library(tidyverse) # for manipulating data
library(labelled) # for using labels
library(flextable) # for formatting output tables
library(readr) # for reading csv files
library(broom) # for dealing with annoying output chunks

##SUPLEMENTARY MATERIALS

This document presents details of data transformations, statistical procedures, and exact results of analyses performed in the paper’s main body. Code chunks are hidden by default but can be accessed by clicking the relevant buttons. All calculations rely on the publically available integrated .csv data file.

ESM2e02 <- read_delim("ESM2e02.csv", ";",
                      escape_double = FALSE, 
                      na = "Not applicable", 
                      trim_ws = TRUE, 
                      col_types = cols(
  .default = col_character(),
  T_SURVEY_YEAR = col_double(),
  Q_PROP_FEM_POPULATION_18_74 = col_double(),
  Q_EFFECT_SIZE_PROP_FEMALE_EXTERNAL_18_74_psweights = col_double(),
  Q_EFFECT_SIZE_PROP_FEMALE_EXTERNAL_18_74_dweights_ESS = col_double(),
  Q_EFFECT_SIZE_PROP_FEMALE_EXTERNAL_18_74_no_weights = col_double(),
  Q_PROP_FEM_INTERNAL_KOHLER_psweights_strict = col_double(),
  Q_PROP_FEM_INTERNAL_KOHLER_no_weights_strict = col_double(),
  Q_SUBSAMPLE_SIZE_INTERNAL_KOHLER_strict = col_double(),
  Q_EFFECT_SIZE_PROP_FEMALE_INTERNAL_KOHLER_psweights_strict = col_double(),
  Q_EFFECT_SIZE_PROP_FEMALE_INTERNAL_KOHLER_no_weights_strict = col_double(),
  Q_ABS_BIAS_INTERNAL_KOHLER_psweights_strict = col_double(),
  Q_ABS_BIAS_INTERNAL_KOHLER_no_weights_strict = col_double(),
  Q_BIAS_INTERNAL_KOHLER_psweights_strict = col_double(),
  Q_BIAS_INTERNAL_KOHLER_no_weights_strict = col_double(),
  Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_dweights_ESS = col_double(),
  Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_no_weights = col_double(),
  Q_ABS_BIAS_INTERNAL_KOHLER_dweights_ESS = col_double(),
  Q_ABS_BIAS_INTERNAL_KOHLER_no_weights = col_double(),
  Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_psweights = col_double(),
  Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_no_weights = col_double(),
  Q_ABS_BIAS_INTERNAL_KOHLER_psweights = col_double(),
  Q_ABS_BIAS_INTERNAL_KOHLER_no_weights = col_double()
))

Distribution of weights available across the four survey projects - raw counts: (see Figure 1)

ESM2e02 %>%
  count(T_SURVEY_NAME, T_Weighting_factor2) %>%
  pivot_wider(names_from = T_SURVEY_NAME, values_from = n, values_fill = 0) %>%
  qflextable()

NA

Incidence of weight types within projects - column percentages (see Figure 1)

table_1 <- ESM2e02 %>%
  count(T_SURVEY_NAME, T_Weighting_factor2) %>%
  group_by(T_SURVEY_NAME) %>%
  mutate(Percent = percent(n/sum(n), accuracy = 0.1)) %>% 
  select(T_SURVEY_NAME, T_Weighting_factor2, Percent) %>% 
  ungroup() %>%
  pivot_wider(names_from = T_SURVEY_NAME, values_from = Percent, values_fill = "0%")

disp_table_1 <- qflextable(table_1) %>% theme_booktabs()
disp_table_1

NA

Pearson correlation coefficients between biases resulting internal criteria without weights in a) strict manner and b) according to the lenient approach. Calculations performed for surveys within the two projects where data for implementing the strict approach was available.

