1 purrr风格函数(匿名函数)

1.1 一元函数

若要表达 \(f(x) = x ^ 2 + 1\)

  • purrr风格
    • ~ .x ^ 2 + 1 #其中.x是序列参数
  • Base R风格
    • function(x) x^2+1

1.2 二元函数

若要表达\(f(x, y) = x ^ 2 + 3y\)

  • purrr风格
    • ~ .x ^ 2 + 3 * .y # 其中.x,.y是序列参数
  • Base R风格
    • function(x, y) x ^ 2 + 3 * y

1.3 多元函数

若要表达\(f(x, y, z) = x ^ 2 + 3y - 5z\)

  • purrr风格
    • ~ ..1 ^ 2 + 3 * ..2 - 5 * ..3 # 其中..1,..2, ..3是序列参数
  • Base R风格
    • function(x, y) x ^ 2 + 3 * y

2 map函数

2.1 主要函数

map(.x, .f, ...)
map2(.x, .y, .f(x,y))
map_chr(.x, .f): #返回字符型向量
map_lgl(.x, .f): #返回逻辑型向量
map_dbl(.x, .f): #返回实数型向量
map_int(.x, .f): #返回整数型向量
map_dfr(.x, .f): #返回数据框列表,再 bind_rows 按行合并为一个数据框
map_dfc(.x, .f): #返回数据框列表,再 bind_cols 按列合并为一个数据框
map_raw(.x, .f, ...)
walk(.x, .f, ...)
pwalk(.l, .f, ...)
pmap(.l, .f, ...)
reduce(.x, .f, ..., .init =  , .dir = c("forward", "backwark"))

其操作是把第一个向量参数分别代入,第二个参数函数中运算。

2.2 各函数示例

x <- list(1, 1, 1)
y <- list(10, 20, 30)
z <- list(100, 200, 300)

#map

1:10 %>% map(rnorm, n = 10)
## [[1]]
##  [1] 0.3061668 0.1162393 1.1704524 1.2592932 1.6338086 0.7549747 0.1918357
##  [8] 1.1915237 2.6342518 0.6677879
## 
## [[2]]
##  [1] 3.3167577 1.1996474 1.9005974 0.3306984 0.7101021 3.4511653 2.4639469
##  [8] 1.7915336 0.9570713 0.7889268
## 
## [[3]]
##  [1] 3.945432 4.864921 5.122253 4.520294 2.885772 2.760653 4.487460 2.904572
##  [9] 4.349992 2.462967
## 
## [[4]]
##  [1] 3.243922 3.978584 5.461694 3.639214 3.542091 4.909262 4.195839 5.829749
##  [9] 3.294302 4.541477
## 
## [[5]]
##  [1] 5.153825 6.478777 4.446864 5.068139 4.643089 5.365064 5.004751 5.438901
##  [9] 4.538498 6.954615
## 
## [[6]]
##  [1] 8.320357 7.295863 7.521597 4.588422 6.710772 5.347563 5.904938 6.977774
##  [9] 4.976617 6.314338
## 
## [[7]]
##  [1] 8.722166 7.965820 8.094866 5.501836 6.886902 5.993457 6.576535 8.330432
##  [9] 6.562682 5.619906
## 
## [[8]]
##  [1]  7.072106 10.269568  6.966314  8.571506  8.629842  7.134706  8.519207
##  [8]  7.957746  7.620457  8.512069
## 
## [[9]]
##  [1] 10.244631 10.314168  9.535608  6.774451  9.516094  9.774074  8.176610
##  [8]  8.804441  6.962848  7.372992
## 
## [[10]]
##  [1] 10.222330 10.706560 12.235675 10.565482 10.987380  9.065121  8.432318
##  [8]  8.197119  9.320197 10.875902
#map2



map2(x, y, ~ .x + .y)
## [[1]]
## [1] 11
## 
## [[2]]
## [1] 21
## 
## [[3]]
## [1] 31
lst <- tibble(x = c(1, 3, 5),
               y = c(2, 4, 6),
               z = c(3, 6, 9)) 

# pmap

pmap(lst,  ~ ..1 ^ 2 + 3 * ..2 - 5 * ..3)
## [[1]]
## [1] -8
## 
## [[2]]
## [1] -9
## 
## [[3]]
## [1] -2

3 解决问题

3.1 批量保存数据文件

3.1.1 批量写出保存列表数据各元素

#install.packages("metan")

library(metan)
## Warning: package 'metan' was built under R version 3.6.3
## Registered S3 method overwritten by 'GGally':
##   method from   
##   +.gg   ggplot2
## |========================================================|
## | Multi-Environment Trial Analysis (metan) v1.12.0       |
## | Author: Tiago Olivoto                                  |
## | Type 'citation('metan')' to know how to cite metan     |
## | Type 'vignette('metan_start')' for a short tutorial    |
## | Visit 'https://bit.ly/2TIq6JE' for a complete tutorial |
## |========================================================|
## 
## Attaching package: 'metan'
## The following object is masked from 'package:forcats':
## 
##     as_factor
## The following object is masked from 'package:tidyr':
## 
##     replace_na
## The following objects are masked from 'package:tibble':
## 
##     column_to_rownames, remove_rownames, rownames_to_column
model = ge_stats(data_ge2, ENV, GEN, REP)
#将列表中各数据集写出到以各元素名为文件名的CSV文件
# dir.create("D:/rpubs/data1/")
names_model <- names(model) %>% 
  paste0("D:/rpubs/data1/", ., ".csv")
walk2(model, names_model, ~write.csv(..1, ..2, row.names = F))

3.1.2 批量写出数据框子集数据(col_wise)

#将数据集中的各列数据写出到以列名为文件名的csv文件
dir.create("D:/rpubs/data2/")
## Warning in dir.create("D:/rpubs/data2/"): 'D:\rpubs\data2'已存在
names_df <- model$EH %>%
  names() %>% 
  paste0("D:/rpubs/data2/", ., ".csv")
# model_list <- model$EH %>% 
  # as.list()

walk2(model$EH, names_df, write.csv)

3.1.3 写出数据框子集数据row_wise

mpg %>% 
  nest_by(manufacturer, .keep = T) %>% 
  pwalk(
    ~ write_csv(..2, paste0("data/car_", ..1, ".csv") )
  )

3.2 批量合并文件

##批量读取目录下同类文件
#读取工作目录下文件名以.csv结尾的文件
files <- dir(path = "data/", pattern = "\\.csv$", full.names = T)
#读取工作目录下文件名以df开头的文件
# files <- dir(pattern = "^df", full.names = T)

