Plotly Graph
## Change this to read in whatever data you're using
covid = read_csv("covid_data.csv")
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## signal = col_character(),
## geo_value = col_character(),
## time_value = col_date(format = ""),
## value = col_double(),
## stderr = col_double(),
## sample_size = col_double()
## )
covid %>%
group_by(geo_value, signal) %>%
summarize(
avg = mean(value, na.rm = T)
) %>%
pivot_wider(id_cols = geo_value, names_from = signal, values_from = avg) %>%
ungroup() -> state_avg
## `summarise()` has grouped output by 'geo_value'. You can override using the `.groups` argument.
## Change this to make your plot
p1 = state_avg %>%
mutate(state = str_to_upper(geo_value)) %>%
ggplot(aes(x = smoothed_wearing_mask, y = smoothed_cli)) +
geom_point() +
theme_minimal()
ggplotly(p1)
p2 = state_avg %>%
mutate(state = str_to_upper(geo_value)) %>%
ggplot(aes(x = smoothed_wearing_mask, y = smoothed_cli)) +
geom_point(aes(text = toupper(geo_value))) +
theme_minimal()
## Warning: Ignoring unknown aesthetics: text
ggplotly(p2, tooltip = "text")
Part 2: Plotly Graph From Previous Labs
lab09_theme = theme_minimal() +
theme(text = element_text(family = "serif", size = 12))
pa_tested = covid %>%
filter(signal == "smoothed_tested_14d" & geo_value == "pa")
pa_tested
## # A tibble: 92 x 6
## signal geo_value time_value value stderr sample_size
## <chr> <chr> <date> <dbl> <dbl> <dbl>
## 1 smoothed_tested_14d pa 2020-10-01 6.17 0.224 11505.
## 2 smoothed_tested_14d pa 2020-10-02 6.17 0.223 11622.
## 3 smoothed_tested_14d pa 2020-10-03 6.12 0.223 11558.
## 4 smoothed_tested_14d pa 2020-10-04 6.09 0.222 11564.
## 5 smoothed_tested_14d pa 2020-10-05 6.11 0.223 11588.
## 6 smoothed_tested_14d pa 2020-10-06 6.04 0.219 11817.
## 7 smoothed_tested_14d pa 2020-10-07 6.14 0.217 12279.
## 8 smoothed_tested_14d pa 2020-10-08 6.09 0.215 12423.
## 9 smoothed_tested_14d pa 2020-10-09 6.11 0.215 12443.
## 10 smoothed_tested_14d pa 2020-10-10 6.16 0.216 12379.
## # … with 82 more rows
p3 <- ggplot(pa_tested, aes(x = time_value, y = value)) +
geom_rect(data = pa_tested, aes(xmin = as.Date("2020-11-26") - 14, xmax = as.Date("2020-11-26"), ymin = value - 2*stderr, ymax = value + 2*stderr)) +
geom_line() +
lab09_theme +
labs(
x = "",
y = "",
title = "% of Pennsylvanians who were tested for COVID over previous 14 days",
subtitle = "Smoothed Estimate",
caption = "Source: Delphi Symptom Survey"
)
moving_things <- ggplotly(p3)
moving_things