??? A tu nie powinniśmy dać zmiany w czasie tak jak na Figure 2???


table_3 <- ESM2e02 %>% filter(T_SURVEY_NAME == "ESS", T_DEFFp_ESS == "DEFF>1") %>%
  mutate(delta1 = Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_dweights_ESS  - Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_no_weights,
         delta2 = Q_ABS_BIAS_INTERNAL_KOHLER_dweights_ESS - Q_ABS_BIAS_INTERNAL_KOHLER_no_weights) %>%
  summarise(meanXdifference_external = mean(delta1),
            medianXdifference_external = median(delta1),
            meanXdifference_internal = mean(delta2),
            medianXdifference_internal = median(delta2), .groups = 'drop') %>%
  pivot_longer(1:4, names_to = c("fun", "difference"), values_to = "values", names_sep = "X") %>%
  pivot_wider(names_from = fun, values_from = values)

  
disp_table_3 <- qflextable(table_3) %>% theme_booktabs()
disp_table_3 <- colformat_num(x = disp_table_3, big.mark = ",", digits = 2, na_str = "N/A")

disp_table_3

Differences between weighted an unweighted bias estimates.


table_4 <- ESM2e02 %>% filter(T_Weighing_factor == "Total weights present in dataset") %>% 
  mutate(delta1 = Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_psweights - Q_ABS_BIAS_PROP_FEMALE_EXTERNAL_no_weights,
         delta2 = Q_ABS_BIAS_INTERNAL_KOHLER_psweights - Q_ABS_BIAS_INTERNAL_KOHLER_no_weights) %>%
  group_by(T_SURVEY_NAME) %>%
  summarise(mean_external = mean(delta1),
            median_external = median(delta1),
            mean_internal = mean(delta2, na.rm = T),
            median_internal = median(delta2, na.rm = T), .groups = 'drop')

disp_table_4 <- qflextable(table_4) %>% theme_booktabs() %>% align_nottext_col(align = "center")
disp_table_4 <- colformat_num(x = disp_table_4, big.mark = ",", digits = 2, na_str = "N/A")

