library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3     ✓ purrr   0.3.4
## ✓ tibble  3.0.5     ✓ dplyr   1.0.3
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.4.0     ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
set.seed(27)

Q <- 8
A <- 5

alpha <- rep(5, A)
theta_0 <- gtools::rdirichlet(Q, alpha)
theta_1 <- gtools::rdirichlet(Q, alpha)
library(readxl)
Angket_Mahasiswa1 <- read_excel("keagamaan1.xlsx", 
                                col_types = c("numeric", "numeric", "numeric", 
                                              "numeric", "numeric", "numeric", 
                                              "numeric", "numeric", "numeric"))
Angket_Mahasiswa1
## # A tibble: 54 x 9
##        y   P01   P02   P03   P04   P05   P06   P07   P08
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1     0     5     5     5     5     5     5     5     5
##  2     0     5     5     5     4     5     5     5     5
##  3     0     5     5     5     5     5     5     5     5
##  4     0     5     4     4     4     3     5     5     5
##  5     0     5     5     5     3     5     5     5     5
##  6     0     4     4     4     2     2     5     5     5
##  7     0     5     5     5     5     5     5     5     5
##  8     0     5     1     5     5     1     5     5     1
##  9     0     5     5     4     4     4     5     5     4
## 10     0     4     3     4     4     3     4     5     5
## # … with 44 more rows
Angket_Mahasiswa1_convert <- type.convert(Angket_Mahasiswa1)
str(Angket_Mahasiswa1_convert)
## tibble [54 × 9] (S3: tbl_df/tbl/data.frame)
##  $ y  : int [1:54] 0 0 0 0 0 0 0 0 0 0 ...
##  $ P01: int [1:54] 5 5 5 5 5 4 5 5 5 4 ...
##  $ P02: int [1:54] 5 5 5 4 5 4 5 1 5 3 ...
##  $ P03: int [1:54] 5 5 5 4 5 4 5 5 4 4 ...
##  $ P04: int [1:54] 5 4 5 4 3 2 5 5 4 4 ...
##  $ P05: int [1:54] 5 5 5 3 5 2 5 1 4 3 ...
##  $ P06: int [1:54] 5 5 5 5 5 5 5 5 5 4 ...
##  $ P07: int [1:54] 5 5 5 5 5 5 5 5 5 5 ...
##  $ P08: int [1:54] 5 5 5 5 5 5 5 1 4 5 ...
library(readxl)
Angket_Mahasiswa2 <- read_excel("keagamaan2.xlsx", 
                                col_types = c("numeric", "numeric", "numeric", 
                                              "numeric", "numeric", "numeric", 
                                              "numeric", "numeric", "numeric"))
Angket_Mahasiswa2
## # A tibble: 55 x 9
##        y   P01   P02   P03   P04   P05   P06   P07   P08
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1     1     5     4     5     5     5     5     5     5
##  2     1     4     4     4     4     3     4     5     4
##  3     1     5     4     5     4     3     4     5     4
##  4     1     4     4     4     4     4     4     4     4
##  5     1     4     4     4     4     4     4     4     4
##  6     1     5     3     5     4     4     5     5     5
##  7     1     5     4     5     5     4     4     5     3
##  8     1     5     5     5     5     5     5     5     5
##  9     1     5     5     5     5     5     5     5     5
## 10     1     4     4     4     4     4     4     4     4
## # … with 45 more rows
Angket_Mahasiswa2_convert <- type.convert(Angket_Mahasiswa2)
str(Angket_Mahasiswa2_convert)
