library(janitor)
## Warning: package 'janitor' was built under R version 4.0.3
##
## Attaching package: 'janitor'
## The following objects are masked from 'package:stats':
##
## chisq.test, fisher.test
library(tidyverse)
## -- Attaching packages --------------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ------------------------------------------------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 4.0.3
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Warning: package 'Formula' was built under R version 4.0.3
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following objects are masked from 'package:base':
##
## format.pval, units
data_hurtos <- read_csv(
file = "HURTO_A_CABEZAS_DE_GANADO_PER_ODO_DEL_01_DE_ENERO__AL_31_DE_DICIEMBRE_A_O_2019.csv"
) %>%
clean_names() %>%
filter(cantidad == 1) %>%
mutate_if(is.character, tolower) %>%
mutate_if(is.character, capitalize) %>%
mutate_if(is.character, as.factor) %>%
mutate(dia = factor(dia,
levels = c("Lunes", "Martes", "Miércoles", "Jueves",
"Viernes", "Sábado", "Domingo"))) %>%
select(-codigo_dane)
##
## -- Column specification --------------------------------------------------------------------------------------------------
## cols(
## Departamento = col_character(),
## Municipio = col_character(),
## DÃa = col_character(),
## Barrio = col_character(),
## Zona = col_character(),
## `Clase de sitio` = col_character(),
## `Arma empleada` = col_character(),
## `Móvil Agresor` = col_character(),
## `Móvil Victima` = col_character(),
## Sexo = col_character(),
## `Estado civil` = col_character(),
## `PaÃs de nacimiento` = col_character(),
## `Clase de empleado` = col_character(),
## Escolaridad = col_character(),
## `Código DANE` = col_double(),
## Cantidad = col_double()
## )
head(data_hurtos)
library(ggplot2)
library(dplyr)
data_hurtos %>%
group_by(dia, zona) %>%
summarise(cantidad = n()) %>%
ggplot( aes(x = dia, y = cantidad, color= zona, group = zona))+
geom_point()+
geom_line()
## `summarise()` regrouping output by 'dia' (override with `.groups` argument)
## Gráfico 2
data_hurtos %>%
group_by(dia, zona, departamento) %>%
summarise(cantidad = n()) %>%
ggplot(mapping = aes(x = dia,
y = cantidad, color = zona, group = zona))+
facet_wrap(facets = ~departamento, scales = "free", ncol = 4)+
geom_point()+
geom_line()+
theme(legend.position = "toc", axis.text = element_text(angle = 45, hjust = 1))
## `summarise()` regrouping output by 'dia', 'zona' (override with `.groups` argument)
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?
-Hurto por clase de empleado, comportamiento por zonas.
data_hurtos %>%
group_by(clase_de_empleado, zona) %>%
summarise(total = sum(cantidad)) %>%
ggplot(mapping = aes(x = reorder(clase_de_empleado, total),
y = total))+
facet_wrap(facets = ~zona, scales = "free", ncol = 2)+
geom_point()+
coord_flip()
## `summarise()` regrouping output by 'clase_de_empleado' (override with `.groups` argument)
data_hurtos %>%
group_by(departamento, dia) %>%
summarise(total = sum(cantidad)) %>%
ggplot(mapping = aes(x = total ))+
facet_wrap(facets = ~departamento, scales = "free", ncol= 4)+
geom_density(alpha = 0.5)
## `summarise()` regrouping output by 'departamento' (override with `.groups` argument)