files
##  [1] "data/car_audi.csv"       "data/car_chevrolet.csv" 
##  [3] "data/car_dodge.csv"      "data/car_ford.csv"      
##  [5] "data/car_honda.csv"      "data/car_hyundai.csv"   
##  [7] "data/car_jeep.csv"       "data/car_land rover.csv"
##  [9] "data/car_lincoln.csv"    "data/car_mercury.csv"   
## [11] "data/car_nissan.csv"     "data/car_pontiac.csv"   
## [13] "data/car_subaru.csv"     "data/car_toyota.csv"    
## [15] "data/car_volkswagen.csv"
names(files) <- basename(files)
# 批量合并
df  <-  map(files, read_csv, col_types = cols(drv = col_character())) %>% 
  #批量左合并为一个数据集
  reduce(left_join)
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
## Joining, by = c("manufacturer", "model", "displ", "year", "cyl", "trans", "drv", "cty", "hwy", "fl", "class")
  #按某个id进行交集合并
  # reduce(inner_join)
df
manufacturer model displ year cyl trans drv cty hwy fl class
audi a4 1.8 1999 4 auto(l5) f 18 29 p compact
audi a4 1.8 1999 4 manual(m5) f 21 29 p compact
audi a4 2.0 2008 4 manual(m6) f 20 31 p compact
audi a4 2.0 2008 4 auto(av) f 21 30 p compact
audi a4 2.8 1999 6 auto(l5) f 16 26 p compact
audi a4 2.8 1999 6 manual(m5) f 18 26 p compact
audi a4 3.1 2008 6 auto(av) f 18 27 p compact
audi a4 quattro 1.8 1999 4 manual(m5) 4 18 26 p compact
audi a4 quattro 1.8 1999 4 auto(l5) 4 16 25 p compact
audi a4 quattro 2.0 2008 4 manual(m6) 4 20 28 p compact
audi a4 quattro 2.0 2008 4 auto(s6) 4 19 27 p compact
audi a4 quattro 2.8 1999 6 auto(l5) 4 15 25 p compact
audi a4 quattro 2.8 1999 6 manual(m5) 4 17 25 p compact
audi a4 quattro 3.1 2008 6 auto(s6) 4 17 25 p compact
audi a4 quattro 3.1 2008 6 manual(m6) 4 15 25 p compact
audi a6 quattro 2.8 1999 6 auto(l5) 4 15 24 p midsize
audi a6 quattro 3.1 2008 6 auto(s6) 4 17 25 p midsize
audi a6 quattro 4.2 2008 8 auto(s6) 4 16 23 p midsize
## 批量拼结
#按行直接追加()
map_dfr(files,
        #读取CSV
        read_csv,
        #read_csv的参数,可以有多个。
        col_types = cols(drv = col_character()),
        #map_dfr的参数,为读入的数据添加一个文件名列变量
        .id = "filename")
filename manufacturer model displ year cyl trans drv cty hwy fl class
car_audi.csv audi a4 1.8 1999 4 auto(l5) f 18 29 p compact
car_audi.csv audi a4 1.8 1999 4 manual(m5) f 21 29 p compact
car_audi.csv audi a4 2.0 2008 4 manual(m6) f 20 31 p compact
car_audi.csv audi a4 2.0 2008 4 auto(av) f 21 30 p compact
car_audi.csv audi a4 2.8 1999 6 auto(l5) f 16 26 p compact
car_audi.csv audi a4 2.8 1999 6 manual(m5) f 18 26 p compact
car_audi.csv audi a4 3.1 2008 6 auto(av) f 18 27 p compact
car_audi.csv audi a4 quattro 1.8 1999 4 manual(m5) 4 18 26 p compact
car_audi.csv audi a4 quattro 1.8 1999 4 auto(l5) 4 16 25 p compact
car_audi.csv audi a4 quattro 2.0 2008 4 manual(m6) 4 20 28 p compact
car_audi.csv audi a4 quattro 2.0 2008 4 auto(s6) 4 19 27 p compact
car_audi.csv audi a4 quattro 2.8 1999 6 auto(l5) 4 15 25 p compact
car_audi.csv audi a4 quattro 2.8 1999 6 manual(m5) 4 17 25 p compact
car_audi.csv audi a4 quattro 3.1 2008 6 auto(s6) 4 17 25 p compact
car_audi.csv audi a4 quattro 3.1 2008 6 manual(m6) 4 15 25 p compact
car_audi.csv audi a6 quattro 2.8 1999 6 auto(l5) 4 15 24 p midsize
car_audi.csv audi a6 quattro 3.1 2008 6 auto(s6) 4 17 25 p midsize
car_audi.csv audi a6 quattro 4.2 2008 8 auto(s6) 4 16 23 p midsize
car_chevrolet.csv chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 14 20 r suv
car_chevrolet.csv chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 11 15 e suv
car_chevrolet.csv chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 14 20 r suv
car_chevrolet.csv chevrolet c1500 suburban 2wd 5.7 1999 8 auto(l4) r 13 17 r suv
car_chevrolet.csv chevrolet c1500 suburban 2wd 6.0 2008 8 auto(l4) r 12 17 r suv
car_chevrolet.csv chevrolet corvette 5.7 1999 8 manual(m6) r 16 26 p 2seater
car_chevrolet.csv chevrolet corvette 5.7 1999 8 auto(l4) r 15 23 p 2seater
car_chevrolet.csv chevrolet corvette 6.2 2008 8 manual(m6) r 16 26 p 2seater
car_chevrolet.csv chevrolet corvette 6.2 2008 8 auto(s6) r 15 25 p 2seater
car_chevrolet.csv chevrolet corvette 7.0 2008 8 manual(m6) r 15 24 p 2seater
car_chevrolet.csv chevrolet k1500 tahoe 4wd 5.3 2008 8 auto(l4) 4 14 19 r suv
car_chevrolet.csv chevrolet k1500 tahoe 4wd 5.3 2008 8 auto(l4) 4 11 14 e suv
car_chevrolet.csv chevrolet k1500 tahoe 4wd 5.7 1999 8 auto(l4) 4 11 15 r suv
car_chevrolet.csv chevrolet k1500 tahoe 4wd 6.5 1999 8 auto(l4) 4 14 17 d suv
car_chevrolet.csv chevrolet malibu 2.4 1999 4 auto(l4) f 19 27 r midsize
car_chevrolet.csv chevrolet malibu 2.4 2008 4 auto(l4) f 22 30 r midsize
car_chevrolet.csv chevrolet malibu 3.1 1999 6 auto(l4) f 18 26 r midsize
car_chevrolet.csv chevrolet malibu 3.5 2008 6 auto(l4) f 18 29 r midsize
car_chevrolet.csv chevrolet malibu 3.6 2008 6 auto(s6) f 17 26 r midsize
car_dodge.csv dodge caravan 2wd 2.4 1999 4 auto(l3) f 18 24 r minivan
car_dodge.csv dodge caravan 2wd 3.0 1999 6 auto(l4) f 17 24 r minivan
car_dodge.csv dodge caravan 2wd 3.3 1999 6 auto(l4) f 16 22 r minivan
car_dodge.csv dodge caravan 2wd 3.3 1999 6 auto(l4) f 16 22 r minivan
car_dodge.csv dodge caravan 2wd 3.3 2008 6 auto(l4) f 17 24 r minivan
car_dodge.csv dodge caravan 2wd 3.3 2008 6 auto(l4) f 17 24 r minivan
car_dodge.csv dodge caravan 2wd 3.3 2008 6 auto(l4) f 11 17 e minivan
car_dodge.csv dodge caravan 2wd 3.8 1999 6 auto(l4) f 15 22 r minivan
car_dodge.csv dodge caravan 2wd 3.8 1999 6 auto(l4) f 15 21 r minivan
car_dodge.csv dodge caravan 2wd 3.8 2008 6 auto(l6) f 16 23 r minivan
car_dodge.csv dodge caravan 2wd 4.0 2008 6 auto(l6) f 16 23 r minivan
car_dodge.csv dodge dakota pickup 4wd 3.7 2008 6 manual(m6) 4 15 19 r pickup
car_dodge.csv dodge dakota pickup 4wd 3.7 2008 6 auto(l4) 4 14 18 r pickup
car_dodge.csv dodge dakota pickup 4wd 3.9 1999 6 auto(l4) 4 13 17 r pickup
car_dodge.csv dodge dakota pickup 4wd 3.9 1999 6 manual(m5) 4 14 17 r pickup
car_dodge.csv dodge dakota pickup 4wd 4.7 2008 8 auto(l5) 4 14 19 r pickup
car_dodge.csv dodge dakota pickup 4wd 4.7 2008 8 auto(l5) 4 14 19 r pickup
car_dodge.csv dodge dakota pickup 4wd 4.7 2008 8 auto(l5) 4 9 12 e pickup
car_dodge.csv dodge dakota pickup 4wd 5.2 1999 8 manual(m5) 4 11 17 r pickup
car_dodge.csv dodge dakota pickup 4wd 5.2 1999 8 auto(l4) 4 11 15 r pickup
car_dodge.csv dodge durango 4wd 3.9 1999 6 auto(l4) 4 13 17 r suv
car_dodge.csv dodge durango 4wd 4.7 2008 8 auto(l5) 4 13 17 r suv
car_dodge.csv dodge durango 4wd 4.7 2008 8 auto(l5) 4 9 12 e suv
car_dodge.csv dodge durango 4wd 4.7 2008 8 auto(l5) 4 13 17 r suv
car_dodge.csv dodge durango 4wd 5.2 1999 8 auto(l4) 4 11 16 r suv
car_dodge.csv dodge durango 4wd 5.7 2008 8 auto(l5) 4 13 18 r suv
car_dodge.csv dodge durango 4wd 5.9 1999 8 auto(l4) 4 11 15 r suv
car_dodge.csv dodge ram 1500 pickup 4wd 4.7 2008 8 manual(m6) 4 12 16 r pickup
car_dodge.csv dodge ram 1500 pickup 4wd 4.7 2008 8 auto(l5) 4 9 12 e pickup
car_dodge.csv dodge ram 1500 pickup 4wd 4.7 2008 8 auto(l5) 4 13 17 r pickup
car_dodge.csv dodge ram 1500 pickup 4wd 4.7 2008 8 auto(l5) 4 13 17 r pickup
car_dodge.csv dodge ram 1500 pickup 4wd 4.7 2008 8 manual(m6) 4 12 16 r pickup
car_dodge.csv dodge ram 1500 pickup 4wd 4.7 2008 8 manual(m6) 4 9 12 e pickup
car_dodge.csv dodge ram 1500 pickup 4wd 5.2 1999 8 auto(l4) 4 11 15 r pickup
car_dodge.csv dodge ram 1500 pickup 4wd 5.2 1999 8 manual(m5) 4 11 16 r pickup
car_dodge.csv dodge ram 1500 pickup 4wd 5.7 2008 8 auto(l5) 4 13 17 r pickup
car_dodge.csv dodge ram 1500 pickup 4wd 5.9 1999 8 auto(l4) 4 11 15 r pickup
car_ford.csv ford expedition 2wd 4.6 1999 8 auto(l4) r 11 17 r suv
car_ford.csv ford expedition 2wd 5.4 1999 8 auto(l4) r 11 17 r suv
car_ford.csv ford expedition 2wd 5.4 2008 8 auto(l6) r 12 18 r suv
car_ford.csv ford explorer 4wd 4.0 1999 6 auto(l5) 4 14 17 r suv
car_ford.csv ford explorer 4wd 4.0 1999 6 manual(m5) 4 15 19 r suv
car_ford.csv ford explorer 4wd 4.0 1999 6 auto(l5) 4 14 17 r suv
car_ford.csv ford explorer 4wd 4.0 2008 6 auto(l5) 4 13 19 r suv
car_ford.csv ford explorer 4wd 4.6 2008 8 auto(l6) 4 13 19 r suv
car_ford.csv ford explorer 4wd 5.0 1999 8 auto(l4) 4 13 17 r suv
car_ford.csv ford f150 pickup 4wd 4.2 1999 6 auto(l4) 4 14 17 r pickup
car_ford.csv ford f150 pickup 4wd 4.2 1999 6 manual(m5) 4 14 17 r pickup
car_ford.csv ford f150 pickup 4wd 4.6 1999 8 manual(m5) 4 13 16 r pickup
car_ford.csv ford f150 pickup 4wd 4.6 1999 8 auto(l4) 4 13 16 r pickup
car_ford.csv ford f150 pickup 4wd 4.6 2008 8 auto(l4) 4 13 17 r pickup
car_ford.csv ford f150 pickup 4wd 5.4 1999 8 auto(l4) 4 11 15 r pickup
car_ford.csv ford f150 pickup 4wd 5.4 2008 8 auto(l4) 4 13 17 r pickup
car_ford.csv ford mustang 3.8 1999 6 manual(m5) r 18 26 r subcompact
car_ford.csv ford mustang 3.8 1999 6 auto(l4) r 18 25 r subcompact
car_ford.csv ford mustang 4.0 2008 6 manual(m5) r 17 26 r subcompact
car_ford.csv ford mustang 4.0 2008 6 auto(l5) r 16 24 r subcompact
car_ford.csv ford mustang 4.6 1999 8 auto(l4) r 15 21 r subcompact
car_ford.csv ford mustang 4.6 1999 8 manual(m5) r 15 22 r subcompact
car_ford.csv ford mustang 4.6 2008 8 manual(m5) r 15 23 r subcompact
car_ford.csv ford mustang 4.6 2008 8 auto(l5) r 15 22 r subcompact
car_ford.csv ford mustang 5.4 2008 8 manual(m6) r 14 20 p subcompact
car_honda.csv honda civic 1.6 1999 4 manual(m5) f 28 33 r subcompact
car_honda.csv honda civic 1.6 1999 4 auto(l4) f 24 32 r subcompact
car_honda.csv honda civic 1.6 1999 4 manual(m5) f 25 32 r subcompact
car_honda.csv honda civic 1.6 1999 4 manual(m5) f 23 29 p subcompact
car_honda.csv honda civic 1.6 1999 4 auto(l4) f 24 32 r subcompact