## tibble [55 × 9] (S3: tbl_df/tbl/data.frame)
##  $ y  : int [1:55] 1 1 1 1 1 1 1 1 1 1 ...
##  $ P01: int [1:55] 5 4 5 4 4 5 5 5 5 4 ...
##  $ P02: int [1:55] 4 4 4 4 4 3 4 5 5 4 ...
##  $ P03: int [1:55] 5 4 5 4 4 5 5 5 5 4 ...
##  $ P04: int [1:55] 5 4 4 4 4 4 5 5 5 4 ...
##  $ P05: int [1:55] 5 3 3 4 4 4 4 5 5 4 ...
##  $ P06: int [1:55] 5 4 4 4 4 5 4 5 5 4 ...
##  $ P07: int [1:55] 5 5 5 4 4 5 5 5 5 4 ...
##  $ P08: int [1:55] 5 4 4 4 4 5 3 5 5 4 ...
library(rstan)
## Loading required package: StanHeaders
## rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## 
## Attaching package: 'rstan'
## The following object is masked from 'package:tidyr':
## 
##     extract
rstan_options(auto_write = TRUE)
model <- stan_model("stan_categorical_responses.stan")
new_data <- list(
  R = as.matrix(dplyr::select(Angket_Mahasiswa1_convert, -y)),
  N = nrow(Angket_Mahasiswa1_convert),
  y = Angket_Mahasiswa1_convert$y,
  new_R = as.matrix(dplyr::select(Angket_Mahasiswa2_convert, -y)),
  new_N = nrow(Angket_Mahasiswa2_convert),
  Q = Q,
  A = A,
  alpha = alpha
)
new_data
## $R
##       P01 P02 P03 P04 P05 P06 P07 P08
##  [1,]   5   5   5   5   5   5   5   5
##  [2,]   5   5   5   4   5   5   5   5
##  [3,]   5   5   5   5   5   5   5   5
##  [4,]   5   4   4   4   3   5   5   5
##  [5,]   5   5   5   3   5   5   5   5
##  [6,]   4   4   4   2   2   5   5   5
##  [7,]   5   5   5   5   5   5   5   5
##  [8,]   5   1   5   5   1   5   5   1
##  [9,]   5   5   4   4   4   5   5   4
## [10,]   4   3   4   4   3   4   5   5
## [11,]   5   4   5   5   5   4   5   4
## [12,]   5   5   5   5   5   5   5   5
## [13,]   5   5   5   5   5   5   5   5
## [14,]   5   4   5   3   5   5   5   4
## [15,]   5   4   5   4   3   4   5   4
## [16,]   4   4   4   4   4   4   4   4
## [17,]   5   5   5   5   5   5   5   5
## [18,]   4   3   5   4   3   4   5   4
## [19,]   4   4   4   4   4   5   4   3
## [20,]   5   3   4   3   1   1   5   3
## [21,]   4   4   4   4   4   5   5   5
## [22,]   3   5   5   3   3   3   5   5
## [23,]   4   4   4   4   4   5   5   5
## [24,]   4   4   4   5   3   4   4   4
## [25,]   5   5   5   5   5   5   5   5
## [26,]   5   5   5   4   3   5   5   5
## [27,]   5   4   5   5   5   5   5   5
## [28,]   5   5   5   5   5   5   5   5
## [29,]   4   5   5   4   4   5   5   4
## [30,]   5   3   5   4   3   4   5   5
## [31,]   4   4   5   4   4   4   4   5
## [32,]   5   4   5   5   4   5   5   5
## [33,]   4   4   5   5   5   5   5   5
## [34,]   5   4   5   4   4   5   5   5
## [35,]   4   3   4   4   5   5   5   5
## [36,]   4   3   5   5   5   5   5   4
## [37,]   5   4   4   5   4   4   5   5
## [38,]   5   4   5   4   4   5   5   4
## [39,]   3   1   3   4   3   3   4   3
## [40,]   4   3   4   4   3   4   4   4
## [41,]   5   4   5   5   5   5   5   5
## [42,]   5   5   5   5   5   5   5   5
## [43,]   4   5   5   5   4   5   5   4
## [44,]   4   4   5   4   4   5   5   4
## [45,]   4   4   4   4   4   2   4   2
## [46,]   5   5   5   5   5   5   5   5
## [47,]   5   5   5   5   5   5   5   5
## [48,]   4   4   4   4   4   4   5   4
## [49,]   5   5   5   5   5   5   5   5
## [50,]   4   4   5   4   3   4   4   4
## [51,]   5   4   5   5   5   5   5   5
## [52,]   5   5   5   5   5   5   5   5
## [53,]   5   5   5   5   5   5   5   5
## [54,]   5   4   5   4   4   4   5   5
## 
## $N
## [1] 54
## 
## $y
##  [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## [39] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 
## $new_R
##       P01 P02 P03 P04 P05 P06 P07 P08
##  [1,]   5   4   5   5   5   5   5   5
##  [2,]   4   4   4   4   3   4   5   4
##  [3,]   5   4   5   4   3   4   5   4
##  [4,]   4   4   4   4   4   4   4   4
##  [5,]   4   4   4   4   4   4   4   4
##  [6,]   5   3   5   4   4   5   5   5
##  [7,]   5   4   5   5   4   4   5   3
##  [8,]   5   5   5   5   5   5   5   5
##  [9,]   5   5   5   5   5   5   5   5
## [10,]   4   4   4   4   4   4   4   4
## [11,]   5   5   5   5   5   5   5   5
## [12,]   5   4   5   4   4   5   5   5
## [13,]   5   4   5   5   4   5   5   5
## [14,]   4   4   4   4   4   4   4   4
## [15,]   4   4   5   4   3   4   3   4
## [16,]   5   4   5   5   5   5   5   5
## [17,]   5   4   5   4   5   5   5   4
## [18,]   5   5   5   5   5   5   5   5
## [19,]   5   4   5   5   4   5   5   5
## [20,]   5   5   5   5   5   5   5   5
## [21,]   5   5   5   5   4   5   5   5
## [22,]   5   5   5   4   4   5   5   5
## [23,]   4   5   4   4   3   3   5   4
## [24,]   5   5   4   5   4   5   5   5
## [25,]   4   4   4   4   4   4   4   4
## [26,]   5   4   5   4   4   5   5   4
## [27,]   3   3   4   3   3   4   4   3
## [28,]   4   4   4   4   4   5   5   5
## [29,]   5   5   5   5   5   5   5   5
## [30,]   5   5   5   5   5   4   5   5
## [31,]   5   4   5   5   5   5   5   5
## [32,]   5   5   5   5   4   5   5   5
## [33,]   5   5   5   5   5   5   5   5
## [34,]   4   4   4   4   4   4   4   4
## [35,]   4   4   5   4   4   4   4   4
## [36,]   