disp_table_4

NA
NA
LS0tCnRpdGxlOiAnTXVsdGktcHJvamVjdCBhc3Nlc3NtZW50IG9mIHNhbXBsZSBxdWFsaXR5IGluIGNyb3NzLW5hdGlvbmFsIHN1cnZleXMnCnN1YnRpdGxlOiAnUmVwbGljYXRpb24gbWF0ZXJpYWxzJwpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIGNvZGVfZm9sZGluZzogaGlkZQotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpCmBgYAoKYGBge3IgcGFja2FnZXMsIHdhcm5pbmdzID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpICMgZm9yIG1hbmlwdWxhdGluZyBkYXRhCmxpYnJhcnkobGFiZWxsZWQpICMgZm9yIHVzaW5nIGxhYmVscwpsaWJyYXJ5KGZsZXh0YWJsZSkgIyBmb3IgZm9ybWF0dGluZyBvdXRwdXQgdGFibGVzCmxpYnJhcnkocmVhZHIpICMgZm9yIHJlYWRpbmcgY3N2IGZpbGVzCmxpYnJhcnkoYnJvb20pICMgZm9yIGRlYWxpbmcgd2l0aCBhbm5veWluZyBvdXRwdXQgY2h1bmtzCmxpYnJhcnkoc2NhbGVzKSAjIGZvciBwZXJjZW50YWdlIGxhYmVsbGluZwpgYGAKCiMjU1VQTEVNRU5UQVJZIE1BVEVSSUFMUwoKVGhpcyBkb2N1bWVudCBwcmVzZW50cyAgZGV0YWlscyBvZiBkYXRhIHRyYW5zZm9ybWF0aW9ucywgc3RhdGlzdGljYWwgcHJvY2VkdXJlcywgYW5kIGV4YWN0IHJlc3VsdHMgb2YgYW5hbHlzZXMgcGVyZm9ybWVkIGluIHRoZSBwYXBlcidzIG1haW4gYm9keS4gQ29kZSBjaHVua3MgYXJlIGhpZGRlbiBieSBkZWZhdWx0IGJ1dCBjYW4gYmUgYWNjZXNzZWQgYnkgY2xpY2tpbmcgdGhlIHJlbGV2YW50IGJ1dHRvbnMuIEFsbCBjYWxjdWxhdGlvbnMgcmVseSBvbiB0aGUgcHVibGljYWxseSBhdmFpbGFibGUgaW50ZWdyYXRlZCAuY3N2IGRhdGEgZmlsZS4KCmBgYHtyfQpFU00yZTAyIDwtIHJlYWRfZGVsaW0oIkVTTTJlMDIuY3N2IiwgIjsiLAogICAgICAgICAgICAgICAgICAgICAgZXNjYXBlX2RvdWJsZSA9IEZBTFNFLCAKICAgICAgICAgICAgICAgICAgICAgIG5hID0gIk5vdCBhcHBsaWNhYmxlIiwgCiAgICAgICAgICAgICAgICAgICAgICB0cmltX3dzID0gVFJVRSwgCiAgICAgICAgICAgICAgICAgICAgICBjb2xfdHlwZXMgPSBjb2xzKAogIC5kZWZhdWx0ID0gY29sX2NoYXJhY3RlcigpLAogIFRfU1VSVkVZX1lFQVIgPSBjb2xfZG91YmxlKCksCiAgUV9QUk9QX0ZFTV9QT1BVTEFUSU9OXzE4Xzc0ID0gY29sX2RvdWJsZSgpLAogIFFfRUZGRUNUX1NJWkVfUFJPUF9GRU1BTEVfRVhURVJOQUxfMThfNzRfcHN3ZWlnaHRzID0gY29sX2RvdWJsZSgpLAogIFFfRUZGRUNUX1NJWkVfUFJPUF9GRU1BTEVfRVhURVJOQUxfMThfNzRfZHdlaWdodHNfRVNTID0gY29sX2RvdWJsZSgpLAogIFFfRUZGRUNUX1NJWkVfUFJPUF9GRU1BTEVfRVhURVJOQUxfMThfNzRfbm9fd2VpZ2h0cyA9IGNvbF9kb3VibGUoKSwKICBRX1BST1BfRkVNX0lOVEVSTkFMX0tPSExFUl9wc3dlaWdodHNfc3RyaWN0ID0gY29sX2RvdWJsZSgpLAogIFFfUFJPUF9GRU1fSU5URVJOQUxfS09ITEVSX25vX3dlaWdodHNfc3RyaWN0ID0gY29sX2RvdWJsZSgpLAogIFFfU1VCU0FNUExFX1NJWkVfSU5URVJOQUxfS09ITEVSX3N0cmljdCA9IGNvbF9kb3VibGUoKSwKICBRX0VGRkVDVF9TSVpFX1BST1BfRkVNQUxFX0lOVEVSTkFMX0tPSExFUl9wc3dlaWdodHNfc3RyaWN0ID0gY29sX2RvdWJsZSgpLAogIFFfRUZGRUNUX1NJWkVfUFJPUF9GRU1BTEVfSU5URVJOQUxfS09ITEVSX25vX3dlaWdodHNfc3RyaWN0ID0gY29sX2RvdWJsZSgpLAogIFFfQUJTX0JJQVNfSU5URVJOQUxfS09ITEVSX3Bzd2VpZ2h0c19zdHJpY3QgPSBjb2xfZG91YmxlKCksCiAgUV9BQlNfQklBU19JTlRFUk5BTF9LT0hMRVJfbm9fd2VpZ2h0c19zdHJpY3QgPSBjb2xfZG91YmxlKCksCiAgUV9CSUFTX0lOVEVSTkFMX0tPSExFUl9wc3dlaWdodHNfc3RyaWN0ID0gY29sX2RvdWJsZSgpLAogIFFfQklBU19JTlRFUk5BTF9LT0hMRVJfbm9fd2VpZ2h0c19zdHJpY3QgPSBjb2xfZG91YmxlKCksCiAgUV9BQlNfQklBU19QUk9QX0ZFTUFMRV9FWFRFUk5BTF9kd2VpZ2h0c19FU1MgPSBjb2xfZG91YmxlKCksCiAgUV9BQlNfQklBU19QUk9QX0ZFTUFMRV9FWFRFUk5BTF9ub193ZWlnaHRzID0gY29sX2RvdWJsZSgpLAogIFFfQUJTX0JJQVNfSU5URVJOQUxfS09ITEVSX2R3ZWlnaHRzX0VTUyA9IGNvbF9kb3VibGUoKSwKICBRX0FCU19CSUFTX0lOVEVSTkFMX0tPSExFUl9ub193ZWlnaHRzID0gY29sX2RvdWJsZSgpLAogIFFfQUJTX0JJQVNfUFJPUF9GRU1BTEVfRVhURVJOQUxfcHN3ZWlnaHRzID0gY29sX2RvdWJsZSgpLAogIFFfQUJTX0JJQVNfUFJPUF9GRU1BTEVfRVhURVJOQUxfbm9fd2VpZ2h0cyA9IGNvbF9kb3VibGUoKSwKICBRX0FCU19CSUFTX0lOVEVSTkFMX0tPSExFUl9wc3dlaWdodHMgPSBjb2xfZG91YmxlKCksCiAgUV9BQlNfQklBU19JTlRFUk5BTF9LT0hMRVJfbm9fd2VpZ2h0cyA9IGNvbF9kb3VibGUoKQopKQpgYGAKCkRpc3RyaWJ1dGlvbiBvZiB3ZWlnaHRzIGF2YWlsYWJsZSBhY3Jvc3MgdGhlIGZvdXIgc3VydmV5IHByb2plY3RzIC0gcmF3IGNvdW50czogKHNlZSBGaWd1cmUgMSkKCmBgYHtyfQpFU00yZTAyICU+JQogIGNvdW50KFRfU1VSVkVZX05BTUUsIFRfV2VpZ2h0aW5nX2ZhY3RvcjIpICU+JQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBUX1NVUlZFWV9OQU1FLCB2YWx1ZXNfZnJvbSA9IG4sIHZhbHVlc19maWxsID0gMCkgJT4lCiAgcWZsZXh0YWJsZSgpCiAgCmBgYApJbmNpZGVuY2Ugb2Ygd2VpZ2h0IHR5cGVzIHdpdGhpbiBwcm9qZWN0cyAtIGNvbHVtbiBwZXJjZW50YWdlcyAoc2VlIEZpZ3VyZSAxKQoKYGBge3J9CnRhYmxlXzEgPC0gRVNNMmUwMiAlPiUKICBjb3VudChUX1NVUlZFWV9OQU1FLCBUX1dlaWdodGluZ19mYWN0b3IyKSAlPiUKICBncm91cF9ieShUX1NVUlZFWV9OQU1FKSAlPiUKICBtdXRhdGUoUGVyY2VudCA9IHBlcmNlbnQobi9zdW0obiksIGFjY3VyYWN5ID0gMC4xKSkgJT4lIAogIHNlbGVjdChUX1NVUlZFWV9OQU1FLCBUX1dlaWdodGluZ19mYWN0b3IyLCBQZXJjZW50KSAlPiUgCiAgdW5ncm91cCgpICU+JQogIHBpdm90X3dpZGVyKG5hbWVzX2Zyb20gPSBUX1NVUlZFWV9OQU1FLCB2YWx1ZXNfZnJvbSA9IFBlcmNlbnQsIHZhbHVlc19maWxsID0gIjAlIikKCmRpc3BfdGFibGVfMSA8LSBxZmxleHRhYmxlKHRhYmxlXzEpICU+JSB0aGVtZV9ib29rdGFicygpCmRpc3BfdGFibGVfMQoKYGBgClBlYXJzb24gY29ycmVsYXRpb24gY29lZmZpY2llbnRzIGJldHdlZW4gYmlhc2VzIHJlc3VsdGluZyBpbnRlcm5hbCBjcml0ZXJpYSB3aXRob3V0IHdlaWdodHMgaW4gYSkgc3RyaWN0IG1hbm5lciBhbmQgYikgYWNjb3JkaW5nIHRvIHRoZSBsZW5pZW50IGFwcHJvYWNoLiBDYWxjdWxhdGlvbnMgcGVyZm9ybWVkIGZvciBzdXJ2ZXlzIHdpdGhpbiB0aGUgdHdvIHByb2plY3RzIHdoZXJlIGRhdGEgZm9yIGltcGxlbWVudGluZyB0aGUgc3RyaWN0IGFwcHJvYWNoIHdhcyBhdmFpbGFibGUuCgpgYGB7cn0KCnRhYmxlXzIgPC0gRVNNMmUwMiAlPiUgZmlsdGVyKFRfU1VSVkVZX05BTUUgJWluJSBjKCJFU1MiLCAiRVFMUyIpKSAlPiUKICBncm91cF9ieShUX1NVUlZFWV9OQU1FKSAlPiUgCnN1bW1hcml6ZShQZXJhc29uX2NvcnJlbGF0aW9uID0gKGNvcihRX0FCU19CSUFTX0lOVEVSTkFMX0tPSExFUl9ub193ZWlnaHRzLCBRX0FCU19CSUFTX0lOVEVSTkFMX0tPSExFUl9ub193ZWlnaHRzX3N0cmljdCwgbWV0aG9kID0gJ3BlYXJzb24nLCB1c2UgPSAicGFpcndpc2UuY29tcGxldGUub2JzIikpLCAuZ3JvdXBzID0gJ2Ryb3AnKQoKZGlzcF90YWJsZV8yIDwtIHFmbGV4dGFibGUodGFibGVfMikgJT4lIHRoZW1lX2Jvb2t0YWJzKCkgJT4lIGFsaWduX25vdHRleHRfY29sKGFsaWduID0gImNlbnRlciIpCmRpc3BfdGFibGVfMiA8LSBjb2xmb3JtYXRfbnVtKHggPSBkaXNwX3RhYmxlXzIsIGJpZy5tYXJrID0gIiwiLCBkaWdpdHMgPSAyLCBuYV9zdHIgPSAiTi9BIikKCmRpc3BfdGFibGVfMgoKYGBgCj8/PyBBIHR1IG5pZSBwb3dpbm5pxZtteSBkYcSHIHptaWFueSB3IGN6YXNpZSB0YWsgamFrIG5hIEZpZ3VyZSAyPz8/CgpgYGB7cn0KCnRhYmxlXzMgPC0gRVNNMmUwMiAlPiUgZmlsdGVyKFRfU1VSVkVZX05BTUUgPT0gIkVTUyIsIFRfREVGRnBfRVNTID09ICJERUZGPjEiKSAlPiUKICBtdXRhdGUoZGVsdGExID0gUV9BQlNfQklBU19QUk9QX0ZFTUFMRV9FWFRFUk5BTF9kd2VpZ2h0c19FU1MgIC0gUV9BQlNfQklBU19QUk9QX0ZFTUFMRV9FWFRFUk5BTF9ub193ZWlnaHRzLAogICAgICAgICBkZWx0YTIgPSBRX0FCU19CSUFTX0lOVEVSTkFMX0tPSExFUl9kd2VpZ2