car_honda.csv honda civic 1.8 2008 4 manual(m5) f 26 34 r subcompact
car_honda.csv honda civic 1.8 2008 4 auto(l5) f 25 36 r subcompact
car_honda.csv honda civic 1.8 2008 4 auto(l5) f 24 36 c subcompact
car_honda.csv honda civic 2.0 2008 4 manual(m6) f 21 29 p subcompact
car_hyundai.csv hyundai sonata 2.4 1999 4 auto(l4) f 18 26 r midsize
car_hyundai.csv hyundai sonata 2.4 1999 4 manual(m5) f 18 27 r midsize
car_hyundai.csv hyundai sonata 2.4 2008 4 auto(l4) f 21 30 r midsize
car_hyundai.csv hyundai sonata 2.4 2008 4 manual(m5) f 21 31 r midsize
car_hyundai.csv hyundai sonata 2.5 1999 6 auto(l4) f 18 26 r midsize
car_hyundai.csv hyundai sonata 2.5 1999 6 manual(m5) f 18 26 r midsize
car_hyundai.csv hyundai sonata 3.3 2008 6 auto(l5) f 19 28 r midsize
car_hyundai.csv hyundai tiburon 2.0 1999 4 auto(l4) f 19 26 r subcompact
car_hyundai.csv hyundai tiburon 2.0 1999 4 manual(m5) f 19 29 r subcompact
car_hyundai.csv hyundai tiburon 2.0 2008 4 manual(m5) f 20 28 r subcompact
car_hyundai.csv hyundai tiburon 2.0 2008 4 auto(l4) f 20 27 r subcompact
car_hyundai.csv hyundai tiburon 2.7 2008 6 auto(l4) f 17 24 r subcompact
car_hyundai.csv hyundai tiburon 2.7 2008 6 manual(m6) f 16 24 r subcompact
car_hyundai.csv hyundai tiburon 2.7 2008 6 manual(m5) f 17 24 r subcompact
car_jeep.csv jeep grand cherokee 4wd 3.0 2008 6 auto(l5) 4 17 22 d suv
car_jeep.csv jeep grand cherokee 4wd 3.7 2008 6 auto(l5) 4 15 19 r suv
car_jeep.csv jeep grand cherokee 4wd 4.0 1999 6 auto(l4) 4 15 20 r suv
car_jeep.csv jeep grand cherokee 4wd 4.7 1999 8 auto(l4) 4 14 17 r suv
car_jeep.csv jeep grand cherokee 4wd 4.7 2008 8 auto(l5) 4 9 12 e suv
car_jeep.csv jeep grand cherokee 4wd 4.7 2008 8 auto(l5) 4 14 19 r suv
car_jeep.csv jeep grand cherokee 4wd 5.7 2008 8 auto(l5) 4 13 18 r suv
car_jeep.csv jeep grand cherokee 4wd 6.1 2008 8 auto(l5) 4 11 14 p suv
car_land rover.csv land rover range rover 4.0 1999 8 auto(l4) 4 11 15 p suv
car_land rover.csv land rover range rover 4.2 2008 8 auto(s6) 4 12 18 r suv
car_land rover.csv land rover range rover 4.4 2008 8 auto(s6) 4 12 18 r suv
car_land rover.csv land rover range rover 4.6 1999 8 auto(l4) 4 11 15 p suv
car_lincoln.csv lincoln navigator 2wd 5.4 1999 8 auto(l4) r 11 17 r suv
car_lincoln.csv lincoln navigator 2wd 5.4 1999 8 auto(l4) r 11 16 p suv
car_lincoln.csv lincoln navigator 2wd 5.4 2008 8 auto(l6) r 12 18 r suv
car_mercury.csv mercury mountaineer 4wd 4.0 1999 6 auto(l5) 4 14 17 r suv
car_mercury.csv mercury mountaineer 4wd 4.0 2008 6 auto(l5) 4 13 19 r suv
car_mercury.csv mercury mountaineer 4wd 4.6 2008 8 auto(l6) 4 13 19 r suv
car_mercury.csv mercury mountaineer 4wd 5.0 1999 8 auto(l4) 4 13 17 r suv
car_nissan.csv nissan altima 2.4 1999 4 manual(m5) f 21 29 r compact
car_nissan.csv nissan altima 2.4 1999 4 auto(l4) f 19 27 r compact
car_nissan.csv nissan altima 2.5 2008 4 auto(av) f 23 31 r midsize
car_nissan.csv nissan altima 2.5 2008 4 manual(m6) f 23 32 r midsize
car_nissan.csv nissan altima 3.5 2008 6 manual(m6) f 19 27 p midsize
car_nissan.csv nissan altima 3.5 2008 6 auto(av) f 19 26 p midsize
car_nissan.csv nissan maxima 3.0 1999 6 auto(l4) f 18 26 r midsize
car_nissan.csv nissan maxima 3.0 1999 6 manual(m5) f 19 25 r midsize
car_nissan.csv nissan maxima 3.5 2008 6 auto(av) f 19 25 p midsize
car_nissan.csv nissan pathfinder 4wd 3.3 1999 6 auto(l4) 4 14 17 r suv
car_nissan.csv nissan pathfinder 4wd 3.3 1999 6 manual(m5) 4 15 17 r suv
car_nissan.csv nissan pathfinder 4wd 4.0 2008 6 auto(l5) 4 14 20 p suv
car_nissan.csv nissan pathfinder 4wd 5.6 2008 8 auto(s5) 4 12 18 p suv
car_pontiac.csv pontiac grand prix 3.1 1999 6 auto(l4) f 18 26 r midsize
car_pontiac.csv pontiac grand prix 3.8 1999 6 auto(l4) f 16 26 p midsize
car_pontiac.csv pontiac grand prix 3.8 1999 6 auto(l4) f 17 27 r midsize
car_pontiac.csv pontiac grand prix 3.8 2008 6 auto(l4) f 18 28 r midsize
car_pontiac.csv pontiac grand prix 5.3 2008 8 auto(s4) f 16 25 p midsize
car_subaru.csv subaru forester awd 2.5 1999 4 manual(m5) 4 18 25 r suv
car_subaru.csv subaru forester awd 2.5 1999 4 auto(l4) 4 18 24 r suv
car_subaru.csv subaru forester awd 2.5 2008 4 manual(m5) 4 20 27 r suv
car_subaru.csv subaru forester awd 2.5 2008 4 manual(m5) 4 19 25 p suv
car_subaru.csv subaru forester awd 2.5 2008 4 auto(l4) 4 20 26 r suv
car_subaru.csv subaru forester awd 2.5 2008 4 auto(l4) 4 18 23 p suv
car_subaru.csv subaru impreza awd 2.2 1999 4 auto(l4) 4 21 26 r subcompact
car_subaru.csv subaru impreza awd 2.2 1999 4 manual(m5) 4 19 26 r subcompact
car_subaru.csv subaru impreza awd 2.5 1999 4 manual(m5) 4 19 26 r subcompact
car_subaru.csv subaru impreza awd 2.5 1999 4 auto(l4) 4 19 26 r subcompact
car_subaru.csv subaru impreza awd 2.5 2008 4 auto(s4) 4 20 25 p compact
car_subaru.csv subaru impreza awd 2.5 2008 4 auto(s4) 4 20 27 r compact
car_subaru.csv subaru impreza awd 2.5 2008 4 manual(m5) 4 19 25 p compact
car_subaru.csv subaru impreza awd 2.5 2008 4 manual(m5) 4 20 27 r compact
car_toyota.csv toyota 4runner 4wd 2.7 1999 4 manual(m5) 4 15 20 r suv
car_toyota.csv toyota 4runner 4wd 2.7 1999 4 auto(l4) 4 16 20 r suv
car_toyota.csv toyota 4runner 4wd 3.4 1999 6 auto(l4) 4 15 19 r suv
car_toyota.csv toyota 4runner 4wd 3.4 1999 6 manual(m5) 4 15 17 r suv
car_toyota.csv toyota 4runner 4wd 4.0 2008 6 auto(l5) 4 16 20 r suv
car_toyota.csv toyota 4runner 4wd 4.7 2008 8 auto(l5) 4 14 17 r suv
car_toyota.csv toyota camry 2.2 1999 4 manual(m5) f 21 29 r midsize
car_toyota.csv toyota camry 2.2 1999 4 auto(l4) f 21 27 r midsize
car_toyota.csv toyota camry 2.4 2008 4 manual(m5) f 21 31 r midsize
car_toyota.csv toyota camry 2.4 2008 4 auto(l5) f 21 31 r midsize
car_toyota.csv toyota camry 3.0 1999 6 auto(l4) f 18 26 r midsize
car_toyota.csv toyota camry 3.0 1999 6 manual(m5) f 18 26 r midsize
car_toyota.csv toyota camry 3.5 2008 6 auto(s6) f 19 28 r midsize
car_toyota.csv toyota camry solara 2.2 1999 4 auto(l4) f 21 27 r compact
car_toyota.csv toyota camry solara 2.2 1999 4 manual(m5) f 21 29 r compact
car_toyota.csv toyota camry solara 2.4 2008 4 manual(m5) f 21 31 r compact
car_toyota.csv toyota camry solara 2.4 2008 4 auto(s5) f 22 31 r compact
car_toyota.csv toyota camry solara 3.0 1999 6 auto(l4) f 18 26 r compact
car_toyota.csv toyota camry solara 3.0 1999 6 manual(m5) f 18 26 r compact
car_toyota.csv toyota camry solara 3.3 2008 6 auto(s5) f 18 27 r compact
car_toyota.csv toyota corolla 1.8 1999 4 auto(l3) f 24 30 r compact
car_toyota.csv toyota corolla 1.8 1999 4 auto(l4) f 24 33 r compact
car_toyota.csv toyota corolla 1.8 1999 4 manual(m5) f 26 35 r compact
car_toyota.csv toyota corolla 1.8 2008 4 manual(m5) f 28 37 r compact
car_toyota.csv toyota corolla 1.8 2008 4 auto(l4) f 26 35 r compact
car_toyota.csv toyota land cruiser wagon 4wd 4.7 1999 8 auto(l4) 4 11 15 r suv
car_toyota.csv toyota land cruiser wagon 4wd 5.7 2008 8 auto(s6) 4 13 18 r suv
car_toyota.csv toyota toyota tacoma 4wd 2.7 1999 4 manual(m5) 4 15 20 r pickup
car_toyota.csv toyota toyota tacoma 4wd 2.7 1999 4 auto(l4) 4 16 20 r pickup
car_toyota.csv toyota toyota tacoma 4wd 2.7 2008 4 manual(m5) 4 17 22 r pickup
car_toyota.csv toyota toyota tacoma 4wd 3.4 1999 6 manual(m5) 4 15 17 r pickup
car_toyota.csv toyota toyota tacoma 4wd 3.4 1999 6 auto(l4) 4 15 19 r pickup
car_toyota.csv toyota toyota tacoma 4wd 4.0 2008 6 manual(m6) 4 15 18 r pickup
car_toyota.csv toyota toyota tacoma 4wd 4.0 2008 6 auto(l5) 4 16 20 r pickup
car_volkswagen.csv volkswagen gti 2.0 1999 4 manual(m5) f 21 29 r compact
car_volkswagen.csv volkswagen gti 2.0 1999 4 auto(l4) f 19 26 r compact
car_volkswagen.csv volkswagen gti 2.0 2008 4 manual(m6) f 21 29 p compact
car_volkswagen.csv volkswagen gti 2.0 2008 4 auto(s6) f 22 29 p compact
car_volkswagen.csv volkswagen gti 2.8 1999 6 manual(m5) f 17 24 r compact
car_volkswagen.csv volkswagen jetta 1.9 1999 4 manual(m5) f 33 44 d compact
car_volkswagen.csv volkswagen jetta 2.0 1999 4 manual(m5) f 21 29 r compact
car_volkswagen.csv volkswagen jetta 2.0 1999 4 auto(l4) f 19 26 r compact
car_volkswagen.csv volkswagen jetta 2.0 2008 4 auto(s6) f 22 29 p compact
car_volkswagen.csv volkswagen jetta 2.0 2008 4 manual(m6) f 21 29 p compact
car_volkswagen.csv volkswagen jetta 2.5 2008 5 auto(s6) f 21 29 r compact
car_volkswagen.csv volkswagen jetta 2.5 2008 5 manual(m5) f 21 29 r compact
car_volkswagen.csv volkswagen jetta 2.8 1999 6 auto(l4) f 16 23 r compact
car_volkswagen.csv volkswagen jetta 2.8 1999 6 manual(m5) f 17 24 r compact
car_volkswagen.csv volkswagen new beetle 1.9 1999 4 manual(m5) f 35 44 d subcompact
car_volkswagen.csv volkswagen new beetle 1.9 1999 4 auto(l4) f 29 41 d subcompact
car_volkswagen.csv volkswagen new beetle 2.0 1999 4 manual(m5) f 21 29 r subcompact
car_volkswagen.csv volkswagen new beetle 2.0 1999 4 auto(l4) f 19 26 r subcompact
car_volkswagen.csv volkswagen new beetle 2.5 2008 5 manual(m5) f 20 28 r subcompact
car_volkswagen.csv volkswagen new beetle 2.5 2008 5 auto(s6) f 20 29 r subcompact
car_volkswagen.csv volkswagen passat 1.8 1999 4 manual(m5) f 21 29 p midsize
car_volkswagen.csv volkswagen passat 1.8 1999 4 auto(l5) f 18 29 p midsize
car_volkswagen.csv volkswagen passat 2.0 2008 4 auto(s6) f 19 28 p midsize
car_volkswagen.csv volkswagen passat 2.0 2008 4 manual(m6) f 21 29 p midsize
car_volkswagen.csv volkswagen passat 2.8 1999 6 auto(l5) f 16 26 p midsize
car_volkswagen.csv volkswagen passat 2.8 1999 6 manual(m5) f 18 26 p midsize
car_volkswagen.csv volkswagen passat 3.6 2008 6 auto(s6) f 17 26 p midsize
#按列直接拼结
# df <- map(files, read_csv) %>% 
#   reduce(cbind)