4   4   5   4   4   5   5   5
## [37,]   5   4   5   4   3   5   5   5
## [38,]   5   4   5   5   5   5   5   5
## [39,]   4   4   5   4   4   5   5   5
## [40,]   4   4   5   5   5   5   5   5
## [41,]   5   4   5   3   3   5   5   5
## [42,]   5   5   5   5   5   5   5   5
## [43,]   5   4   5   5   4   5   5   5
## [44,]   4   3   5   5   5   5   4   4
## [45,]   5   4   5   4   4   5   5   5
## [46,]   3   3   3   3   2   3   3   3
## [47,]   4   3   4   4   3   4   4   4
## [48,]   5   4   5   5   5   5   5   5
## [49,]   5   5   5   5   5   5   5   5
## [50,]   5   4   5   5   5   5   5   5
## [51,]   5   3   5   4   5   4   5   5
## [52,]   5   5   5   5   5   4   5   5
## [53,]   5   5   5   5   5   5   5   5
## [54,]   5   5   5   5   5   5   5   5
## [55,]   4   4   5   4   3   4   5   4
## 
## $new_N
## [1] 55
## 
## $Q
## [1] 8
## 
## $A
## [1] 5
## 
## $alpha
## [1] 5 5 5 5 5
fit <- sampling(model, new_data , cores = 3, iter = 1000, chains = 8, refresh=0)
fit
## Inference for Stan model: stan_categorical_responses.
## 8 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=4000.
## 
##                  mean se_mean   sd     2.5%      25%      50%      75%    97.5%
## theta_0[1,1]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.12
## theta_0[1,2]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.12
## theta_0[1,3]     0.09    0.00 0.03     0.03     0.06     0.08     0.11     0.16
## theta_0[1,4]     0.30    0.00 0.05     0.21     0.27     0.30     0.34     0.41
## theta_0[1,5]     0.48    0.00 0.06     0.37     0.44     0.48     0.52     0.59
## theta_0[2,1]     0.09    0.00 0.03     0.04     0.07     0.08     0.11     0.16
## theta_0[2,2]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.13
## theta_0[2,3]     0.15    0.00 0.04     0.08     0.12     0.15     0.18     0.23
## theta_0[2,4]     0.37    0.00 0.05     0.27     0.33     0.37     0.40     0.48
## theta_0[2,5]     0.33    0.00 0.05     0.23     0.29     0.33     0.37     0.44
## theta_0[3,1]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.13
## theta_0[3,2]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.13
## theta_0[3,3]     0.08    0.00 0.03     0.03     0.05     0.07     0.09     0.14
## theta_0[3,4]     0.25    0.00 0.05     0.16     0.22     0.25     0.28     0.35
## theta_0[3,5]     0.54    0.00 0.06     0.43     0.51     0.54     0.58     0.65
## theta_0[4,1]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.12
## theta_0[4,2]     0.08    0.00 0.03     0.03     0.05     0.07     0.09     0.15
## theta_0[4,3]     0.11    0.00 0.04     0.05     0.09     0.11     0.14     0.19
## theta_0[4,4]     0.37    0.00 0.05     0.27     0.33     0.37     0.40     0.48
## theta_0[4,5]     0.38    0.00 0.05     0.27     0.34     0.38     0.41     0.49
## theta_0[5,1]     0.09    0.00 0.03     0.04     0.07     0.09     0.11     0.16
## theta_0[5,2]     0.08    0.00 0.03     0.03     0.05     0.07     0.09     0.14
## theta_0[5,3]     0.20    0.00 0.05     0.12     0.17     0.20     0.23     0.30
## theta_0[5,4]     0.27    0.00 0.05     0.17     0.23     0.26     0.30     0.37
## theta_0[5,5]     0.37    0.00 0.05     0.27     0.33     0.37     0.40     0.47
## theta_0[6,1]     0.08    0.00 0.03     0.03     0.06     0.07     0.09     0.14
## theta_0[6,2]     0.08    0.00 0.03     0.03     0.05     0.07     0.09     0.14
## theta_0[6,3]     0.09    0.00 0.03     0.04     0.07     0.09     0.11     0.16
## theta_0[6,4]     0.23    0.00 0.05     0.14     0.19     0.22     0.26     0.33
## theta_0[6,5]     0.53    0.00 0.06     0.42     0.49     0.53     0.57     0.64
## theta_0[7,1]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.13
## theta_0[7,2]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.13
## theta_0[7,3]     0.06    0.00 0.03     0.02     0.04     0.06     0.08     0.13
## theta_0[7,4]     0.16    0.00 0.04     0.09     0.14     0.16     0.19     0.25
## theta_0[7,5]     0.65    0.00 0.05     0.54     0.61     0.65     0.68     0.75
## theta_0[8,1]     0.08    0.00 0.03     0.03     0.05     0.07     0.09     0.14
## theta_0[8,2]     0.08    0.00 0.03     0.03     0.05     0.07     0.09     0.14
## theta_0[8,3]     0.10    0.00 0.03     0.04     0.08     0.10     0.12     0.18
## theta_0[8,4]     0.25    0.00 0.05     0.16     0.22     0.25     0.28     0.35
## theta_0[8,5]     0.49    0.00 0.06     0.38     0.46     0.49     0.53     0.60
## theta_1[1,1]     0.20    0.00 0.08     0.07     0.14     0.20     0.25     0.38
## theta_1[1,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[1,3]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[1,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[1,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[2,1]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[2,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.39
