library(tidyverse)
library(psych)
library(haven)
gss <-read_dta("descriptive_gss.dta")
View(gss)
glimpse(gss)
Rows: 2,765
Columns: 16
$ id       <dbl> 2331, 2003, 1221, 2051, 2465, 546, 1291, 732, 303, 2700, 855, 62...
$ hrs1     <dbl+lbl> NA, NA, NA, NA, 50, 60, 40, 25, NA, 40, 64, 45, 60, 85, NA, ...
$ marital  <dbl+lbl> 1, 3, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1, 2, 5, 1, 1, 5, 5, ...
$ childs   <dbl+lbl> 3, 8, 3, 2, 0, 0, 0, 3, 3, 2, 3, 3, 2, 3, 6, 0, 4, 2, 0, 0, ...
$ age      <dbl+lbl> 71, 69, 40, 60, 31, 37, 23, 86, 70, 42, 41, 30, 43, 48, 70, ...
$ educ     <dbl+lbl> 18, 11, 19, 13, 11, 19, 11, 11, 13, 12, 12, 12, 13, 20, 12, ...
$ sex      <dbl+lbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
$ polviews <dbl+lbl>  4,  4, NA,  5,  4,  2,  1,  4,  4,  3,  6, NA,  5,  5, NA, ...
$ wwwhr    <dbl+lbl> NA, NA,  7,  1,  0,  3, NA, NA, NA,  3,  5, 20,  1,  2, NA, ...
$ trustpeo <dbl+lbl>  4,  1, NA,  1,  2,  2, NA,  1,  4,  1,  2, NA,  5,  2, NA, ...
$ wantbest <dbl+lbl>  2,  4, NA,  2,  2,  4, NA,  4,  1,  2,  2, NA,  1,  3, NA, ...
$ advantge <dbl+lbl>  3,  2, NA,  1,  2,  2, NA,  2,  2,  2,  1, NA,  4,  4, NA, ...
$ goodlife <dbl+lbl>  4, NA, NA, NA, NA,  1,  2,  2, NA, NA, NA, NA,  3, NA, NA, ...
$ deckids  <dbl+lbl> NA, NA,  4, NA, NA, NA, NA, NA, NA, NA, NA,  3, NA, NA, NA, ...
$ strsswrk <dbl+lbl> NA, NA,  5, NA, NA, NA, NA, NA, NA, NA, NA,  2, NA, NA,  3, ...
$ satjob7  <dbl+lbl> NA, NA,  3, NA, NA, NA, NA, NA, NA, NA, NA,  3, NA, NA, NA, ...
describe(gss$satjob7)
table(gss$satjob7)

  1   2   3   4   5   6   7 
127 289 264  53  47  29  11 
describe(gss$satjob7)
NA
table(gss$satjob7)

  1   2   3   4   5   6   7 
127 289 264  53  47  29  11 
ggplot(data = gss, mapping = aes(x = satjob7)) + geom_bar() +
        labs(title = "Distribution of Job Satisfaction in General",
             x = "Satisfaction",
             caption = "Data from the General Social Survey (2012). N = 2,765.")

LS0tDQp0aXRsZTogIk1vZHVsZSAxIENvbnRlbnQgUmV2aWV3Ig0KYXV0aG9yOiAiSmFrZSBSZXlub2xkcyAtIEphbnVhcnkgMzAiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShwc3ljaCkNCmxpYnJhcnkoaGF2ZW4pDQpnc3MgPC1yZWFkX2R0YSgiZGVzY3JpcHRpdmVfZ3NzLmR0YSIpDQpWaWV3KGdzcykNCmdsaW1wc2UoZ3NzKQ0KDQoNCmBgYA0KYGBge3J9DQpkZXNjcmliZShnc3Mkc2F0am9iNykNCg0KYGBgDQpgYGB7cn0NCnRhYmxlKGdzcyRzYXRqb2I3KQ0KYGBgDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBnc3MsIG1hcHBpbmcgPSBhZXMoeCA9IHNhdGpvYjcpKSArIGdlb21fYmFyKCkgKw0KICAgICAgICBsYWJzKHRpdGxlID0gIkRpc3RyaWJ1dGlvbiBvZiBKb2IgU2F0aXNmYWN0aW9uIGluIEdlbmVyYWwiLA0KICAgICAgICAgICAgIHggPSAiU2F0aXNmYWN0aW9uIiwNCiAgICAgICAgICAgICBjYXB0aW9uID0gIkRhdGEgZnJvbSB0aGUgR2VuZXJhbCBTb2NpYWwgU3VydmV5ICgyMDEyKS4gTiA9IDIsNzY1LiIpDQpgYGANCg0K