www.kenaiwatershed.org




Summary

This draft document contains preliminary data explorations of 2019-2020 water quality data from the Vogel Lakes complex in the Northern Kenai peninsula.



Data Import

Raw field data is stored in a Google Sheet that can be viewed at https://tinyurl.com/kwf-vogel-wqx-data.

Import data from google sheet

# Note to self: once project is complete and no more data updates are needed, migrate data source from Google Sheet to csvs in the local project "data" folder

# recognize sheet title
lake_wqx_dat <- read_sheet("https://docs.google.com/spreadsheets/d/1lS9eJ7kX91IlYwSgiEQm-BQqif_7o5E4MzcBmqpwSoI/edit#gid=0", 
                           sheet = "Profile_Measurements") %>%
  # rename columns
  rename(site = `Site Name`,
         sample_date = `Sample Date`,
         sample_depth_m = `Depth (m)`,
         sample_time = `Sample Time`,
         DO_mgl = `DO (mg/L)`,
         turbidity_ntu = `Turbidity (NTU)`,
         temp_c = `Temp (C)`,
         spcond_uscm = `SpCond (uS/cm)`) %>%
  select(-Notes,-QC1,-`Data Entry`,-`QC2`) %>%
  
  # transform column formats
  transform(sample_time = hms::as_hms(sample_time)) %>%
  
  # convert data fromat from wide to long
  pivot_longer(cols = c("pH","DO_mgl","turbidity_ntu","temp_c","spcond_uscm"),
               names_to = "parameter",
               values_to = "val") %>%
  
  # remove missing values
  filter(!is.na(val))



Map

See project ArcGIS Online map at https://arcg.is/1a84rL


Data Visualization


1.) By Site and Parameter

# list of sites to loop over
uniq_lakes = unique(lake_wqx_dat$site)

# Loop, print plots, save to output folder
for (i in uniq_lakes) {
  
  # create plot
  temp_plot = ggplot(data = subset(lake_wqx_dat, site == i)) +
    geom_point(aes(sample_depth_m,val), size = 2) +
    geom_line(aes(sample_depth_m,val)) +

    coord_flip() +
    facet_grid(. ~ parameter, scales = "free_x", shrink = T, 
               labeller = labeller(parameter = param_names,
                                   site = site_names)) +
    ylab("") +
    xlab("Depth (m)") +
    theme_bw() +
    points_theme +
    scale_x_reverse() +
    scale_y_continuous(n.breaks = 5) +
    theme(panel.spacing = unit(1.2, "lines")) +
    ggtitle(paste("Jan. 2021",i))
  
  # display plots in markdown document
  print(temp_plot)

  ggsave(temp_plot, file=paste0("output/Jan_2021/wqx_plot_", i,".png"), width = 24, height = 8, units = "cm")
}


2.) Compare Among Sites

# create plot
lake_wqx_dat %>%
  ggplot() +
    geom_point(aes(sample_depth_m,val), size = 2) +
    geom_line(aes(sample_depth_m,val)) +

    coord_flip() +
    facet_grid(site ~ parameter, scales = "free_x", shrink = T, 
               labeller = labeller(parameter = param_names,
                                   site = site_names)) +
    ylab("") +
    xlab("Depth (m)") +
    theme_bw() +
    points_theme +
    scale_x_reverse() +
    scale_y_continuous(n.breaks = 5) +
    theme(panel.spacing = unit(1.2, "lines"),
          strip.text.y = element_text(angle = 360)) +
    ggtitle("Jan. 2021 Water Quality All Sites")

# save
ggsave("output/Jan_2021/all_sites_wqx_plot.png", width = 24, height = 24, units = "cm")