## theta_1[2,3]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[2,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[2,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[3,1]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[3,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[3,3]     0.20    0.00 0.08     0.08     0.14     0.19     0.25     0.37
## theta_1[3,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[3,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[4,1]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[4,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[4,3]     0.20    0.00 0.08     0.08     0.14     0.19     0.25     0.37
## theta_1[4,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[4,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[5,1]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[5,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[5,3]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[5,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[5,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[6,1]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[6,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[6,3]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[6,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[6,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[7,1]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[7,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[7,3]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[7,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.38
## theta_1[7,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[8,1]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[8,2]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[8,3]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[8,4]     0.20    0.00 0.08     0.07     0.14     0.19     0.25     0.37
## theta_1[8,5]     0.20    0.00 0.08     0.07     0.14     0.19     0.24     0.38
## pred[1]          1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[2]          1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[3]          1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[4]          0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[5]          0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[6]          0.90    0.00 0.12     0.55     0.87     0.94     0.98     1.00
## pred[7]          1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[8]          0.87    0.00 0.14     0.45     0.83     0.92     0.97     1.00
## pred[9]          0.99    0.00 0.01     0.96     0.99     1.00     1.00     1.00
## pred[10]         0.95    0.00 0.06     0.78     0.94     0.98     0.99     1.00
## pred[11]         0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[12]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[13]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[14]         0.99    0.00 0.01     0.95     0.99     1.00     1.00     1.00
## pred[15]         0.99    0.00 0.02     0.94     0.99     0.99     1.00     1.00
## pred[16]         0.90    0.00 0.11     0.58     0.88     0.94     0.98     1.00
## pred[17]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[18]         0.96    0.00 0.06     0.80     0.95     0.98     0.99     1.00
## pred[19]         0.89    0.00 0.12     0.54     0.86     0.94     0.97     1.00
## pred[20]         0.38    0.00 0.25     0.03     0.16     0.34     0.58     0.90
## pred[21]         0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[22]         0.79    0.00 0.19     0.28     0.69     0.86     0.94     0.99
## pred[23]         0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[24]         0.88    0.00 0.12     0.55     0.84     0.93     0.97     0.99
## pred[25]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[26]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[27]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[28]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[29]         0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[30]         0.99    0.00 0.02     0.93     0.98     0.99     1.00     1.00
## pred[31]         0.97    0.00 0.04     0.86     0.97     0.99     0.99     1.00
## pred[32]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[33]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[34]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[35]         0.99    0.00 0.02     0.94     0.99     0.99     1.00     1.00
## pred[36]         0.99    0.00 0.01     0.95     0.99     1.00     1.00     1.00
## pred[37]         0.99    0.00 0.01     0.95     0.99     1.00     1.00     1.00
## pred[38]         1.00    0.00 0.01     0.98     1.00     1.00     1.00     1.00
## pred[39]         0.07    0.00 0.11     0.00     0.01     0.03     0.08     0.40
## pred[40]         0.78    0.00 0.19     0.28     0.68     0.83     0.93     0.99
## pred[41]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[42]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[43]         0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[44]         