‘’’{r} trainData <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“X_train.txt”)) testData <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“X_test.txt”)) Data <- rbind(trainData, testData) dim(Data) ‘’’
‘’’{r} trainActivity <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“y_train.txt”)) testActivity <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“y_test.txt”)) Activity <- rbind(trainActivity, testActivity) dim(Activity) ‘’’
‘’’{r} trainSubject <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“subject_train.txt”)) testSubject <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“subject_test.txt”)) Subject <- rbind(trainSubject, testSubject) dim(Subject) ‘’’
‘’’{r} features <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“features.txt”)) dim(features) names(Data) <- features[, 2]
‘’’
‘’’{r} grep(“BodyBody()”, features[,2]) tidyData <- Data[c(1:515,555:561)] ‘’’
‘’’{r} tidyfeatures <- features[c(1:515,555:561),] names(tidyData) <- tidyfeatures[, 2] ‘’’’
‘’’{r} meanIndex <- grep(“mean()”, tidyfeatures[,2]) meanFreqIndex <- grep(“meanFreq()”, tidyfeatures[,2]) Mean <- tidyData[, c(1:3,41:43,81:83,121:123,161:163,266:268,345:347,424:426)] ‘’’
‘’’{r} stdIndex <- grep(“std()”, tidyfeatures[,2]) SD <- tidyData[, c(4:6,44:46,84:86,124:126,164:166,269:271,348:350,427:429)] ‘’’
‘’’{r} Mean_SD <- cbind(Mean,SD) dim(Mean_SD) Subject_Activity <- read.table(file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“subject_activity.txt”)) dim(Subject_Activity) Subject_Activity[,1] <- as.character(Subject_Activity[,1]) colnames(Subject_Activity)[1] <- ‘Subject’ colnames(Subject_Activity)[2] <- ‘Activity’ tidy <- cbind(Subject_Activity,Mean_SD) dim(tidy) library(reshape2) B <- melt(tidy) ‘’’
‘’’{r} tidyData <- dcast(B, Subject_Activity ~ variable, fun.aggregate=mean) dim(tidyData) write.table(tidyData, file.path(“C:”,“Users”,“d2i2k”,“Documents”,“data”,“tidyData.txt”),row.name=FALSE) ‘’’