3.3 计算

#vector
vec <- c(1:10)
#dataframe
dfr <- iris
#list

lst <- repurrrsive::sw_films

3.3.1 向量对象

map(vec, sqrt)
## [[1]]
## [1] 1
## 
## [[2]]
## [1] 1.414214
## 
## [[3]]
## [1] 1.732051
## 
## [[4]]
## [1] 2
## 
## [[5]]
## [1] 2.236068
## 
## [[6]]
## [1] 2.44949
## 
## [[7]]
## [1] 2.645751
## 
## [[8]]
## [1] 2.828427
## 
## [[9]]
## [1] 3
## 
## [[10]]
## [1] 3.162278
map_dbl(vec, sqrt)
##  [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751 2.828427
##  [9] 3.000000 3.162278
map_dfc(vec, sqrt)
## New names:
## * NA -> ...1
## * NA -> ...2
## * NA -> ...3
## * NA -> ...4
## * NA -> ...5
## * ...
…1 …2 …3 …4 …5 …6 …7 …8 …9 …10
1 1.414214 1.732051 2 2.236068 2.44949 2.645751 2.828427 3 3.162278
#purrr类函数
map_dfc(vec, ~ .x ^ 2 + 4)
## New names:
## * NA -> ...1
## * NA -> ...2
## * NA -> ...3
## * NA -> ...4
## * NA -> ...5
## * ...
…1 …2 …3 …4 …5 …6 …7 …8 …9 …10
5 8 13 20 29 40 53 68 85 104
#等价于
vec ^ 2 + 4
##  [1]   5   8  13  20  29  40  53  68  85 104
map(vec, rnorm, n = 10)
## [[1]]
##  [1] -0.7989356  1.1243535 -0.3716316  2.3012127  0.8922286  0.7201264
##  [7]  0.8712398  0.1687882  0.8861034  0.7897579
## 
## [[2]]
##  [1] 0.9556122 1.8290873 0.3879282 2.2131331 1.2994987 1.7904608 2.3443855
##  [8] 3.1647187 3.6722009 2.2016033
## 
## [[3]]
##  [1] 2.748787 3.993756 3.956900 2.171520 3.475956 4.693728 4.388541 2.234846
##  [9] 2.365895 4.018333
## 
## [[4]]
##  [1] 2.516361 4.367344 4.469836 2.795355 4.873359 4.758895 3.578696 3.621071
##  [9] 4.830140 5.041444
## 
## [[5]]
##  [1] 4.111856 3.681042 4.746839 5.399197 3.899355 5.570876 5.295204 5.089022
##  [9] 5.065844 5.134531
## 
## [[6]]
##  [1] 6.231073 6.989157 5.882999 5.725695 5.355330 6.025440 5.454097 5.767258
##  [9] 5.079801 5.635357
## 
## [[7]]
##  [1] 6.422973 6.639919 7.193007 7.844286 7.434267 6.231791 6.978896 7.449855
##  [9] 7.401246 6.477827
## 
## [[8]]
##  [1] 6.874060 7.050052 7.115269 9.394183 6.587105 7.096720 7.942425 8.254554
##  [9] 8.229789 7.217983
## 
## [[9]]
##  [1]  9.876408 10.026429  8.606481  9.877384  6.709892  7.638948  9.535409
##  [8]  9.495972 10.495886  9.178379
## 
## [[10]]
##  [1]  9.887452 10.042359 10.391409  9.579592 10.176319 10.590862  9.551342
##  [8] 10.299332 11.292678  9.725463