0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## pred[45]         0.57    0.00 0.25     0.09     0.37     0.60     0.79     0.96
## pred[46]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[47]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[48]         0.97    0.00 0.04     0.85     0.97     0.99     0.99     1.00
## pred[49]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[50]         0.94    0.00 0.08     0.71     0.92     0.96     0.99     1.00
## pred[51]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[52]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[53]         1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## pred[54]         1.00    0.00 0.01     0.98     1.00     1.00     1.00     1.00
## new_pred[1]      1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[2]      0.96    0.00 0.05     0.82     0.96     0.98     0.99     1.00
## new_pred[3]      0.99    0.00 0.02     0.94     0.99     0.99     1.00     1.00
## new_pred[4]      0.90    0.00 0.11     0.58     0.88     0.94     0.98     1.00
## new_pred[5]      0.90    0.00 0.11     0.58     0.88     0.94     0.98     1.00
## new_pred[6]      1.00    0.00 0.01     0.98     0.99     1.00     1.00     1.00
## new_pred[7]      0.98    0.00 0.03     0.89     0.98     0.99     1.00     1.00
## new_pred[8]      1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[9]      1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[10]     0.90    0.00 0.11     0.58     0.88     0.94     0.98     1.00
## new_pred[11]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[12]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[13]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[14]     0.90    0.00 0.11     0.58     0.88     0.94     0.98     1.00
## new_pred[15]     0.86    0.00 0.15     0.44     0.80     0.91     0.96     0.99
## new_pred[16]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[17]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[18]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[19]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[20]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[21]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[22]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[23]     0.90    0.00 0.11     0.60     0.88     0.94     0.98     1.00
## new_pred[24]     1.00    0.00 0.01     0.98     0.99     1.00     1.00     1.00
## new_pred[25]     0.90    0.00 0.11     0.58     0.88     0.94     0.98     1.00
## new_pred[26]     1.00    0.00 0.01     0.98     1.00     1.00     1.00     1.00
## new_pred[27]     0.21    0.00 0.20     0.01     0.06     0.14     0.30     0.76
## new_pred[28]     0.99    0.00 0.01     0.97     0.99     1.00     1.00     1.00
## new_pred[29]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[30]     1.00    0.00 0.01     0.98     1.00     1.00     1.00     1.00
## new_pred[31]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[32]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[33]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[34]     0.90    0.00 0.11     0.58     0.88     0.94     0.98     1.00
## new_pred[35]     0.95    0.00 0.07     0.76     0.94     0.97     0.99     1.00
## new_pred[36]     1.00    0.00 0.01     0.99     1.00     1.00     1.00     1.00
## new_pred[37]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[38]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[39]     1.00    0.00 0.01     0.99     1.00     1.00     1.00     1.00
## new_pred[40]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[41]     0.99    0.00 0.01     0.96     0.99     1.00     1.00     1.00
## new_pred[42]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[43]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[44]     0.96    0.00 0.05     0.82     0.95     0.98     0.99     1.00
## new_pred[45]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[46]     0.01    0.00 0.02     0.00     0.00     0.00     0.01     0.05
## new_pred[47]     0.78    0.00 0.19     0.28     0.68     0.83     0.93     0.99
## new_pred[48]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[49]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[50]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[51]     0.99    0.00 0.01     0.96     0.99     1.00     1.00     1.00
## new_pred[52]     1.00    0.00 0.01     0.98     1.00     1.00     1.00     1.00
## new_pred[53]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[54]     1.00    0.00 0.00     0.99     1.00     1.00     1.00     1.00
## new_pred[55]     0.98    0.00 0.03     0.91     0.98     0.99     1.00     1.00
## lp__         -1178.05    0.15 5.77 -1190.19 -1181.76 -1177.67 -1174.14 -1167.74
##              n_eff Rhat
## theta_0[1,1]  5538    1
## theta_0[1,2]  5588    1
## theta_0[1,3]  5377    1
## theta_0[1,4]  5377    1
## theta_0[1,5]  6130    1
## theta_0[2,1]  5099    1
## theta_0[2,2]  5133    1
## theta_0[2,3]  5239    1
## theta_0[2,4]  5057    1
## theta_0[2,5]  5304    1
