youtube video link with explanations for these examples https://youtu.be/eNb15pQYwlI
What is weighted mean
# What is weighted mean
x <- c(10,20,30)
mean(x)
FALSE [1] 20
y <-c(.5, .2, .3 )
weighted.mean(x, w= y)
FALSE [1] 18
# Practical example with real data
library(dplyr)
data <- data.frame(Student = c( 'A', 'B', 'C' )
, GA = c( 89, 77, 94 )
, Maths = c( 90, 92, 84 )
, Science= c( 80, 78, 82 )
)
library(reshape2)
data.melt <- melt(data= data, id = 'Student')
#Create a weights table
weight <- data.frame(variable = c('GA','Maths','Science')
,Wt = c(80,30,30))
weight
datawt <- merge(data.melt,weight , by = 'variable')
datawt
dm <- datawt%>%
dplyr::group_by(Student)%>%
dplyr::summarise(mean = mean(value), wmean =weighted.mean(value, Wt))
dm
# Compare the mean and weighted mean
library(ggplot2)
# Dot plot
pl <- ggplot(data = dm, aes(x = Student, y = mean))
pl <- pl + geom_bar(stat= "identity")
pl <- pl + geom_point(aes(x= Student, y = wmean), color = "red")
pl <- pl + theme_classic()
pl
# Bar plot
data.plot <- melt(data= dm, id = 'Student')
pl <- ggplot(data = data.plot, aes(x = Student, y = value, fill= variable))
pl <- pl + geom_bar(stat= "identity", position = position_dodge())
pl <- pl + theme_classic()
pl <- pl + labs(fill = "Calculation")
pl