3.3.2 数据框对象

dfr %>% map(mean)
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## $Sepal.Length
## [1] 5.843333
## 
## $Sepal.Width
## [1] 3.057333
## 
## $Petal.Length
## [1] 3.758
## 
## $Petal.Width
## [1] 1.199333
## 
## $Species
## [1] NA
dfr %>% map_dbl(mean)
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
## Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species 
##     5.843333     3.057333     3.758000     1.199333           NA
dfr %>% map_dfc(mean)
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.843333 3.057333 3.758 1.199333 NA
#分组汇总
dfr %>% 
  nest_by(Species) %>% 
  dplyr::summarise(map_dfc(data, mean))
## `summarise()` regrouping output by 'Species' (override with `.groups` argument)
Species Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026
#或
dfr %>% 
  group_by(Species) %>% 
  group_modify(~ map_dfc(.x, mean))
Species Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa 5.006 3.428 1.462 0.246
versicolor 5.936 2.770 4.260 1.326
virginica 6.588 2.974 5.552 2.026

3.3.3 列表对象

3.3.3.1 列表计算1

library(repurrrsive)
## Warning: package 'repurrrsive' was built under R version 3.6.3
# What's each character's name?
map(got_chars, ~.x[["name"]])
## [[1]]
## [1] "Theon Greyjoy"
## 
## [[2]]
## [1] "Tyrion Lannister"
## 
## [[3]]
## [1] "Victarion Greyjoy"
## 
## [[4]]
## [1] "Will"
## 
## [[5]]
## [1] "Areo Hotah"
## 
## [[6]]
## [1] "Chett"
## 
## [[7]]
## [1] "Cressen"
## 
## [[8]]
## [1] "Arianne Martell"
## 
## [[9]]
## [1] "Daenerys Targaryen"
## 
## [[10]]
## [1] "Davos Seaworth"
## 
## [[11]]
## [1] "Arya Stark"
## 
## [[12]]
## [1] "Arys Oakheart"
## 
## [[13]]
## [1] "Asha Greyjoy"
## 
## [[14]]
## [1] "Barristan Selmy"
## 
## [[15]]
## [1] "Varamyr"
## 
## [[16]]
## [1] "Brandon Stark"
## 
## [[17]]
## [1] "Brienne of Tarth"
## 
## [[18]]
## [1] "Catelyn Stark"
## 
## [[19]]
## [1] "Cersei Lannister"
## 
## [[20]]
## [1] "Eddard Stark"
## 
## [[21]]
## [1] "Jaime Lannister"
## 
## [[22]]
## [1] "Jon Connington"
## 
## [[23]]
## [1] "Jon Snow"
## 
## [[24]]
## [1] "Aeron Greyjoy"
## 
## [[25]]
## [1] "Kevan Lannister"
## 
## [[26]]
## [1] "Melisandre"
## 
## [[27]]
## [1] "Merrett Frey"
## 
## [[28]]
## [1] "Quentyn Martell"
## 
## [[29]]
## [1] "Samwell Tarly"
## 
## [[30]]
## [1] "Sansa Stark"
map(sw_people, ~.x[["name"]])
## [[1]]
## [1] "Luke Skywalker"
## 
## [[2]]
## [1] "C-3PO"
## 
## [[3]]
## [1] "R2-D2"
## 
## [[4]]
## [1] "Darth Vader"
## 
## [[5]]
## [1] "Leia Organa"
## 
## [[6]]
## [1] "Owen Lars"
## 
## [[7]]
## [1] "Beru Whitesun lars"
## 
## [[8]]
## [1] "R5-D4"
## 
## [[9]]
## [1] "Biggs Darklighter"
## 
## [[10]]
## [1] "Obi-Wan Kenobi"
## 
## [[11]]
## [1] "Anakin Skywalker"
## 
## [[12]]
## [1] "Wilhuff Tarkin"
## 
## [[13]]
## [1] "Chewbacca"
## 
## [[14]]
## [1] "Han Solo"
## 
## [[15]]
## [1] "Greedo"
## 
## [[16]]
## [1] "Jabba Desilijic Tiure"
## 
## [[17]]
## [1] "Wedge Antilles"
## 
## [[18]]
## [1] "Jek Tono Porkins"
## 
## [[19]]
## [1] "Yoda"
## 
## [[20]]
## [1] "Palpatine"
## 
## [[21]]
## [1] "Boba Fett"
## 
## [[22]]
## [1] "IG-88"
## 
## [[23]]
## [1] "Bossk"
## 
## [[24]]
## [1] "Lando Calrissian"
## 
## [[25]]
## [1] "Lobot"
## 
## [[26]]
## [1] "Ackbar"
## 
## [[27]]
## [1] "Mon Mothma"
## 
## [[28]]
## [1] "Arvel Crynyd"
## 
## [[29]]
## [1] "Wicket Systri Warrick"
## 
## [[30]]
## [1] "Nien Nunb"
## 
## [[31]]
## [1] "Qui-Gon Jinn"
## 
## [[32]]
## [1] "Nute Gunray"
## 
## [[33]]
## [1] "Finis Valorum"
## 
## [[34]]
## [1] "Jar Jar Binks"
## 
## [[35]]
## [1] "Roos Tarpals"
## 
## [[36]]
## [1] "Rugor Nass"
## 
## [[37]]
## [1] "Ric Olié"
## 
## [[38]]
## [1] "Watto"
## 
## [[39]]
## [1] "Sebulba"
## 
## [[40]]
## [1] "Quarsh Panaka"
## 
## [[41]]
## [1] "Shmi Skywalker"
## 
## [[42]]
## [1] "Darth Maul"
## 
## [[43]]
## [1] "Bib Fortuna"
## 
## [[44]]
## [1] "Ayla Secura"
## 
## [[45]]
## [1] "Dud Bolt"
## 
## [[46]]
## [1] "Gasgano"
## 
## [[47]]
## [1] "Ben Quadinaros"
## 
## [[48]]
## [1] "Mace Windu"
## 
## [[49]]
## [1] "Ki-Adi-Mundi"
## 
## [[50]]
## [1] "Kit Fisto"
## 
## [[51]]
## [1] "Eeth Koth"
## 
## [[52]]
## [1] "Adi Gallia"
## 
## [[53]]
## [1] "Saesee Tiin"
## 
## [[54]]
## [1] "Yarael Poof"
## 
## [[55]]
## [1] "Plo Koon"
## 
## [[56]]
## [1] "Mas Amedda"
## 
## [[57]]
## [1] "Gregar Typho"
## 
## [[58]]
## [1] "Cordé"
## 
## [[59]]
## [1] "Cliegg Lars"
## 
## [[60]]
## [1] "Poggle the Lesser"
## 
## [[61]]
## [1] "Luminara Unduli"
## 
## [[62]]
## [1] "Barriss Offee"
## 
## [[63]]
## [1] "Dormé"
## 
## [[64]]
## [1] "Dooku"
## 
## [[65]]
## [1] "Bail Prestor Organa"
## 
## [[66]]
## [1] "Jango Fett"
## 
## [[67]]
## [1] "Zam Wesell"
## 
## [[68]]
## [1] "Dexter Jettster"
## 
## [[69]]
## [1] "Lama Su"
## 
## [[70]]
## [1] "Taun We"
## 
## [[71]]
## [1] "Jocasta Nu"
## 
## [[72]]
## [1] "Ratts Tyerell"
## 
## [[73]]
## [1] "R4-P17"
## 
## [[74]]
## [1] "Wat Tambor"
## 
## [[75]]
## [1] "San Hill"
## 
## [[76]]
## [1] "Shaak Ti"
## 
## [[77]]
## [1] "Grievous"
## 
## [[78]]
## [1] "Tarfful"
## 
## [[79]]
## [1] "Raymus Antilles"
## 
## [[80]]
## [1] "Sly Moore"
## 
## [[81]]
## [1] "Tion Medon"
## 
## [[82]]
## [1] "Finn"
## 
## [[83]]
## [1] "Rey"
## 
## [[84]]
## [1] "Poe Dameron"
## 
## [[85]]
## [1] "BB8"
## 
## [[86]]
## [1] "Captain Phasma"
## 
## [[87]]
## [1] "Padmé Amidala"
# What color is each SW character's hair?
map(sw_people, ~ .x[["hair_color"]])
## [[1]]
## [1] "blond"
## 
## [[2]]
## [1] "n/a"
## 
## [[3]]
## [1] "n/a"
## 
## [[4]]
## [1] "none"
## 
## [[5]]
## [1] "brown"
## 
## [[6]]
## [1] "brown, grey"
## 
## [[7]]
## [1] "brown"
## 
## [[8]]
## [1] "n/a"
## 
## [[9]]
## [1] "black"
## 
## [[10]]
## [1] "auburn, white"
## 
## [[11]]
## [1] "blond"
## 
## [[12]]
## [1] "auburn, grey"
## 
## [[13]]
## [1] "brown"
## 
## [[14]]
## [1] "brown"
## 
## [[15]]
## [1] "n/a"
## 
## [[16]]
## [1] "n/a"
## 
## [[17]]
## [1] "brown"
## 
## [[18]]
## [1] "brown"
## 
## [[19]]
## [1] "white"
## 
## [[20]]
## [1] "grey"
## 
## [[21]]
## [1] "black"
## 
## [[22]]
## [1] "none"
## 
## [[23]]
## [1] "none"
## 
## [[24]]
## [1] "black"
## 
## [[25]]
## [1] "none"
## 
## [[26]]
## [1] "none"
## 
## [[27]]
## [1] "auburn"
## 
## [[28]]
## [1] "brown"
## 
## [[29]]
## [1] "brown"
## 
## [[30]]
## [1] "none"
## 
## [[31]]
## [1] "brown"
## 
## [[32]]
## [1] "none"
## 
## [[33]]
## [1] "blond"
## 
## [[34]]
## [1] "none"
## 
## [[35]]
## [1] "none"
## 
## [[36]]
## [1] "none"
## 
## [[37]]
## [1] "brown"
## 
## [[38]]
## [1] "black"
## 
## [[39]]
## [1] "none"
## 
## [[40]]
## [1] "black"
## 
## [[41]]
## [1] "black"
## 
## [[42]]
## [1] "none"
## 
## [[43]]
## [1] "none"
## 
## [[44]]
## [1] "none"
## 
## [[45]]
## [1] "none"
## 
## [[46]]
## [1] "none"
## 
## [[47]]
## [1] "none"
## 
## [[48]]
## [1] "none"
## 
## [[49]]
## [1] "white"
## 
## [[50]]
## [1] "none"
## 
## [[51]]
## [1] "black"
## 
## [[52]]
## [1] "none"
## 
## [[53]]
## [1] "none"
## 
## [[54]]
## [1] "none"
## 
## [[55]]
## [1] "none"
## 
## [[56]]
## [1] "none"
## 
## [[57]]
## [1] "black"
## 
## [[58]]
## [1] "brown"
## 
## [[59]]
## [1] "brown"
## 
## [[60]]
## [1] "none"
## 
## [[61]]
## [1] "black"
## 
## [[62]]
## [1] "black"
## 
## [[63]]
## [1] "brown"
## 
## [[64]]
## [1] "white"
## 
## [[65]]
## [1] "black"
## 
## [[66]]
## [1] "black"
## 
## [[67]]
## [1] "blonde"
## 
## [[68]]
## [1] "none"
## 
## [[69]]
## [1] "none"
## 
## [[70]]
## [1] "none"
## 
## [[71]]
## [1] "white"
## 
## [[72]]
## [1] "none"
## 
## [[73]]
## [1] "none"
## 
## [[74]]
## [1] "none"
## 
## [[75]]
## [1] "none"
## 
## [[76]]
## [1] "none"
## 
## [[77]]
## [1] "none"
## 
## [[78]]
## [1] "brown"
## 
## [[79]]
## [1] "brown"
## 
## [[80]]
## [1] "none"
## 
## [[81]]
## [1] "none"
## 
## [[82]]
## [1] "black"
## 
## [[83]]
## [1] "brown"
## 
## [[84]]
## [1] "brown"
## 
## [[85]]
## [1] "none"
## 
## [[86]]
## [1] "unknown"
## 
## [[87]]
## [1] "brown"
# Is the GoT character alive?
map(got_chars, ~ .x[["alive"]])
## [[1]]
## [1] TRUE
## 
## [[2]]
## [1] TRUE
## 
## [[3]]
## [1] TRUE
## 
## [[4]]
## [1] FALSE
## 
## [[5]]
## [1] TRUE
## 
## [[6]]
## [1] FALSE
## 
## [[7]]
## [1] FALSE
## 
## [[8]]
## [1] TRUE
## 
## [[9]]
## [1] TRUE
## 
## [[10]]
## [1] TRUE
## 
## [[11]]
## [1] TRUE
## 
## [[12]]
## [1] FALSE
## 
## [[13]]
## [1] TRUE
## 
## [[14]]
## [1] TRUE
## 
## [[15]]
## [1] FALSE
## 
## [[16]]
## [1] TRUE
## 
## [[17]]
## [1] TRUE
## 
## [[18]]
## [1] FALSE
## 
## [[19]]
## [1] TRUE
## 
## [[20]]
## [1] FALSE
## 
## [[21]]
## [1] TRUE
## 
## [[22]]
## [1] TRUE
## 
## [[23]]
## [1] TRUE
## 
## [[24]]
## [1] TRUE
## 
## [[25]]
## [1] FALSE
## 
## [[26]]
## [1] TRUE
## 
## [[27]]
## [1] FALSE
## 
## [[28]]
## [1] FALSE
## 
## [[29]]
## [1] TRUE
## 
## [[30]]
## [1] TRUE
# Is the SW character female?
map(sw_people, ~ .x[["gender"]] == "female")
## [[1]]
## [1] FALSE
## 
## [[2]]
## [1] FALSE
## 
## [[3]]
## [1] FALSE
## 
## [[4]]
## [1] FALSE
## 
## [[5]]
## [1] TRUE
## 
## [[6]]
## [1] FALSE
## 
## [[7]]
## [1] TRUE
## 
## [[8]]
## [1] FALSE
## 
## [[9]]
## [1] FALSE
## 
## [[10]]
## [1] FALSE
## 
## [[11]]
## [1] FALSE
## 
## [[12]]
## [1] FALSE
## 
## [[13]]
## [1] FALSE
## 
## [[14]]
## [1] FALSE
## 
## [[15]]
## [1] FALSE
## 
## [[16]]
## [1] FALSE
## 
## [[17]]
## [1] FALSE
## 
## [[18]]
## [1] FALSE
## 
## [[19]]
## [1] FALSE
## 
## [[20]]
## [1] FALSE
## 
## [[21]]
## [1] FALSE
## 
## [[22]]
## [1] FALSE
## 
## [[23]]
## [1] FALSE
## 
## [[24]]
## [1] FALSE
## 
## [[25]]
## [1] FALSE
## 
## [[26]]
## [1] FALSE
## 
## [[27]]
## [1] TRUE
## 
## [[28]]
## [1] FALSE
## 
## [[29]]
## [1] FALSE
## 
## [[30]]
## [1] FALSE
## 
## [[31]]
## [1] FALSE
## 
## [[32]]
## [1] FALSE
## 
## [[33]]
## [1] FALSE
## 
## [[34]]
## [1] FALSE
## 
## [[35]]
## [1] FALSE
## 
## [[36]]
## [1] FALSE
## 
## [[37]]
## [1] FALSE
## 
## [[38]]
## [1] FALSE
## 
## [[39]]
## [1] FALSE
## 
## [[40]]
## [1] FALSE
## 
## [[41]]
## [1] TRUE
## 
## [[42]]
## [1] FALSE
## 
## [[43]]
## [1] FALSE
## 
## [[44]]
## [1] TRUE
## 
## [[45]]
## [1] FALSE
## 
## [[46]]
## [1] FALSE
## 
## [[47]]
## [1] FALSE
## 
## [[48]]
## [1] FALSE
## 
## [[49]]
## [1] FALSE
## 
## [[50]]
## [1] FALSE
## 
## [[51]]
## [1] FALSE
## 
## [[52]]
## [1] TRUE
## 
## [[53]]
## [1] FALSE
## 
## [[54]]
## [1] FALSE
## 
## [[55]]
## [1] FALSE
## 
## [[56]]
## [1] FALSE
## 
## [[57]]
## [1] FALSE
## 
## [[58]]
## [1] TRUE
## 
## [[59]]
## [1] FALSE
## 
## [[60]]
## [1] FALSE
## 
## [[61]]
## [1] TRUE
## 
## [[62]]
## [1] TRUE
## 
## [[63]]
## [1] TRUE
## 
## [[64]]
## [1] FALSE
## 
## [[65]]
## [1] FALSE
## 
## [[66]]
## [1] FALSE
## 
## [[67]]
## [1] TRUE
## 
## [[68]]
## [1] FALSE
## 
## [[69]]
## [1] FALSE
## 
## [[70]]
## [1] TRUE
## 
## [[71]]
## [1] TRUE
## 
## [[72]]
## [1] FALSE
## 
## [[73]]
## [1] TRUE
## 
## [[74]]
## [1] FALSE
## 
## [[75]]
## [1] FALSE
## 
## [[76]]
## [1] TRUE
## 
## [[77]]
## [1] FALSE
## 
## [[78]]
## [1] FALSE
## 
## [[79]]
## [1] FALSE
## 
## [[80]]
## [1] TRUE
## 
## [[81]]
## [1] FALSE
## 
## [[82]]
## [1] FALSE
## 
## [[83]]
## [1] TRUE
## 
## [[84]]
## [1] FALSE
## 
## [[85]]
## [1] FALSE
## 
## [[86]]
## [1] TRUE
## 
## [[87]]
## [1] TRUE
# How heavy is each SW character?
map(sw_people, ~ .x[["mass"]])