## theta_0[3,1]  5751    1
## theta_0[3,2]  4828    1
## theta_0[3,3]  5536    1
## theta_0[3,4]  5100    1
## theta_0[3,5]  5182    1
## theta_0[4,1]  5746    1
## theta_0[4,2]  5339    1
## theta_0[4,3]  5369    1
## theta_0[4,4]  6325    1
## theta_0[4,5]  5999    1
## theta_0[5,1]  5056    1
## theta_0[5,2]  4519    1
## theta_0[5,3]  5073    1
## theta_0[5,4]  5266    1
## theta_0[5,5]  5357    1
## theta_0[6,1]  5726    1
## theta_0[6,2]  5752    1
## theta_0[6,3]  5965    1
## theta_0[6,4]  6056    1
## theta_0[6,5]  6237    1
## theta_0[7,1]  6155    1
## theta_0[7,2]  5294    1
## theta_0[7,3]  5724    1
## theta_0[7,4]  5160    1
## theta_0[7,5]  5204    1
## theta_0[8,1]  5360    1
## theta_0[8,2]  5695    1
## theta_0[8,3]  5157    1
## theta_0[8,4]  5401    1
## theta_0[8,5]  5728    1
## theta_1[1,1]  5907    1
## theta_1[1,2]  5421    1
## theta_1[1,3]  5830    1
## theta_1[1,4]  5006    1
## theta_1[1,5]  4951    1
## theta_1[2,1]  5010    1
## theta_1[2,2]  6754    1
## theta_1[2,3]  4920    1
## theta_1[2,4]  4384    1
## theta_1[2,5]  5459    1
## theta_1[3,1]  5618    1
## theta_1[3,2]  4672    1
## theta_1[3,3]  5295    1
## theta_1[3,4]  5201    1
## theta_1[3,5]  5303    1
## theta_1[4,1]  4830    1
## theta_1[4,2]  6199    1
## theta_1[4,3]  5004    1
## theta_1[4,4]  4704    1
## theta_1[4,5]  5445    1
## theta_1[5,1]  5536    1
## theta_1[5,2]  6131    1
## theta_1[5,3]  5096    1
## theta_1[5,4]  4959    1
## theta_1[5,5]  4923    1
## theta_1[6,1]  5527    1
## theta_1[6,2]  4758    1
## theta_1[6,3]  4551    1
## theta_1[6,4]  5623    1
## theta_1[6,5]  5796    1
## theta_1[7,1]  5495    1
## theta_1[7,2]  5318    1
## theta_1[7,3]  5724    1
## theta_1[7,4]  6491    1
## theta_1[7,5]  5045    1
## theta_1[8,1]  5330    1
## theta_1[8,2]  6201    1
## theta_1[8,3]  5333    1
## theta_1[8,4]  4932    1
## theta_1[8,5]  4887    1
## pred[1]       3882    1
## pred[2]       3602    1
## pred[3]       3882    1
## pred[4]       3019    1
## pred[5]       3598    1
## pred[6]       3520    1
## pred[7]       3882    1
## pred[8]       3982    1
## pred[9]       3578    1
## pred[10]      3561    1
## pred[11]      3032    1
## pred[12]      3882    1
## pred[13]      3882    1
## pred[14]      3149    1
## pred[15]      3066    1
## pred[16]      3685    1
## pred[17]      3882    1
## pred[18]      3447    1
## pred[19]      3553    1
## pred[20]      4261    1
## pred[21]      3155    1
## pred[22]      4312    1
## pred[23]      3155    1
## pred[24]      4190    1
## pred[25]      3882    1
## pred[26]      3551    1
## pred[27]      3486    1
## pred[28]      3882    1
## pred[29]      3830    1
## pred[30]      3220    1
## pred[31]      3665    1
## pred[32]      3072    1
## pred[33]      3406    1
## pred[34]      2993    1
## pred[35]      3039    1
## pred[36]      3350    1
## pred[37]      3656    1
## pred[38]      2662    1
## pred[39]      3682    1
## pred[40]      4689    1
## pred[41]      3486    1
## pred[42]      3882    1
## pred[43]      2625    1
## pred[44]      2494    1
## pred[45]      4872    1
## pred[46]      3882    1
## pred[47]      3882    1
## pred[48]      3013    1
## pred[49]      3882    1
## pred[50]      3776    1
## pred[51]      3486    1
## pred[52]      3882    1
## pred[53]      3882    1
## pred[54]      3391    1
## new_pred[1]   3486    1
## new_pred[2]   3035    1
## new_pred[3]   3066    1
## new_pred[4]   3685    1
## new_pred[5]   3685    1
## new_pred[6]   3206    1
## new_pred[7]   3260    1
## new_pred[8]   3882    1
## new_pred[9]   3882    1
## new_pred[10]  3685    1
## new_pred[11]  3882    1
## new_pred[12]  2993    1
## new_pred[13]  3072    1
## new_pred[14]  3685    1
## new_pred[15]  3827    1
## new_pred[16]  3486    1
## new_pred[17]  3558    1
## new_pred[18]  3882    1
## new_pred[19]  3072    1
## new_pred[20]  3882    1
## new_pred[21]  3013    1
## new_pred[22]  3315    1
## new_pred[23]  3809    1
## new_pred[24]  3042    1
## new_pred[25]  3685    1
## new_pred[26]  2662    1
## new_pred[27]  3819    1
## new_pred[28]  3155    1
## new_pred[29]  3882    1
## new_pred[30]  3453    1
## new_pred[31]  3486    1
## new_pred[32]  3013    1
## new_pred[33]  3882    1
## new_pred[34]  3685    1
## new_pred[35]  3659    1
## new_pred[36]  3197    1
## new_pred[37]  3442    1
## new_pred[38]  3486    1
## new_pred[39]  3197    1
## new_pred[40]  3406    1
## new_pred[41]  3156    1
## new_pred[42]  3882    1
## new_pred[43]  3072    1
## new_pred[44]  3722    1
## new_pred[45]  2993    1
## new_pred[46]  3290    1
## new_pred[47]  4689    1
## new_pred[48]  3486    1
## new_pred[49]  3882    1
## new_pred[50]  3486    1
## new_pred[51]  2970    1
## new_pred[52]  3453    1
## new_pred[53]  3882    1
## new_pred[54]  3882    1
## new_pred[55]  3098    1
## lp__          1567    1
## 
## Samples were drawn using NUTS(diag_e) at Mon Feb  1 12:17:26 2021.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).
