knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.4 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(knitr)
#reading in merged Calculus File -- with only the columns needed
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
fileCal <- "Calculus.csv"
getwd()
## [1] "C:/Users/BlaiseSevier/Desktop/R Work"
Cal.sch <- read.csv(fileCal)
### How to set your working directory
## In quotation marks, ("C: /Users/BlaiseSevier/Desktop/R Work")
setwd("C:/Users/BlaiseSevier/Desktop/R Work")
els.k12 <- 5296851
nonel.k12 <- 45625438
#Total Number of Students in HS
tot_enrol_hs <- 14183488
#Total Number of Non-Els in HS
non.el.hs <- 13108063
#Total Number of LEP in HS
tot_lep_hs <- 1075425
For more information about the school form see: https://www2.ed.gov/about/offices/list/ocr/docs/2017-18-crdc-school-form.pdf.
TOT_MATHENR_CALC_M Students Enrolled in Calculus: Calculated Male Total TOT_MATHENR_CALC_F Students Enrolled in Calculus: Calculated Female Total SCH_MATHENR_CALC_LEP_M Students Enrolled in Calculus: LEP Male SCH_MATHENR_CALC_LEP_F Students Enrolled in Calculus: LEP Female
#Code to change the -9s to 0s
Cal.sch[Cal.sch==-9]<-0
#Computes the total number of a non-English Learner male students in Calculus courses
#dat$NonELM<- (dat$TOT_ENR_M - dat$TOT_LEPENR_M)
Cal.sch$NonELM <- (Cal.sch$TOT_MATHENR_CALC_M - Cal.sch$SCH_MATHENR_CALC_LEP_M)
sum(Cal.sch$NonELM)
## [1] 340004
#There are 340,004 Non-English Learner Male Students Enrolled in Calculus
#Total female non-EL
#dat$NonELF <-dat$TOT_ENR_F-dat$TOT_LEPENR_F
Cal.sch$NonELF <- (Cal.sch$TOT_MATHENR_CALC_F - Cal.sch$SCH_MATHENR_CALC_LEP_F)
sum(Cal.sch$NonELF)
## [1] 341991
#There are 341,991 Non-English Learner Females Enrolled in Calculus courses.
#total non EL
#dat$NonEL<-dat$NonELF + dat$NonELM
Cal.sch$NonEL <- Cal.sch$NonELF + Cal.sch$NonELM
non.el.Cal <- sum(Cal.sch$NonEL)
non.el.Cal
## [1] 681995
#There are 681,995 Non-English Learners Enrolled in Calculus
#Total Lep Male in Calculus
#dat$ELMGT <- dat$SCH_GTENR_LEP_M
Cal.sch$ELM.Cal <- Cal.sch$SCH_MATHENR_CALC_LEP_M
sum(Cal.sch$SCH_MATHENR_CALC_LEP_M)
## [1] 4105
sum(Cal.sch$ELM.Cal)
## [1] 4105
## There is 4,105 English Learner Males in Calculus
#Total LEP Female in GT
#dat$ELFGT <- dat$SCH_GTENR_LEP_F
Cal.sch$ELF.Cal <- Cal.sch$SCH_MATHENR_CALC_LEP_F
sum(Cal.sch$ELF.Cal)
## [1] 3815
## There are 3,815 EL Females in Calculus Classes
#dat$ELEnrol <- dat$TOT_LEPENR_M + dat$TOT_LEPENR_F
Cal.sch$ELEnrolCal<- Cal.sch$ELM.Cal + Cal.sch$ELF.Cal
els.Cal <- sum(Cal.sch$ELEnrolCal)
sum(els.Cal)
## [1] 7920
## There is 7,920 English learners in Calculus
round(els.Cal/tot_lep_hs*100,2)
## [1] 0.74
round(els.Cal/els.k12*100,2)
## [1] 0.15
round(non.el.Cal/non.el.hs*100,2)
## [1] 5.2
round(non.el.Cal/nonel.k12*100,2)
## [1] 1.49