knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.4 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(knitr)
#reading in merged Biology File -- with only the columns needed
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
fileBio <- "Biology.csv"
getwd()
## [1] "C:/Users/BlaiseSevier/Desktop/R Work"
Bio.sch <- read.csv(fileBio)
### How to set your working directory
## In quotation marks, ("C: /Users/BlaiseSevier/Desktop/R Work")
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
els.k12 <- 5296851
nonel.k12 <- 45625438
For more information about the school form see: https://www2.ed.gov/about/offices/list/ocr/docs/2017-18-crdc-school-form.pdf.
TOT_SCIENR_BIOL_M Students Enrolled in Biology: Calculated Male Total TOT_SCIENR_BIOL_F Students Enrolled in Biology: Calculated Female Total SCH_MATHENR_CALC_LEP_M Students Enrolled in Biology: LEP Male SCH_MATHENR_CALC_LEP_F Students Enrolled in Biology: LEP Female
#Code to change the -9s to 0s
Bio.sch[Bio.sch==-9]<-0
#Computes the total number of a non-English Learner male students in Biology courses
#dat$NonELM<- (dat$TOT_ENR_M - dat$TOT_LEPENR_M)
Bio.sch$NonELM <- (Bio.sch$TOT_SCIENR_BIOL_M - Bio.sch$SCH_SCIENR_BIOL_LEP_M)
sum(Bio.sch$NonELM)
## [1] 2079640
#There are 2,079,640 Non-English Learner Male Students Enrolled in Biology
#Total female non-EL
#dat$NonELF <-dat$TOT_ENR_F-dat$TOT_LEPENR_F
Bio.sch$NonELF <- (Bio.sch$TOT_SCIENR_BIOL_F - Bio.sch$SCH_SCIENR_BIOL_LEP_F)
sum(Bio.sch$NonELF)
## [1] 2161112
#There are 2,161,112 Non-English Learner Females Enrolled in Biology courses.
#total non EL
#dat$NonEL<-dat$NonELF + dat$NonELM
Bio.sch$NonEL <- Bio.sch$NonELF + Bio.sch$NonELM
non.el.Bio <- sum(Bio.sch$NonEL)
non.el.Bio
## [1] 4240752
#There are 4,240,752 Non-English Learners Enrolled in Biology
#Total Lep Male in Biology
#dat$ELMGT <- dat$SCH_GTENR_LEP_M
Bio.sch$ELM.Bio <- Bio.sch$SCH_SCIENR_BIOL_LEP_M
sum(Bio.sch$SCH_SCIENR_BIOL_LEP_M)
## [1] 169273
sum(Bio.sch$ELM.Bio)
## [1] 169273
## There is 169,273 English Learner Males in Biology
#Total LEP Female in GT
#dat$ELFGT <- dat$SCH_GTENR_LEP_F
Bio.sch$ELF.Bio <- Bio.sch$SCH_SCIENR_BIOL_LEP_F
sum(Bio.sch$ELF.Bio)
## [1] 131211
## There are 131,211 EL Females in Biology Classes
#dat$ELEnrol <- dat$TOT_LEPENR_M + dat$TOT_LEPENR_F
Bio.sch$ELEnrolBio<- Bio.sch$ELM.Bio + Bio.sch$ELF.Bio
els.Bio <- sum(Bio.sch$ELEnrolBio)
sum(els.Bio)
## [1] 300484
## There is 300,484 English learners in Biology
round(els.Bio/els.k12*100,2)
## [1] 5.67
round(non.el.Bio/nonel.k12*100,2)
## [1] 9.29