## [[1]]
## [1] "77"
## 
## [[2]]
## [1] "75"
## 
## [[3]]
## [1] "32"
## 
## [[4]]
## [1] "136"
## 
## [[5]]
## [1] "49"
## 
## [[6]]
## [1] "120"
## 
## [[7]]
## [1] "75"
## 
## [[8]]
## [1] "32"
## 
## [[9]]
## [1] "84"
## 
## [[10]]
## [1] "77"
## 
## [[11]]
## [1] "84"
## 
## [[12]]
## [1] "unknown"
## 
## [[13]]
## [1] "112"
## 
## [[14]]
## [1] "80"
## 
## [[15]]
## [1] "74"
## 
## [[16]]
## [1] "1,358"
## 
## [[17]]
## [1] "77"
## 
## [[18]]
## [1] "110"
## 
## [[19]]
## [1] "17"
## 
## [[20]]
## [1] "75"
## 
## [[21]]
## [1] "78.2"
## 
## [[22]]
## [1] "140"
## 
## [[23]]
## [1] "113"
## 
## [[24]]
## [1] "79"
## 
## [[25]]
## [1] "79"
## 
## [[26]]
## [1] "83"
## 
## [[27]]
## [1] "unknown"
## 
## [[28]]
## [1] "unknown"
## 
## [[29]]
## [1] "20"
## 
## [[30]]
## [1] "68"
## 
## [[31]]
## [1] "89"
## 
## [[32]]
## [1] "90"
## 
## [[33]]
## [1] "unknown"
## 
## [[34]]
## [1] "66"
## 
## [[35]]
## [1] "82"
## 
## [[36]]
## [1] "unknown"
## 
## [[37]]
## [1] "unknown"
## 
## [[38]]
## [1] "unknown"
## 
## [[39]]
## [1] "40"
## 
## [[40]]
## [1] "unknown"
## 
## [[41]]
## [1] "unknown"
## 
## [[42]]
## [1] "80"
## 
## [[43]]
## [1] "unknown"
## 
## [[44]]
## [1] "55"
## 
## [[45]]
## [1] "45"
## 
## [[46]]
## [1] "unknown"
## 
## [[47]]
## [1] "65"
## 
## [[48]]
## [1] "84"
## 
## [[49]]
## [1] "82"
## 
## [[50]]
## [1] "87"
## 
## [[51]]
## [1] "unknown"
## 
## [[52]]
## [1] "50"
## 
## [[53]]
## [1] "unknown"
## 
## [[54]]
## [1] "unknown"
## 
## [[55]]
## [1] "80"
## 
## [[56]]
## [1] "unknown"
## 
## [[57]]
## [1] "85"
## 
## [[58]]
## [1] "unknown"
## 
## [[59]]
## [1] "unknown"
## 
## [[60]]
## [1] "80"
## 
## [[61]]
## [1] "56.2"
## 
## [[62]]
## [1] "50"
## 
## [[63]]
## [1] "unknown"
## 
## [[64]]
## [1] "80"
## 
## [[65]]
## [1] "unknown"
## 
## [[66]]
## [1] "79"
## 
## [[67]]
## [1] "55"
## 
## [[68]]
## [1] "102"
## 
## [[69]]
## [1] "88"
## 
## [[70]]
## [1] "unknown"
## 
## [[71]]
## [1] "unknown"
## 
## [[72]]
## [1] "15"
## 
## [[73]]
## [1] "unknown"
## 
## [[74]]
## [1] "48"
## 
## [[75]]
## [1] "unknown"
## 
## [[76]]
## [1] "57"
## 
## [[77]]
## [1] "159"
## 
## [[78]]
## [1] "136"
## 
## [[79]]
## [1] "79"
## 
## [[80]]
## [1] "48"
## 
## [[81]]
## [1] "80"
## 
## [[82]]
## [1] "unknown"
## 
## [[83]]
## [1] "unknown"
## 
## [[84]]
## [1] "unknown"
## 
## [[85]]
## [1] "unknown"
## 
## [[86]]
## [1] "unknown"
## 
## [[87]]
## [1] "45"
map(sw_people, "mass")
## [[1]]
## [1] "77"
## 
## [[2]]
## [1] "75"
## 
## [[3]]
## [1] "32"
## 
## [[4]]
## [1] "136"
## 
## [[5]]
## [1] "49"
## 
## [[6]]
## [1] "120"
## 
## [[7]]
## [1] "75"
## 
## [[8]]
## [1] "32"
## 
## [[9]]
## [1] "84"
## 
## [[10]]
## [1] "77"
## 
## [[11]]
## [1] "84"
## 
## [[12]]
## [1] "unknown"
## 
## [[13]]
## [1] "112"
## 
## [[14]]
## [1] "80"
## 
## [[15]]
## [1] "74"
## 
## [[16]]
## [1] "1,358"
## 
## [[17]]
## [1] "77"
## 
## [[18]]
## [1] "110"
## 
## [[19]]
## [1] "17"
## 
## [[20]]
## [1] "75"
## 
## [[21]]
## [1] "78.2"
## 
## [[22]]
## [1] "140"
## 
## [[23]]
## [1] "113"
## 
## [[24]]
## [1] "79"
## 
## [[25]]
## [1] "79"
## 
## [[26]]
## [1] "83"
## 
## [[27]]
## [1] "unknown"
## 
## [[28]]
## [1] "unknown"
## 
## [[29]]
## [1] "20"
## 
## [[30]]
## [1] "68"
## 
## [[31]]
## [1] "89"
## 
## [[32]]
## [1] "90"
## 
## [[33]]
## [1] "unknown"
## 
## [[34]]
## [1] "66"
## 
## [[35]]
## [1] "82"
## 
## [[36]]
## [1] "unknown"
## 
## [[37]]
## [1] "unknown"
## 
## [[38]]
## [1] "unknown"
## 
## [[39]]
## [1] "40"
## 
## [[40]]
## [1] "unknown"
## 
## [[41]]
## [1] "unknown"
## 
## [[42]]
## [1] "80"
## 
## [[43]]
## [1] "unknown"
## 
## [[44]]
## [1] "55"
## 
## [[45]]
## [1] "45"
## 
## [[46]]
## [1] "unknown"
## 
## [[47]]
## [1] "65"
## 
## [[48]]
## [1] "84"
## 
## [[49]]
## [1] "82"
## 
## [[50]]
## [1] "87"
## 
## [[51]]
## [1] "unknown"
## 
## [[52]]
## [1] "50"
## 
## [[53]]
## [1] "unknown"
## 
## [[54]]
## [1] "unknown"
## 
## [[55]]
## [1] "80"
## 
## [[56]]
## [1] "unknown"
## 
## [[57]]
## [1] "85"
## 
## [[58]]
## [1] "unknown"
## 
## [[59]]
## [1] "unknown"
## 
## [[60]]
## [1] "80"
## 
## [[61]]
## [1] "56.2"
## 
## [[62]]
## [1] "50"
## 
## [[63]]
## [1] "unknown"
## 
## [[64]]
## [1] "80"
## 
## [[65]]
## [1] "unknown"
## 
## [[66]]
## [1] "79"
## 
## [[67]]
## [1] "55"
## 
## [[68]]
## [1] "102"
## 
## [[69]]
## [1] "88"
## 
## [[70]]
## [1] "unknown"
## 
## [[71]]
## [1] "unknown"
## 
## [[72]]
## [1] "15"
## 
## [[73]]
## [1] "unknown"
## 
## [[74]]
## [1] "48"
## 
## [[75]]
## [1] "unknown"
## 
## [[76]]
## [1] "57"
## 
## [[77]]
## [1] "159"
## 
## [[78]]
## [1] "136"
## 
## [[79]]
## [1] "79"
## 
## [[80]]
## [1] "48"
## 
## [[81]]
## [1] "80"
## 
## [[82]]
## [1] "unknown"
## 
## [[83]]
## [1] "unknown"
## 
## [[84]]
## [1] "unknown"
## 
## [[85]]
## [1] "unknown"
## 
## [[86]]
## [1] "unknown"
## 
## [[87]]
## [1] "45"
map(sw_vehicles, "pilots", .default = NA)
## [[1]]
## [1] NA
## 
## [[2]]
## [1] NA
## 
## [[3]]
## [1] NA
## 
## [[4]]
## [1] NA
## 
## [[5]]
## [1] "http://swapi.co/api/people/1/"  "http://swapi.co/api/people/18/"
## 
## [[6]]
## [1] NA
## 
## [[7]]
## [1] NA
## 
## [[8]]
## [1] "http://swapi.co/api/people/13/"
## 
## [[9]]
## [1] NA
## 
## [[10]]
## [1] NA
## 
## [[11]]
## [1] NA
## 
## [[12]]
## [1] NA
## 
## [[13]]
## [1] "http://swapi.co/api/people/1/" "http://swapi.co/api/people/5/"
## 
## [[14]]
## [1] NA
## 
## [[15]]
## [1] NA
## 
## [[16]]
## [1] NA
## 
## [[17]]
## [1] NA
## 
## [[18]]
## [1] NA
## 
## [[19]]
## [1] "http://swapi.co/api/people/10/" "http://swapi.co/api/people/32/"
## 
## [[20]]
## [1] "http://swapi.co/api/people/44/"
## 
## [[21]]
## [1] "http://swapi.co/api/people/11/"
## 
## [[22]]
## [1] "http://swapi.co/api/people/70/"
## 
## [[23]]
## [1] "http://swapi.co/api/people/11/"
## 
## [[24]]
## [1] NA
## 
## [[25]]
## [1] NA
## 
## [[26]]
## [1] "http://swapi.co/api/people/79/"
## 
## [[27]]
## [1] NA
## 
## [[28]]
## [1] NA
## 
## [[29]]
## [1] NA
## 
## [[30]]
## [1] NA
## 
## [[31]]
## [1] NA
## 
## [[32]]
## [1] NA
## 
## [[33]]
## [1] NA
## 
## [[34]]
## [1] NA
## 
## [[35]]
## [1] NA
## 
## [[36]]
## [1] NA
## 
## [[37]]
## [1] "http://swapi.co/api/people/67/"
## 
## [[38]]
## [1] NA
## 
## [[39]]
## [1] NA
map_chr(sw_vehicles, 1)
##  [1] "Sand Crawler"                   "T-16 skyhopper"                
##  [3] "X-34 landspeeder"               "TIE/LN starfighter"            
##  [5] "Snowspeeder"                    "TIE bomber"                    
##  [7] "AT-AT"                          "AT-ST"                         
##  [9] "Storm IV Twin-Pod cloud car"    "Sail barge"                    
## [11] "Bantha-II cargo skiff"          "TIE/IN interceptor"            
## [13] "Imperial Speeder Bike"          "Vulture Droid"                 
## [15] "Multi-Troop Transport"          "Armored Assault Tank"          
## [17] "Single Trooper Aerial Platform" "C-9979 landing craft"          
## [19] "Tribubble bongo"                "Sith speeder"                  
## [21] "Zephyr-G swoop bike"            "Koro-2 Exodrive airspeeder"    
## [23] "XJ-6 airspeeder"                "LAAT/i"                        
## [25] "LAAT/c"                         "Tsmeu-6 personal wheel bike"   
## [27] "Emergency Firespeeder"          "Droid tri-fighter"             
## [29] "Oevvaor jet catamaran"          "Raddaugh Gnasp fluttercraft"   
## [31] "Clone turbo tank"               "Corporate Alliance tank droid" 
## [33] "Droid gunship"                  "AT-RT"                         
## [35] "AT-TE"                          "SPHA"                          
## [37] "Flitknot speeder"               "Neimoidian shuttle"            
## [39] "Geonosian starfighter"
map(got_chars, names)
## [[1]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[2]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[3]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[4]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[5]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[6]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[7]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[8]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[9]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[10]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[11]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[12]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[13]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[14]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[15]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[16]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[17]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[18]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[19]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[20]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[21]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[22]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[23]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[24]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[25]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[26]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[27]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[28]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[29]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"   
## 
## [[30]]
##  [1] "url"         "id"          "name"        "gender"      "culture"    
##  [6] "born"        "died"        "alive"       "titles"      "aliases"    
## [11] "father"      "mother"      "spouse"      "allegiances" "books"      
## [16] "povBooks"    "tvSeries"    "playedBy"

