.9289 0.9289
## 6  5 - 4   0.1163   0.5395 0.2795    0.1512 0.1290
## 7  5 - 1   0.2302   0.0400 0.0261    0.0088 0.0052
## 8  3 - 4   0.1094   0.5746 0.1430    0.1430 0.1430
## 9  3 - 1   0.2233   0.0424 0.0152    0.0076 0.0056
## 10 4 - 1   0.1139   0.5615 0.1376    0.1376 0.1376
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.0576
## p.value Bartlett test         0.0115
## coefficient of variation (%) 23.9500
## first value most discrepant  42.0000
## second value most discrepant  5.0000
## third value most discrepant   7.0000
## Analysis of Variance Table
## 
## Response: logit
##           Df  Sum Sq Mean Sq F value  Pr(>F)   
## transf     4  16.482  4.1206  1.8088 0.14219   
## exp        1  20.304 20.3041  8.9130 0.00441 **
## Residuals 49 111.624  2.2780                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

GLM

## Analysis of Deviance Table
## 
## Model: quasibinomial, link: logit
## 
## Response: resp1
## 
## Terms added sequentially (first to last)
## 
## 
##        Df Deviance Resid. Df Resid. Dev       F   Pr(>F)   
## NULL                      54    13.8853                    
## transf  4   3.1876        50    10.6977  4.8632 0.002207 **
## exp     1   1.8589        49     8.8389 11.3441 0.001481 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Quasi-binomial model

## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: glm(formula = resp1 ~ transf + exp, family = quasibinomial, data = subset(da1, 
##     !transf == 0))
## 
## Linear Hypotheses:
##            Estimate Std. Error z value Pr(>|z|)   
## 2 - 1 == 0  1.54121    0.42454   3.630  0.00283 **
## 3 - 1 == 0  1.06864    0.40299   2.652  0.08007 . 
## 4 - 1 == 0  0.48379    0.36627   1.321  1.00000   
## 5 - 1 == 0  1.10798    0.41397   2.676  0.07440 . 
## 3 - 2 == 0 -0.47258    0.45231  -1.045  1.00000   
## 4 - 2 == 0 -1.05742    0.41994  -2.518  0.11801   
## 5 - 2 == 0 -0.43323    0.46195  -0.938  1.00000   
## 4 - 3 == 0 -0.58485    0.39750  -1.471  1.00000   
## 5 - 3 == 0  0.03934    0.44222   0.089  1.00000   
## 5 - 4 == 0  0.62419    0.40904   1.526  1.00000   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- bonferroni method)

2- Germinação (5)

##   exp rep subrep transf ger_bda ger_f
## 1   1   1      1      0      84    45
## 3   1   1      3      0      91    40
## 4   1   2      1      0      87    25
## 5   1   2      2      0      74    43
## 6   1   2      3      0      84    35
## 7   1   3      1      0      80    32

## Analysis of Variance Table
## 
## Response: resp1
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## transf     5 0.84352 0.168704 13.3824 1.237e-08 ***
## exp        1 0.03336 0.033356  2.6459    0.1093    
## Residuals 57 0.71857 0.012606                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## Analysis of Variance Table
## 
## Response: logit
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## transf     5 37.042  7.4083 14.4443 3.929e-09 ***
## exp        1  0.387  0.3875  0.7555    0.3884    
## Residuals 57 29.235  0.5129                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   transf  N     resp1         sd         se         ci
## 1      0  6 0.5715083 0.16624617 0.06786971 0.17446465
## 2      1 10 0.8821282 0.07595326 0.02401853 0.05433369
## 3      2 10 0.8175186 0.06594609 0.02085399 0.04717499
## 4      3 12 0.8173070 0.11807492 0.03408529 0.07502122
## 5      4 12 0.6264021 0.19233674 0.05552283 0.12220493
## 6      5 12 0.6583245 0.09020121 0.02603885 0.05731112

## $`Analysis of variance`
##            df type III SS mean square F value    p>F
## treatments  5     24.5709      4.9142 14.0788 <0.001
## blocks      1      0.4001      0.4001  1.1462  0.289
## Residuals  55     19.1976      0.3490       -      -
## 
## $`Adjusted means`
##   treatment adjusted.mean standard.error tukey snk duncan t scott_knott
## 1         1        2.1426         0.1868     a   a      a a           a
## 2         3        1.6049         0.1705     a   b      b b           b
## 3         2        1.5546         0.1874     a  ab      b b           b
## 4         5        0.6760         0.1705     b   c      c c           c
## 5         4        0.5875         0.1705     b   c      c c           c
## 6         0        0.3156         0.2412     b   c      c c           c
## 
## $`Multiple comparison test`
##     pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1  1 - 3   0.5377   0.2895 0.0380    0.0380 0.0380
## 2  1 - 2   0.5880   0.2445 0.0763    0.0389 0.0304
## 3  1 - 5   1.4666   0.0000 0.0000    0.0000 0.0000
## 4  1 - 4   1.5551   0.0000 0.0000    0.0000 0.0000
## 5  1 - 0   1.8270   0.0000 0.0000    0.0000 0.0000
## 6  3 - 2   0.0503   1.0000 0.8434    0.8434 0.8434
## 7  3 - 5   0.9289   0.0040 0.0009    0.0004 0.0003
## 8  3 - 4   1.0174   0.0012 0.0005    0.0002 0.0001
## 9  3 - 0   1.2893   0.0008 0.0005    0.0001 0.0001
## 10 2 - 5   0.8786   0.0125 0.0010    0.0010 0.0010
## 11 2 - 4   0.9671   0.0044 0.0010    0.0005 0.0003
## 12 2 - 0   1.2390   0.0021 0.0009    0.0003 0.0002
## 13 5 - 4   0.0885   0.9991 0.7150    0.7150 0.7150
## 14 5 - 0   0.3604   0.8252 0.4465    0.2560 0.2276
## 15 4 - 0   0.2719   0.9396 0.3613    0.3613 0.3613
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.2020
## p.value Bartlett test         0.1207
## coefficient of variation (%) 50.0900
## first value most discrepant  28.0000
## second value most discrepant 10.0000
## third value most discrepant  46.0000
##   transf let     me     se
## 1      0   b 0.3156 0.2412
## 2      1   a 2.1426 0.1868
## 3      2   a 1.5546 0.1874
## 4      3   a 1.6049 0.1705
## 5      4   b 0.5875 0.1705
## 6      5   b 0.6760 0.1705

