Use k-means clustering algorithm to partition the students into two clusters. Use students 1 and 4 as the starting points in the two clusters.
Show all the underlying steps clearly and easy to read and understand.
A<-c(1.0,1.5,3,5,3.5,4.5,3.5)
B<-c(1,2,4,7,5,5,4.5)
z<-c(A,B)
Perform K-Means with 2 clusters set.seed(4)
dat<-matrix(z,nrow = 7,ncol = 2)
dat
[,1] [,2]
[1,] 1.0 1.0
[2,] 1.5 2.0
[3,] 3.0 4.0
[4,] 5.0 7.0
[5,] 3.5 5.0
[6,] 4.5 5.0
[7,] 3.5 4.5
km1 = kmeans(dat, 2, nstart=2,iter.max = 2,algorithm = c( "MacQueen"), trace=False)
Let’s plot the results
plot(dat, col =(km1$cluster +1) , main="K-Means result with 2 clusters", pch=20, cex=2)

km1$centers
[,1] [,2]
1 3.90 5.1
2 1.25 1.5
LS0tDQp0aXRsZTogIkV4ZXJjaXNlIDIiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpVc2Ugay1tZWFucyBjbHVzdGVyaW5nIGFsZ29yaXRobSB0byBwYXJ0aXRpb24gdGhlIHN0dWRlbnRzIGludG8gdHdvIGNsdXN0ZXJzLiBVc2Ugc3R1ZGVudHMgMSBhbmQgNCBhcyB0aGUgc3RhcnRpbmcgcG9pbnRzIGluIHRoZSB0d28gY2x1c3RlcnMuDQoNClNob3cgYWxsIHRoZSB1bmRlcmx5aW5nIHN0ZXBzIGNsZWFybHkgYW5kIGVhc3kgdG8gcmVhZCBhbmQgdW5kZXJzdGFuZC4gDQoNCmBgYHtyfQ0KQTwtYygxLjAsMS41LDMsNSwzLjUsNC41LDMuNSkNCkI8LWMoMSwyLDQsNyw1LDUsNC41KQ0KejwtYyhBLEIpDQpgYGANCg0KUGVyZm9ybSBLLU1lYW5zIHdpdGggMiBjbHVzdGVycw0Kc2V0LnNlZWQoNCkNCmBgYHtyfQ0KZGF0PC1tYXRyaXgoeixucm93ID0gNyxuY29sID0gMikNCmRhdA0KYGBgDQoNCmBgYHtyfQ0Ka20xID0ga21lYW5zKGRhdCwgMiwgbnN0YXJ0PTIsaXRlci5tYXggPSAyLGFsZ29yaXRobSA9IGMoICJNYWNRdWVlbiIpLCB0cmFjZT1GYWxzZSkNCmBgYA0KDQoNCkxldCdzIHBsb3QgdGhlIHJlc3VsdHMNCg0KYGBge3J9DQpwbG90KGRhdCwgY29sID0oa20xJGNsdXN0ZXIgKzEpICwgbWFpbj0iSy1NZWFucyByZXN1bHQgd2l0aCAyIGNsdXN0ZXJzIiwgcGNoPTIwLCBjZXg9MikNCmttMSRjZW50ZXJzDQpgYGANCg0K