3.3.3.2 列表转数据框

#list转dataframe
people_tbl <- tibble(
  name = sw_people %>% map_chr("name"),
  films = sw_people %>% map("films"),
  height = sw_people %>% map_chr("height") %>%
    readr::parse_number(na = "unknown"),
  species = sw_people %>% map_chr("species", .null = NA_character_)
) %>% 
  unnest(cols = c(films))
people_tbl
name films height species
Luke Skywalker http://swapi.co/api/films/6/ 172 http://swapi.co/api/species/1/
Luke Skywalker http://swapi.co/api/films/3/ 172 http://swapi.co/api/species/1/
Luke Skywalker http://swapi.co/api/films/2/ 172 http://swapi.co/api/species/1/
Luke Skywalker http://swapi.co/api/films/1/ 172 http://swapi.co/api/species/1/
Luke Skywalker http://swapi.co/api/films/7/ 172 http://swapi.co/api/species/1/
C-3PO http://swapi.co/api/films/5/ 167 http://swapi.co/api/species/2/
C-3PO http://swapi.co/api/films/4/ 167 http://swapi.co/api/species/2/
C-3PO http://swapi.co/api/films/6/ 167 http://swapi.co/api/species/2/
C-3PO http://swapi.co/api/films/3/ 167 http://swapi.co/api/species/2/
C-3PO http://swapi.co/api/films/2/ 167 http://swapi.co/api/species/2/
C-3PO http://swapi.co/api/films/1/ 167 http://swapi.co/api/species/2/
R2-D2 http://swapi.co/api/films/5/ 96 http://swapi.co/api/species/2/
R2-D2 http://swapi.co/api/films/4/ 96 http://swapi.co/api/species/2/
R2-D2 http://swapi.co/api/films/6/ 96 http://swapi.co/api/species/2/
R2-D2 http://swapi.co/api/films/3/ 96 http://swapi.co/api/species/2/
R2-D2 http://swapi.co/api/films/2/ 96 http://swapi.co/api/species/2/
R2-D2 http://swapi.co/api/films/1/ 96 http://swapi.co/api/species/2/
R2-D2 http://swapi.co/api/films/7/ 96 http://swapi.co/api/species/2/
Darth Vader http://swapi.co/api/films/6/ 202 http://swapi.co/api/species/1/
Darth Vader http://swapi.co/api/films/3/ 202 http://swapi.co/api/species/1/
Darth Vader http://swapi.co/api/films/2/ 202 http://swapi.co/api/species/1/
Darth Vader http://swapi.co/api/films/1/ 202 http://swapi.co/api/species/1/
Leia Organa http://swapi.co/api/films/6/ 150 http://swapi.co/api/species/1/
Leia Organa http://swapi.co/api/films/3/ 150 http://swapi.co/api/species/1/
Leia Organa http://swapi.co/api/films/2/ 150 http://swapi.co/api/species/1/
Leia Organa http://swapi.co/api/films/1/ 150 http://swapi.co/api/species/1/
Leia Organa http://swapi.co/api/films/7/ 150 http://swapi.co/api/species/1/
Owen Lars http://swapi.co/api/films/5/ 178 http://swapi.co/api/species/1/
Owen Lars http://swapi.co/api/films/6/ 178 http://swapi.co/api/species/1/
Owen Lars http://swapi.co/api/films/1/ 178 http://swapi.co/api/species/1/
Beru Whitesun lars http://swapi.co/api/films/5/ 165 http://swapi.co/api/species/1/
Beru Whitesun lars http://swapi.co/api/films/6/ 165 http://swapi.co/api/species/1/
Beru Whitesun lars http://swapi.co/api/films/1/ 165 http://swapi.co/api/species/1/
R5-D4 http://swapi.co/api/films/1/ 97 http://swapi.co/api/species/2/
Biggs Darklighter http://swapi.co/api/films/1/ 183 http://swapi.co/api/species/1/
Obi-Wan Kenobi http://swapi.co/api/films/5/ 182 http://swapi.co/api/species/1/
Obi-Wan Kenobi http://swapi.co/api/films/4/ 182 http://swapi.co/api/species/1/
Obi-Wan Kenobi http://swapi.co/api/films/6/ 182 http://swapi.co/api/species/1/
Obi-Wan Kenobi http://swapi.co/api/films/3/ 182 http://swapi.co/api/species/1/
Obi-Wan Kenobi http://swapi.co/api/films/2/ 182 http://swapi.co/api/species/1/
Obi-Wan Kenobi http://swapi.co/api/films/1/ 182 http://swapi.co/api/species/1/
Anakin Skywalker http://swapi.co/api/films/5/ 188 http://swapi.co/api/species/1/
Anakin Skywalker http://swapi.co/api/films/4/ 188 http://swapi.co/api/species/1/
Anakin Skywalker http://swapi.co/api/films/6/ 188 http://swapi.co/api/species/1/
Wilhuff Tarkin http://swapi.co/api/films/6/ 180 http://swapi.co/api/species/1/
Wilhuff Tarkin http://swapi.co/api/films/1/ 180 http://swapi.co/api/species/1/
Chewbacca http://swapi.co/api/films/6/ 228 http://swapi.co/api/species/3/
Chewbacca http://swapi.co/api/films/3/ 228 http://swapi.co/api/species/3/
Chewbacca http://swapi.co/api/films/2/ 228 http://swapi.co/api/species/3/
Chewbacca http://swapi.co/api/films/1/ 228 http://swapi.co/api/species/3/
Chewbacca http://swapi.co/api/films/7/ 228 http://swapi.co/api/species/3/
Han Solo http://swapi.co/api/films/3/ 180 http://swapi.co/api/species/1/
Han Solo http://swapi.co/api/films/2/ 180 http://swapi.co/api/species/1/
Han Solo http://swapi.co/api/films/1/ 180 http://swapi.co/api/species/1/
Han Solo http://swapi.co/api/films/7/ 180 http://swapi.co/api/species/1/
Greedo http://swapi.co/api/films/1/ 173 http://swapi.co/api/species/4/
Jabba Desilijic Tiure http://swapi.co/api/films/4/ 175 http://swapi.co/api/species/5/
Jabba Desilijic Tiure http://swapi.co/api/films/3/ 175 http://swapi.co/api/species/5/
Jabba Desilijic Tiure http://swapi.co/api/films/1/ 175 http://swapi.co/api/species/5/
Wedge Antilles http://swapi.co/api/films/3/ 170 http://swapi.co/api/species/1/
Wedge Antilles http://swapi.co/api/films/2/ 170 http://swapi.co/api/species/1/
Wedge Antilles http://swapi.co/api/films/1/ 170 http://swapi.co/api/species/1/
Jek Tono Porkins http://swapi.co/api/films/1/ 180 http://swapi.co/api/species/1/
Yoda http://swapi.co/api/films/5/ 66 http://swapi.co/api/species/6/
Yoda http://swapi.co/api/films/4/ 66 http://swapi.co/api/species/6/
Yoda http://swapi.co/api/films/6/ 66 http://swapi.co/api/species/6/
Yoda http://swapi.co/api/films/3/ 66 http://swapi.co/api/species/6/
Yoda http://swapi.co/api/films/2/ 66 http://swapi.co/api/species/6/
Palpatine http://swapi.co/api/films/5/ 170 http://swapi.co/api/species/1/
Palpatine http://swapi.co/api/films/4/ 170 http://swapi.co/api/species/1/
Palpatine http://swapi.co/api/films/6/ 170 http://swapi.co/api/species/1/
Palpatine http://swapi.co/api/films/3/ 170 http://swapi.co/api/species/1/
Palpatine http://swapi.co/api/films/2/ 170 http://swapi.co/api/species/1/
Boba Fett http://swapi.co/api/films/5/ 183 http://swapi.co/api/species/1/
Boba Fett http://swapi.co/api/films/3/ 183 http://swapi.co/api/species/1/
Boba Fett http://swapi.co/api/films/2/ 183 http://swapi.co/api/species/1/
IG-88 http://swapi.co/api/films/2/ 200 http://swapi.co/api/species/2/
Bossk http://swapi.co/api/films/2/ 190 http://swapi.co/api/species/7/
Lando Calrissian http://swapi.co/api/films/3/ 177 http://swapi.co/api/species/1/
Lando Calrissian http://swapi.co/api/films/2/ 177 http://swapi.co/api/species/1/
Lobot http://swapi.co/api/films/2/ 175 http://swapi.co/api/species/1/
Ackbar http://swapi.co/api/films/3/ 180 http://swapi.co/api/species/8/
Ackbar http://swapi.co/api/films/7/ 180 http://swapi.co/api/species/8/
Mon Mothma http://swapi.co/api/films/3/ 150 http://swapi.co/api/species/1/
Arvel Crynyd http://swapi.co/api/films/3/ NA http://swapi.co/api/species/1/
Wicket Systri Warrick http://swapi.co/api/films/3/ 88 http://swapi.co/api/species/9/
Nien Nunb http://swapi.co/api/films/3/ 160 http://swapi.co/api/species/10/
Qui-Gon Jinn http://swapi.co/api/films/4/ 193 http://swapi.co/api/species/1/
Nute Gunray http://swapi.co/api/films/5/ 191 http://swapi.co/api/species/11/
Nute Gunray http://swapi.co/api/films/4/ 191 http://swapi.co/api/species/11/
Nute Gunray http://swapi.co/api/films/6/ 191 http://swapi.co/api/species/11/
Finis Valorum http://swapi.co/api/films/4/ 170 http://swapi.co/api/species/1/
Jar Jar Binks http://swapi.co/api/films/5/ 196 http://swapi.co/api/species/12/
Jar Jar Binks http://swapi.co/api/films/4/ 196 http://swapi.co/api/species/12/
Roos Tarpals http://swapi.co/api/films/4/ 224 http://swapi.co/api/species/12/
Rugor Nass http://swapi.co/api/films/4/ 206 http://swapi.co/api/species/12/
Ric Olié http://swapi.co/api/films/4/ 183 NA
Watto http://swapi.co/api/films/5/ 137 http://swapi.co/api/species/13/
Watto http://swapi.co/api/films/4/ 137 http://swapi.co/api/species/13/
Sebulba http://swapi.co/api/films/4/ 112 http://swapi.co/api/species/14/
Quarsh Panaka http://swapi.co/api/films/4/ 183 NA
Shmi Skywalker http://swapi.co/api/films/5/ 163 http://swapi.co/api/species/1/
Shmi Skywalker http://swapi.co/api/films/4/ 163 http://swapi.co/api/species/1/
Darth Maul http://swapi.co/api/films/4/ 175 http://swapi.co/api/species/22/
Bib Fortuna http://swapi.co/api/films/3/ 180 http://swapi.co/api/species/15/
Ayla Secura http://swapi.co/api/films/5/ 178 http://swapi.co/api/species/15/
Ayla Secura http://swapi.co/api/films/4/ 178 http://swapi.co/api/species/15/
Ayla Secura http://swapi.co/api/films/6/ 178 http://swapi.co/api/species/15/
Dud Bolt http://swapi.co/api/films/4/ 94 http://swapi.co/api/species/17/
Gasgano http://swapi.co/api/films/4/ 122 http://swapi.co/api/species/18/
Ben Quadinaros http://swapi.co/api/films/4/ 163 http://swapi.co/api/species/19/
Mace Windu http://swapi.co/api/films/5/ 188 http://swapi.co/api/species/1/
Mace Windu http://swapi.co/api/films/4/ 188 http://swapi.co/api/species/1/
Mace Windu http://swapi.co/api/films/6/ 188 http://swapi.co/api/species/1/
Ki-Adi-Mundi http://swapi.co/api/films/5/ 198 http://swapi.co/api/species/20/
Ki-Adi-Mundi http://swapi.co/api/films/4/ 198 http://swapi.co/api/species/20/
Ki-Adi-Mundi http://swapi.co/api/films/6/ 198 http://swapi.co/api/species/20/
Kit Fisto http://swapi.co/api/films/5/ 196 http://swapi.co/api/species/21/
Kit Fisto http://swapi.co/api/films/4/ 196 http://swapi.co/api/species/21/
Kit Fisto http://swapi.co/api/films/6/ 196 http://swapi.co/api/species/21/
Eeth Koth http://swapi.co/api/films/4/ 171 http://swapi.co/api/species/22/
Eeth Koth http://swapi.co/api/films/6/ 171 http://swapi.co/api/species/22/
Adi Gallia http://swapi.co/api/films/4/ 184 http://swapi.co/api/species/23/
Adi Gallia http://swapi.co/api/films/6/ 184 http://swapi.co/api/species/23/
Saesee Tiin http://swapi.co/api/films/4/ 188 http://swapi.co/api/species/24/
Saesee Tiin http://swapi.co/api/films/6/ 188 http://swapi.co/api/species/24/
Yarael Poof http://swapi.co/api/films/4/ 264 http://swapi.co/api/species/25/
Plo Koon http://swapi.co/api/films/5/ 188 http://swapi.co/api/species/26/
Plo Koon http://swapi.co/api/films/4/ 188 http://swapi.co/api/species/26/
Plo Koon http://swapi.co/api/films/6/ 188 http://swapi.co/api/species/26/
Mas Amedda http://swapi.co/api/films/5/ 196 http://swapi.co/api/species/27/
Mas Amedda http://swapi.co/api/films/4/ 196 http://swapi.co/api/species/27/
Gregar Typho http://swapi.co/api/films/5/ 185 http://swapi.co/api/species/1/
Cordé http://swapi.co/api/films/5/ 157 http://swapi.co/api/species/1/
Cliegg Lars http://swapi.co/api/films/5/ 183 http://swapi.co/api/species/1/
Poggle the Lesser http://swapi.co/api/films/5/ 183 http://swapi.co/api/species/28/
Poggle the Lesser http://swapi.co/api/films/6/ 183 http://swapi.co/api/species/28/
Luminara Unduli http://swapi.co/api/films/5/ 170 http://swapi.co/api/species/29/
Luminara Unduli http://swapi.co/api/films/6/ 170 http://swapi.co/api/species/29/
Barriss Offee http://swapi.co/api/films/5/ 166 http://swapi.co/api/species/29/
Dormé http://swapi.co/api/films/5/ 165 http://swapi.co/api/species/1/
Dooku http://swapi.co/api/films/5/ 193 http://swapi.co/api/species/1/
Dooku http://swapi.co/api/films/6/ 193 http://swapi.co/api/species/1/
Bail Prestor Organa http://swapi.co/api/films/5/ 191 http://swapi.co/api/species/1/
Bail Prestor Organa http://swapi.co/api/films/6/ 191 http://swapi.co/api/species/1/
Jango Fett http://swapi.co/api/films/5/ 183 http://swapi.co/api/species/1/
Zam Wesell http://swapi.co/api/films/5/ 168 http://swapi.co/api/species/30/
Dexter Jettster http://swapi.co/api/films/5/ 198 http://swapi.co/api/species/31/
Lama Su http://swapi.co/api/films/5/ 229 http://swapi.co/api/species/32/
Taun We http://swapi.co/api/films/5/ 213 http://swapi.co/api/species/32/
Jocasta Nu http://swapi.co/api/films/5/ 167 http://swapi.co/api/species/1/
Ratts Tyerell http://swapi.co/api/films/4/ 79 http://swapi.co/api/species/16/
R4-P17 http://swapi.co/api/films/5/ 96 NA
R4-P17 http://swapi.co/api/films/6/ 96 NA
Wat Tambor http://swapi.co/api/films/5/ 193 http://swapi.co/api/species/33/
San Hill http://swapi.co/api/films/5/ 191 http://swapi.co/api/species/34/
Shaak Ti http://swapi.co/api/films/5/ 178 http://swapi.co/api/species/35/
Shaak Ti http://swapi.co/api/films/6/ 178 http://swapi.co/api/species/35/
Grievous http://swapi.co/api/films/6/ 216 http://swapi.co/api/species/36/
Tarfful http://swapi.co/api/films/6/ 234 http://swapi.co/api/species/3/
Raymus Antilles http://swapi.co/api/films/6/ 188 http://swapi.co/api/species/1/
Raymus Antilles http://swapi.co/api/films/1/ 188 http://swapi.co/api/species/1/
Sly Moore http://swapi.co/api/films/5/ 178 NA
Sly Moore http://swapi.co/api/films/6/ 178 NA
Tion Medon http://swapi.co/api/films/6/ 206 http://swapi.co/api/species/37/
Finn http://swapi.co/api/films/7/ NA http://swapi.co/api/species/1/
Rey http://swapi.co/api/films/7/ NA http://swapi.co/api/species/1/
Poe Dameron http://swapi.co/api/films/7/ NA http://swapi.co/api/species/1/
BB8 http://swapi.co/api/films/7/ NA http://swapi.co/api/species/2/
Captain Phasma http://swapi.co/api/films/7/ NA NA
Padmé Amidala http://swapi.co/api/films/5/ 165 http://swapi.co/api/species/1/
Padmé Amidala http://swapi.co/api/films/4/ 165 http://swapi.co/api/species/1/
Padmé Amidala http://swapi.co/api/films/6/ 165 http://swapi.co/api/species/1/
#list中的单值变量可以直接用以下方法转换成数据框
map_dfr(sw_people, `[`, c("name", "mass", "height"))
name mass height
Luke Skywalker 77 172
C-3PO 75 167
R2-D2 32 96
Darth Vader 136 202
Leia Organa 49 150
Owen Lars 120 178
Beru Whitesun lars 75 165
R5-D4 32 97
Biggs Darklighter 84 183
Obi-Wan Kenobi 77 182
Anakin Skywalker 84 188
Wilhuff Tarkin unknown 180
Chewbacca 112 228
Han Solo 80 180
Greedo 74 173
Jabba Desilijic Tiure 1,358 175
Wedge Antilles 77 170
Jek Tono Porkins 110 180
Yoda 17 66
Palpatine 75 170
Boba Fett 78.2 183
IG-88 140 200
Bossk 113 190
Lando Calrissian 79 177
Lobot 79 175
Ackbar 83 180
Mon Mothma unknown 150
Arvel Crynyd unknown unknown
Wicket Systri Warrick 20 88
Nien Nunb 68 160
Qui-Gon Jinn 89 193
Nute Gunray 90 191
Finis Valorum unknown 170
Jar Jar Binks 66 196
Roos Tarpals 82 224
Rugor Nass unknown 206
Ric Olié unknown 183
Watto unknown 137
Sebulba 40 112
Quarsh Panaka unknown 183
Shmi Skywalker unknown 163
Darth Maul 80 175
Bib Fortuna unknown 180
Ayla Secura 55 178
Dud Bolt 45 94
Gasgano unknown 122
Ben Quadinaros 65 163
Mace Windu 84 188
Ki-Adi-Mundi 82 198
Kit Fisto 87 196
Eeth Koth unknown 171
Adi Gallia 50 184
Saesee Tiin unknown 188
Yarael Poof unknown 264
Plo Koon 80 188
Mas Amedda unknown 196
Gregar Typho 85 185
Cordé unknown 157
Cliegg Lars unknown 183
Poggle the Lesser 80 183
Luminara Unduli 56.2 170
Barriss Offee 50 166
Dormé unknown 165
Dooku 80 193
Bail Prestor Organa unknown 191
Jango Fett 79 183
Zam Wesell 55 168
Dexter Jettster 102 198
Lama Su 88 229
Taun We unknown 213
Jocasta Nu unknown 167
Ratts Tyerell 15 79
R4-P17 unknown 96
Wat Tambor 48 193
San Hill unknown 191
Shaak Ti 57 178
Grievous 159 216
Tarfful 136 234
Raymus Antilles 79 188
Sly Moore 48 178
Tion Medon 80 206
Finn unknown unknown
Rey unknown unknown
Poe Dameron unknown unknown
BB8 unknown unknown
Captain Phasma unknown unknown
Padmé Amidala 45 165