traceplot(fit)
## 'pars' not specified. Showing first 10 parameters by default.

library(bayesplot)
## This is bayesplot version 1.8.0
## - Online documentation and vignettes at mc-stan.org/bayesplot
## - bayesplot theme set to bayesplot::theme_default()
##    * Does _not_ affect other ggplot2 plots
##    * See ?bayesplot_theme_set for details on theme setting
library(tidybayes)
print(fit, pars = "theta_0")
## Inference for Stan model: stan_categorical_responses.
## 8 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=4000.
## 
##              mean se_mean   sd 2.5%  25%  50%  75% 97.5% n_eff Rhat
## theta_0[1,1] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.12  5538    1
## theta_0[1,2] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.12  5588    1
## theta_0[1,3] 0.09       0 0.03 0.03 0.06 0.08 0.11  0.16  5377    1
## theta_0[1,4] 0.30       0 0.05 0.21 0.27 0.30 0.34  0.41  5377    1
## theta_0[1,5] 0.48       0 0.06 0.37 0.44 0.48 0.52  0.59  6130    1
## theta_0[2,1] 0.09       0 0.03 0.04 0.07 0.08 0.11  0.16  5099    1
## theta_0[2,2] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.13  5133    1
## theta_0[2,3] 0.15       0 0.04 0.08 0.12 0.15 0.18  0.23  5239    1
## theta_0[2,4] 0.37       0 0.05 0.27 0.33 0.37 0.40  0.48  5057    1
## theta_0[2,5] 0.33       0 0.05 0.23 0.29 0.33 0.37  0.44  5304    1
## theta_0[3,1] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.13  5751    1
## theta_0[3,2] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.13  4828    1
## theta_0[3,3] 0.08       0 0.03 0.03 0.05 0.07 0.09  0.14  5536    1
## theta_0[3,4] 0.25       0 0.05 0.16 0.22 0.25 0.28  0.35  5100    1
## theta_0[3,5] 0.54       0 0.06 0.43 0.51 0.54 0.58  0.65  5182    1
## theta_0[4,1] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.12  5746    1
## theta_0[4,2] 0.08       0 0.03 0.03 0.05 0.07 0.09  0.15  5339    1
## theta_0[4,3] 0.11       0 0.04 0.05 0.09 0.11 0.14  0.19  5369    1
## theta_0[4,4] 0.37       0 0.05 0.27 0.33 0.37 0.40  0.48  6325    1
## theta_0[4,5] 0.38       0 0.05 0.27 0.34 0.38 0.41  0.49  5999    1
## theta_0[5,1] 0.09       0 0.03 0.04 0.07 0.09 0.11  0.16  5056    1
## theta_0[5,2] 0.08       0 0.03 0.03 0.05 0.07 0.09  0.14  4519    1
## theta_0[5,3] 0.20       0 0.05 0.12 0.17 0.20 0.23  0.30  5073    1
## theta_0[5,4] 0.27       0 0.05 0.17 0.23 0.26 0.30  0.37  5266    1
## theta_0[5,5] 0.37       0 0.05 0.27 0.33 0.37 0.40  0.47  5357    1
## theta_0[6,1] 0.08       0 0.03 0.03 0.06 0.07 0.09  0.14  5726    1
## theta_0[6,2] 0.08       0 0.03 0.03 0.05 0.07 0.09  0.14  5752    1
## theta_0[6,3] 0.09       0 0.03 0.04 0.07 0.09 0.11  0.16  5965    1
## theta_0[6,4] 0.23       0 0.05 0.14 0.19 0.22 0.26  0.33  6056    1
## theta_0[6,5] 0.53       0 0.06 0.42 0.49 0.53 0.57  0.64  6237    1
## theta_0[7,1] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.13  6155    1
## theta_0[7,2] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.13  5294    1
## theta_0[7,3] 0.06       0 0.03 0.02 0.04 0.06 0.08  0.13  5724    1
## theta_0[7,4] 0.16       0 0.04 0.09 0.14 0.16 0.19  0.25  5160    1
## theta_0[7,5] 0.65       0 0.05 0.54 0.61 0.65 0.68  0.75  5204    1
## theta_0[8,1] 0.08       0 0.03 0.03 0.05 0.07 0.09  0.14  5360    1
## theta_0[8,2] 0.08       0 0.03 0.03 0.05 0.07 0.09  0.14  5695    1
## theta_0[8,3] 0.10       0 0.03 0.04 0.08 0.10 0.12  0.18  5157    1
## theta_0[8,4] 0.25       0 0.05 0.16 0.22 0.25 0.28  0.35  5401    1
## theta_0[8,5] 0.49       0 0.06 0.38 0.46 0.49 0.53  0.60  5728    1
## 
## Samples were drawn using NUTS(diag_e) at Mon Feb  1 12:17:26 2021.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).
