Row

Plots Sold Across the World

Row

Plot Locations

Plots Sold in the US

---
title: "SuperWorld Plot Sales"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    social: menu
    source_code: embed
    theme: yeti
---

Inputs {.sidebar}
-------------------------------------

```{r setup, include=FALSE, warning=FALSE, message=FALSE}
library(leaflet)
library(leaflet.extras)
library(sf)
library(tidyverse)
library(rnaturalearth)
library(rnaturalearthdata)
library(plotly)
library(usmap)

plots_sold = read_csv("C:/Users/rebec/SuperWorld_Plot_Recommendation/data/plots_sold.csv")[-1]
plots_sold$code = toupper(plots_sold$code)

us_address = plots_sold[which(plots_sold$code == "US"),]$address

state = c()
for (i in 1:length(us_address)){
  add = tail(unlist(str_split(us_address[i], pattern = ", ")), 2)[1]
  add = gsub(' [[:digit:]]+', '', add)
  state = c(state, add)
}

state_data = data.frame(state) %>%
  group_by(state) %>%
  summarise(sold = n())

```

*Total Plot Sales:*

```{r}
nrow(plots_sold)
```


*Top 10 Countries:* ```{r} plots_sold %>% group_by(country) %>% summarise(`plots sold` = n()) %>% arrange(-`plots sold`) %>% head(10) %>% knitr::kable() ```
*Top 10 US States:* ```{r} state_data %>% summarise(state, `plots sold` = sold) %>% arrange(-`plots sold`) %>% head(10) %>% knitr::kable() ``` Row {data-height=600} ------------------------------------- ### Plots Sold Across the World ```{r fig.width=11, warning=FALSE, message=FALSE} world = ne_countries(scale = "medium", returnclass = "sf") df = st_sf(merge(plots_sold, world, by.x = "code", by.y = "iso_a2", all.x = FALSE, all.y = TRUE, returnclass = "sf")) df_plot = df %>% group_by(country, code) %>% summarise(sold = n()) %>% mutate(sold = ifelse(is.na(country), 0, sold)) %>% ggplot() + geom_sf(aes(fill = sold))+ scale_fill_gradient(trans = "log") + geom_sf_text(aes(label = code), size = 2) + theme(axis.title.x=element_blank(), axis.title.y=element_blank(), legend.title = element_text("Plots Sold")) + labs(caption = "Sold values are in log scale") + guides(fill = guide_colourbar(barwidth = 0.5, barheight = 10)) # df2 = df %>% # group_by(country, code) %>% # summarise(sold = n()) %>% # mutate(sold = ifelse(is.na(country), 0, sold)) # plot(df2["sold"], logz = TRUE, main = NULL, key.pos = 4) ggplotly(df_plot) %>% layout(annotations = list(x = 1, y = -0.1, text = "Sold values are in log scale", showarrow = F, xref='paper', yref='paper', xanchor='right', yanchor='auto', xshift=0, yshift=-7, font=list(size=15)) ) ``` Row ------------------------------------- ### Plot Locations ```{r} leaflet(plots_sold) %>% addTiles() %>% addCircles(lng = ~lon, lat = ~lat) %>% setView(lat = 37.0902, lng = -95.7129, zoom = 4) ``` ### Plots Sold in the US ```{r} us = plot_usmap(data = state_data, values = "sold", regions = "states") + theme(legend.position = "right") + scale_fill_continuous(name = "Plots Sold") ggplotly(us) ```