3.3.3.3 列表计算2

sw_species %>% 
  #用数据集内数据命名list各元素
  set_names(map(., 'name')) %>% 
  #提取某个变量
  map(~ str_extract_all(.x$"eye_colors", "[[:alpha:]]+")) %>%
  #生成数据框列表
  enframe() %>%
  #展开数据框内各级列表
  unnest() %>% 
  unnest() %>% 
  group_by(name) %>% 
  tally(sort = T)
## Warning: `cols` is now required when using unnest().
## Please use `cols = c(value)`

## Warning: `cols` is now required when using unnest().
## Please use `cols = c(value)`
name n
Human 6
Mirialan 6
Togruta 6
Wookiee 6
Twi’lek 4
Yoda’s species 3
Droid 2
Dug 2
Ewok 2
Geonosian 2
Hutt 2
Kel Dor 2
Neimodian 2
Tholothian 2
Trandoshan 2
Zabrak 2
Aleena 1
Besalisk 1
Cerean 1
Chagrian 1
Clawdite 1
Gungan 1
Iktotchi 1
Kaleesh 1
Kaminoan 1
Mon Calamari 1
Muun 1
Nautolan 1
Pau’an 1
Quermian 1
Rodian 1
Skakoan 1
Sullustan 1
Toong 1
Toydarian 1
Vulptereen 1
Xexto 1

3.3.3.4 批量建模

# 分组建模预测
by_cyl <- mtcars %>% 
  split(.$cyl) 
mod <- by_cyl%>% 
  map(~ lm(mpg ~ wt, data = .))

mod %>% 
  map2(by_cyl, predict)
## $`4`
##     Datsun 710      Merc 240D       Merc 230       Fiat 128    Honda Civic 
##       26.47010       21.55719       21.78307       27.14774       30.45125 
## Toyota Corolla  Toyota Corona      Fiat X1-9  Porsche 914-2   Lotus Europa 
##       29.20890       25.65128       28.64420       27.48656       31.02725 
##     Volvo 142E 
##       23.87247 
## 
## $`6`
##      Mazda RX4  Mazda RX4 Wag Hornet 4 Drive        Valiant       Merc 280 
##       21.12497       20.41604       19.47080       18.78968       18.84528 
##      Merc 280C   Ferrari Dino 
##       18.84528       20.70795 
## 
## $`8`
##   Hornet Sportabout          Duster 360          Merc 450SE          Merc 450SL 
##            16.32604            16.04103            14.94481            15.69024 
##         Merc 450SLC  Cadillac Fleetwood Lincoln Continental   Chrysler Imperial 
##            15.58061            12.35773            11.97625            12.14945 
##    Dodge Challenger         AMC Javelin          Camaro Z28    Pontiac Firebird 
##            16.15065            16.33700            15.44907            15.43811 
##      Ford Pantera L       Maserati Bora 
##            16.91800            16.04103
#等价于
mtcars %>% 
  nest_by(cyl, .keep = T) %>% 
  mutate(mod = list(lm(mpg ~ wt, data = data))) %>% 
  mutate(pred = list(predict(mod, data))) %>% 
  unnest(pred)
cyl data mod pred
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 26.47010
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 21.55719
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 21.78307
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 27.14774
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 30.45125
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 29.20890
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 25.65128
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 28.64420
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 27.48656
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 31.02725
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 23.87247
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 21.12497
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 20.41604
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 19.47080
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 18.78968
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 18.84528
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 18.84528
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 6.000, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 20.70795
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.32604
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.04103
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 14.94481
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.69024
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.58061
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 12.35773
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 11.97625
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 12.14945
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.15065
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.33700
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.44907
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.43811
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.91800
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 8.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = data), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.04103
mtcars %>%
  group_nest(cyl) %>%
  mutate(model = map(data, ~ lm(mpg ~ wt, data = .x))) %>% 
  mutate(pred = map(model, predict)) %>% 
  unnest(pred)
cyl data model pred
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 26.47010
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 21.55719
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 21.78307
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 27.14774
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 30.45125
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 29.20890
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 25.65128
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 28.64420
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 27.48656
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 31.02725
4 22.800, 24.400, 22.800, 32.400, 30.400, 33.900, 21.500, 27.300, 26.000, 30.400, 21.400, 108.000, 146.700, 140.800, 78.700, 75.700, 71.100, 120.100, 79.000, 120.300, 95.100, 121.000, 93.000, 62.000, 95.000, 66.000, 52.000, 65.000, 97.000, 66.000, 91.000, 113.000, 109.000, 3.850, 3.690, 3.920, 4.080, 4.930, 4.220, 3.700, 4.080, 4.430, 3.770, 4.110, 2.320, 3.190, 3.150, 2.200, 1.615, 1.835, 2.465, 1.935, 2.140, 1.513, 2.780, 18.610, 20.000, 22.900, 19.470, 18.520, 19.900, 20.010, 18.900, 16.700, 16.900, 18.600, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 0.000, 0.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 1.000, 1.000, 4.000, 4.000, 4.000, 4.000, 4.000, 4.000, 3.000, 4.000, 5.000, 5.000, 4.000, 1.000, 2.000, 2.000, 1.000, 2.000, 1.000, 1.000, 1.000, 2.000, 2.000, 2.000 39.5712, -5.647025, -3.670097, 2.842815, 1.016934, 5.25226, -0.05125022, 4.691095, -4.151279, -1.344202, -1.486562, -0.6272468, -2.472466, -88.43328, 10.17096, 0.6947654, 6.230721, 1.728126, 6.169273, -3.535624, -0.00293297, -0.4259551, 1.291776, -2.288073, 2, 26.4701, 21.55719, 21.78307, 27.14774, 30.45125, 29.2089, 25.65128, 28.6442, 27.48656, 31.02725, 23.87247, 0, 1, -3.316625, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, 0.3015113, -7.5809, -1.801119, 0.4754451, -0.05200489, -0.376803, -0.2546567, 0.0951259, -0.1991357, -0.08531752, -0.4334345, 0.2700172, 1.301511, 1.497654, 1, 2, 1e-07, 2, 9, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26, 30.4, 21.4, 2.32, 3.19, 3.15, 2.2, 1.615, 1.835, 2.465, 1.935, 2.14, 1.513, 2.78 23.87247
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 21.12497
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 20.41604
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 19.47080
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 18.78968
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 18.84528
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 18.84528
6 21.000, 21.000, 21.400, 18.100, 19.200, 17.800, 19.700, 160.000, 160.000, 258.000, 225.000, 167.600, 167.600, 145.000, 110.000, 110.000, 110.000, 105.000, 123.000, 123.000, 175.000, 3.900, 3.900, 3.080, 2.760, 3.920, 3.920, 3.620, 2.620, 2.875, 3.215, 3.460, 3.440, 3.440, 2.770, 16.460, 17.020, 19.440, 20.220, 18.300, 18.900, 15.500, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 1.000, 4.000, 4.000, 3.000, 3.000, 4.000, 4.000, 5.000, 4.000, 4.000, 1.000, 1.000, 4.000, 4.000, 6.000 28.40884, -2.780106, -0.124967, 0.5839601, 1.929196, -0.689678, 0.3547199, -1.04528, -1.007951, -52.23469, -2.426656, 2.111436, -0.3526643, 0.679099, -0.720901, -1.10683, 2, 21.12497, 20.41604, 19.4708, 18.78968, 18.84528, 18.84528, 20.70795, 0, 1, -2.645751, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, 0.3779645, -8.247185, 0.8728647, -0.2683341, -0.5490191, -0.526106, -0.526106, 0.2414814, 1.377964, 1.121188, 1, 2, 1e-07, 2, 5, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 21, 21, 21.4, 18.1, 19.2, 17.8, 19.7, 2.62, 2.875, 3.215, 3.46, 3.44, 3.44, 2.77 20.70795
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.32604
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.04103
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 14.94481
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.69024
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.58061
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 12.35773
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 11.97625
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 12.14945
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.15065
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.33700
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.44907
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 15.43811
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.91800
8 18.700, 14.300, 16.400, 17.300, 15.200, 10.400, 10.400, 14.700, 15.500, 15.200, 13.300, 19.200, 15.800, 15.000, 360.000, 360.000, 275.800, 275.800, 275.800, 472.000, 460.000, 440.000, 318.000, 304.000, 350.000, 400.000, 351.000, 301.000, 175.000, 245.000, 180.000, 180.000, 180.000, 205.000, 215.000, 230.000, 150.000, 150.000, 245.000, 175.000, 264.000, 335.000, 3.150, 3.210, 3.070, 3.070, 3.070, 2.930, 3.000, 3.230, 2.760, 3.150, 3.730, 3.080, 4.220, 3.540, 3.440, 3.570, 4.070, 3.730, 3.780, 5.250, 5.424, 5.345, 3.520, 3.435, 3.840, 3.845, 3.170, 3.570, 17.020, 15.840, 17.400, 17.600, 18.000, 17.980, 17.820, 17.420, 16.870, 17.300, 15.410, 17.050, 14.500, 14.600, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 5.000, 5.000, 2.000, 4.000, 3.000, 3.000, 3.000, 4.000, 4.000, 4.000, 2.000, 2.000, 4.000, 2.000, 4.000, 8.000 23.86803, -2.192438, 2.373957, -1.741026, 1.455193, 1.609764, -0.3806137, -1.95773, -1.576246, 2.550552, -0.6506476, -1.137005, -2.149067, 3.761895, -1.118001, -1.041026, -56.49903, -6.003055, 0.8157971, 1.220314, -0.8068206, -3.464586, -3.211015, 0.9738578, -0.8857193, -1.30959, -2.619382, 3.287904, -1.095775, -1.312854, 2, 16.32604, 16.04103, 14.94481, 15.69024, 15.58061, 12.35773, 11.97625, 12.14945, 16.15065, 16.337, 15.44907, 15.43811, 16.918, 16.04103, 0, 1, -3.741657, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, 0.2672612, -14.96369, 2.738073, -0.06892519, 0.05524975, 0.03698873, -0.4998852, -0.5634336, -0.5345812, 0.131946, 0.1629898, 0.0150755, 0.0132494, 0.2597732, 0.113685, 1.267261, 1.113685, 1, 2, 1e-07, 2, 12, lm(formula = mpg ~ wt, data = .x), mpg ~ wt, 18.7, 14.3, 16.4, 17.3, 15.2, 10.4, 10.4, 14.7, 15.5, 15.2, 13.3, 19.2, 15.8, 15, 3.44, 3.57, 4.07, 3.73, 3.78, 5.25, 5.424, 5.345, 3.52, 3.435, 3.84, 3.845, 3.17, 3.57 16.04103

3.3.4 批量替换

# Vectorizing a function over multiple arguments
df1 <- data.frame(
  x = c("apple", "banana", "cherry"),
  pattern = c("p", "n", "h"),
  replacement = c("P", "N", "H"),
  stringsAsFactors = FALSE
)
pmap(df1, gsub)
## [[1]]
## [1] "aPPle"
## 
## [[2]]
## [1] "baNaNa"
## 
## [[3]]
## [1] "cHerry"
pmap_chr(df1, gsub)
## [1] "aPPle"  "baNaNa" "cHerry"