h0c19FU1MgLSBRX0FCU19CSUFTX0lOVEVSTkFMX0tPSExFUl9ub193ZWlnaHRzKSAlPiUKICBzdW1tYXJpc2UobWVhblhkaWZmZXJlbmNlX2V4dGVybmFsID0gbWVhbihkZWx0YTEpLAogICAgICAgICAgICBtZWRpYW5YZGlmZmVyZW5jZV9leHRlcm5hbCA9IG1lZGlhbihkZWx0YTEpLAogICAgICAgICAgICBtZWFuWGRpZmZlcmVuY2VfaW50ZXJuYWwgPSBtZWFuKGRlbHRhMiksCiAgICAgICAgICAgIG1lZGlhblhkaWZmZXJlbmNlX2ludGVybmFsID0gbWVkaWFuKGRlbHRhMiksIC5ncm91cHMgPSAnZHJvcCcpICU+JQogIHBpdm90X2xvbmdlcigxOjQsIG5hbWVzX3RvID0gYygiZnVuIiwgImRpZmZlcmVuY2UiKSwgdmFsdWVzX3RvID0gInZhbHVlcyIsIG5hbWVzX3NlcCA9ICJYIikgJT4lCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IGZ1biwgdmFsdWVzX2Zyb20gPSB2YWx1ZXMpCgogIApkaXNwX3RhYmxlXzMgPC0gcWZsZXh0YWJsZSh0YWJsZV8zKSAlPiUgdGhlbWVfYm9va3RhYnMoKQpkaXNwX3RhYmxlXzMgPC0gY29sZm9ybWF0X251bSh4ID0gZGlzcF90YWJsZV8zLCBiaWcubWFyayA9ICIsIiwgZGlnaXRzID0gMiwgbmFfc3RyID0gIk4vQSIpCgpkaXNwX3RhYmxlXzMKYGBgCkRpZmZlcmVuY2VzIGJldHdlZW4gd2VpZ2h0ZWQgYW4gdW53ZWlnaHRlZCBiaWFzIGVzdGltYXRlcy4KCmBgYHtyfQoKdGFibGVfNCA8LSBFU00yZTAyICU+JSBmaWx0ZXIoVF9XZWlnaGluZ19mYWN0b3IgPT0gIlRvdGFsIHdlaWdodHMgcHJlc2VudCBpbiBkYXRhc2V0IikgJT4lIAogIG11dGF0ZShkZWx0YTEgPSBRX0FCU19CSUFTX1BST1BfRkVNQUxFX0VYVEVSTkFMX3Bzd2VpZ2h0cyAtIFFfQUJTX0JJQVNfUFJPUF9GRU1BTEVfRVhURVJOQUxfbm9fd2VpZ2h0cywKICAgICAgICAgZGVsdGEyID0gUV9BQlNfQklBU19JTlRFUk5BTF9LT0hMRVJfcHN3ZWlnaHRzIC0gUV9BQlNfQklBU19JTlRFUk5BTF9LT0hMRVJfbm9fd2VpZ2h0cykgJT4lCiAgZ3JvdXBfYnkoVF9TVVJWRVlfTkFNRSkgJT4lCiAgc3VtbWFyaXNlKG1lYW5fZXh0ZXJuYWwgPSBtZWFuKGRlbHRhMSksCiAgICAgICAgICAgIG1lZGlhbl9leHRlcm5hbCA9IG1lZGlhbihkZWx0YTEpLAogICAgICAgICAgICBtZWFuX2ludGVybmFsID0gbWVhbihkZWx0YTIsIG5hLnJtID0gVCksCiAgICAgICAgICAgIG1lZGlhbl9pbnRlcm5hbCA9IG1lZGlhbihkZWx0YTIsIG5hLnJtID0gVCksIC5ncm91cHMgPSAnZHJvcCcpCgpkaXNwX3RhYmxlXzQgPC0gcWZsZXh0YWJsZSh0YWJsZV80KSAlPiUgdGhlbWVfYm9va3RhYnMoKSAlPiUgYWxpZ25fbm90dGV4dF9jb2woYWxpZ24gPSAiY2VudGVyIikKZGlzcF90YWJsZV80IDwtIGNvbGZvcm1hdF9udW0oeCA9IGRpc3BfdGFibGVfNCwgYmlnLm1hcmsgPSAiLCIsIGRpZ2l0cyA9IDIsIG5hX3N0ciA9ICJOL0EiKQoKZGlzcF90YWJsZV80CgoKYGBgCgoK