print(fit, pars = "theta_1")
## Inference for Stan model: stan_categorical_responses.
## 8 chains, each with iter=1000; warmup=500; thin=1; 
## post-warmup draws per chain=500, total post-warmup draws=4000.
## 
##              mean se_mean   sd 2.5%  25%  50%  75% 97.5% n_eff Rhat
## theta_1[1,1]  0.2       0 0.08 0.07 0.14 0.20 0.25  0.38  5907    1
## theta_1[1,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5421    1
## theta_1[1,3]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  5830    1
## theta_1[1,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5006    1
## theta_1[1,5]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  4951    1
## theta_1[2,1]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5010    1
## theta_1[2,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.39  6754    1
## theta_1[2,3]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  4920    1
## theta_1[2,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  4384    1
## theta_1[2,5]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  5459    1
## theta_1[3,1]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5618    1
## theta_1[3,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  4672    1
## theta_1[3,3]  0.2       0 0.08 0.08 0.14 0.19 0.25  0.37  5295    1
## theta_1[3,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  5201    1
## theta_1[3,5]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  5303    1
## theta_1[4,1]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  4830    1
## theta_1[4,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  6199    1
## theta_1[4,3]  0.2       0 0.08 0.08 0.14 0.19 0.25  0.37  5004    1
## theta_1[4,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  4704    1
## theta_1[4,5]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  5445    1
## theta_1[5,1]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5536    1
## theta_1[5,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  6131    1
## theta_1[5,3]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5096    1
## theta_1[5,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  4959    1
## theta_1[5,5]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  4923    1
## theta_1[6,1]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5527    1
## theta_1[6,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  4758    1
## theta_1[6,3]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  4551    1
## theta_1[6,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5623    1
## theta_1[6,5]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5796    1
## theta_1[7,1]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  5495    1
## theta_1[7,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5318    1
## theta_1[7,3]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5724    1
## theta_1[7,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.38  6491    1
## theta_1[7,5]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5045    1
## theta_1[8,1]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5330    1
## theta_1[8,2]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  6201    1
## theta_1[8,3]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  5333    1
## theta_1[8,4]  0.2       0 0.08 0.07 0.14 0.19 0.25  0.37  4932    1
## theta_1[8,5]  0.2       0 0.08 0.07 0.14 0.19 0.24  0.38  4887    1
## 
## Samples were drawn using NUTS(diag_e) at Mon Feb  1 12:17:26 2021.
## For each parameter, n_eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor on split chains (at 
## convergence, Rhat=1).
pred <- fit %>%
  spread_draws(new_pred[i]) %>%
  median_qi(new_pred[i]) %>% 
  mutate(.pred = if_else(`new_pred[i]` > 0.5, 0, 1))
acc <- round(mean(pred$.pred == Angket_Mahasiswa2_convert$y), 2)
cat("The classification accuracy is:", acc)
## The classification accuracy is: 0
theta_0_draws <- fit %>%  
  spread_draws(theta_0[i, j])

theta_1_draws <- fit %>%  
  spread_draws(theta_1[i, j])

theta_draws <- theta_0_draws %>% 
  left_join(theta_1_draws)
## Joining, by = c("i", "j", ".chain", ".iteration", ".draw")
theta_draws %>% 
  gather(group, theta, theta_0, theta_1) %>% 
  mutate(
    group = if_else(group == "theta_0", "Group 0", "Group 1"),
    question = i,
    response = j
  ) %>% 
  ggplot(aes(theta, fill = group, color = group)) +
  geom_density(alpha = 0.5) +
  facet_grid(
    rows = vars(question),
    cols = vars(response)
  ) +
  labs(
    title = "Estimated probability of each response by question and group",
    subtitle = "Columns correspond to response, rows to questions",
    x = "Probability of response") +
  theme(
    legend.position = "none",
    axis.text.y = element_blank(),
    axis.ticks.y = element_blank(),
    axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))+
  theme(panel.grid = element_blank(), 
        panel.background = element_rect(fill="white"))

shinystan::launch_shinystan(fit)
## 
## Launching ShinyStan interface... for large models this  may take some time.
## Loading required package: shiny
## 
## Listening on http://127.0.0.1:5014

daftar pustaka : https://rpubs.com/suhartono-uinmaliki/respon