3- Germinação (6)

##   exp rep subrep transf ger_bda ger_f
## 1   1   1      1      0      98    53
## 2   1   1      2      0      96    48
## 3   1   1      3      0      92    42
## 4   1   2      1      0     100    55
## 5   1   2      2      0      96    41
## 6   1   2      3      0      95    52

## Analysis of Variance Table
## 
## Response: resp
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## transf     5 0.38708 0.077416 16.8206 2.662e-10 ***
## exp        1 0.00013 0.000125  0.0273    0.8694    
## Residuals 59 0.27155 0.004602                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##   transf  N      resp         sd         se         ci
## 1      0  6 0.5161783 0.04621327 0.01886649 0.04849785
## 2      1 11 0.6095882 0.04337389 0.01307772 0.02913897
## 3      2 12 0.6311307 0.08305206 0.02397506 0.05276876
## 4      3 11 0.7748330 0.04228162 0.01274839 0.02840518
## 5      4 12 0.7383695 0.05485486 0.01583524 0.03485312
## 6      5 12 0.6573364 0.07458186 0.02152993 0.04738705

## $`Analysis of variance`
##            df type III SS mean square F value    p>F
## treatments  5      0.3771      0.0754 23.7631 <0.001
## blocks      1      0.0004      0.0004  0.1185  0.732
## Residuals  57      0.1809      0.0032       -      -
## 
## $`Adjusted means`
##   treatment adjusted.mean standard.error tukey snk duncan  t scott_knott
## 1         3        0.7746         0.0170     a   a      a  a           a
## 2         4        0.7384         0.0163     a   a      a  a           a
## 3         5        0.6573         0.0163     b   b      b  b           b
## 4         2        0.6311         0.0163     b   b      b bc           b
## 5         1        0.6098         0.0170     b   b      b  c           b
## 6         0        0.5162         0.0230     c   c      c  d           c
## 
## $`Multiple comparison test`
##     pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1  3 - 4   0.0362   0.6423 0.1298    0.1298 0.1298
## 2  3 - 5   0.1173   0.0001 0.0000    0.0000 0.0000
## 3  3 - 2   0.1435   0.0000 0.0000    0.0000 0.0000
## 4  3 - 1   0.1648   0.0000 0.0000    0.0000 0.0000
## 5  3 - 0   0.2584   0.0000 0.0000    0.0000 0.0000
## 6  4 - 5   0.0811   0.0106 0.0009    0.0009 0.0009
## 7  4 - 2   0.1073   0.0003 0.0001    0.0000 0.0000
## 8  4 - 1   0.1286   0.0000 0.0000    0.0000 0.0000
## 9  4 - 0   0.2222   0.0000 0.0000    0.0000 0.0000
## 10 5 - 2   0.0262   0.8640 0.2605    0.2605 0.2605
## 11 5 - 1   0.0475   0.3459 0.1174    0.0605 0.0484
## 12 5 - 0   0.1411   0.0001 0.0000    0.0000 0.0000
## 13 2 - 1   0.0213   0.9438 0.3696    0.3696 0.3696
## 14 2 - 0   0.1149   0.0019 0.0004    0.0002 0.0001
## 15 1 - 0   0.0936   0.0213 0.0018    0.0018 0.0018
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.3771
## p.value Bartlett test         0.1480
## coefficient of variation (%)  8.4500
## first value most discrepant  27.0000
## second value most discrepant 60.0000
## third value most discrepant  53.0000
##   transf let     me     se
## 1      0   c 0.5162 0.0230
## 2      1   b 0.6098 0.0170
## 3      2   b 0.6311 0.0163
## 4      3   a 0.7746 0.0170
## 5      4   a 0.7384 0.0163
## 6      5   b 0.6573 0.0163

Todos os graficos

Testar correlações entre experimentos

##        y.ufc y.ger5 y.ger6
## y.ufc   1.00   0.16   0.57
## y.ger5  0.16   1.00   0.15
## y.ger6  0.57   0.15   1.00
## 
## n= 6 
## 
## 
## P
##        y.ufc  y.ger5 y.ger6
## y.ufc         0.7613 0.2340
## y.ger5 0.7613        0.7759
## y.ger6 0.2340 0.7759