SoilTukey21 <-read.csv("D:/R/data/SRMSoils 2021Tukey.csv", head=TRUE, stringsAsFactors = FALSE)
SoilTukey21$Variable <- factor(SoilTukey21$Variable)
SoilTukey21$Contrast <- factor(SoilTukey21$Contrast)
SoilTukey21$Years <- factor(SoilTukey21$Years)

print(levels(SoilTukey21$Variable))
##  [1] "Ammonium"        "Calcium"         "Decomposition"   "Magnesium"      
##  [5] "Nitrate"         "Phosphorus"      "Potassium"       "Soil Moisture"  
##  [9] "Total Abundance" "Total C:N"       "Total Carbon"    "Total Nitrogen"
SoilTukey21$Variable = factor(SoilTukey21$Variable, 
                                levels(SoilTukey21$Variable)[c(2,7,4,6,11,12,10,9,3,8,5,1)])


ggplot(SoilTukey21, aes(x=Variable, fill= Contrast, y=Estimate),color=Contrast)+
  geom_hline(yintercept=0, color="black")+
  geom_linerange(aes(ymin=Lower,ymax=Upper, color=Contrast), size=1.5, position=position_dodge(0.5))+
  geom_point(size=3, pch=21, position=position_dodge(0.5), color="gray38", stroke=1)+
  scale_colour_viridis(discrete = TRUE)+
  scale_fill_viridis(discrete = TRUE, name="")+
  xlab ("")+ylab ("Standardized Tukey's Estimate with 95% CI")+
 # ggtitle(label = "         Recent Burn Low   No Difference     Recent Burn Higher")+
  guides(color=FALSE)+
  coord_flip()+
  theme_bw()+
  theme(legend.position = c(0.89, 0.575),
        axis.title=element_text(size=8, face="bold"), 
        axis.text.y =element_text(size=8, face="bold"),
        axis.text.x = element_text(size=8, face="bold"),
        legend.text=element_text(size=5),
        legend.title = element_text(size=5),
        plot.title = element_text(size=7, face="bold"),
        #plot.margin = margin(6,2,2,2),
        panel.grid.minor = element_blank())

Bnorm <- fitdist(SoilM$Total_Biomass, "norm")
plot(Bnorm) #not terrible, qq is a little wonky at the ends

Blognorm <- fitdist(log(SoilM$Total_Biomass), "norm")
plot(Blognorm) #use log distribution

Bgamma <- fitdist(SoilM$Total_Biomass, "gamma")
plot(Bgamma) #does not look too  different than log normal

#untransformed
ggplot(SoilM, aes(x=Location, y=Total_Biomass, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="Total Abundance", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1, scales = "free")

#with log
ggplot(SoilM, aes(x=Location, y=log(Total_Biomass), color=TSF))+
  geom_boxplot(size=1)+
  labs(y="log(Total Abundance)", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

Total abundance stats

TAnull <-lmer(log(Total_Biomass) ~ 1 + (1|Location/Year), data=SoilM, REML = FALSE) #singular fit issues
## boundary (singular) fit: see ?isSingular
TAT <- lmer(log(Total_Biomass) ~ TSF + (1|Location/Year), data=SoilM, REML = FALSE) #singular fit
## boundary (singular) fit: see ?isSingular
TAE <- lmer(log(Total_Biomass) ~  ESD + (1|Location/Year), data=SoilM, REML = FALSE)
## boundary (singular) fit: see ?isSingular
TATE <- lmer(log(Total_Biomass) ~ TSF + ESD + (1|Location/Year), data=SoilM, REML = FALSE)

anova(TAnull, TAT, TAE, TATE)
## Data: SoilM
## Models:
## TAnull: log(Total_Biomass) ~ 1 + (1 | Location/Year)
## TAT: log(Total_Biomass) ~ TSF + (1 | Location/Year)
## TAE: log(Total_Biomass) ~ ESD + (1 | Location/Year)
## TATE: log(Total_Biomass) ~ TSF + ESD + (1 | Location/Year)
##        Df     AIC     BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## TAnull  4 105.577 118.607 -48.788   97.577                             
## TAT     8 100.213 126.273 -42.106   84.213 13.364      4   0.009626 ** 
## TAE     8  70.079  96.139 -27.040   54.079 30.133      0  < 2.2e-16 ***
## TATE   12  67.777 106.867 -21.888   43.777 10.303      4   0.035623 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TA.tscale <- lmer(scale(log(Total_Biomass)) ~ TSF + ESD + (1|Location/Year), data=SoilM, REML = FALSE)
Mult_TA.TSF <- glht(TA.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_TA.TSF) #NYB lower than 1-2yr
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Total_Biomass)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilM, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)  
## 1yr - 2yr - 1yr < == 0      0.21440    0.13545   1.583   0.5002  
## 2yr - 3yr - 1yr < == 0     -0.08088    0.13535  -0.598   0.9746  
## 3yr - 4yr - 1yr < == 0     -0.02133    0.17406  -0.123   0.9999  
## Unburned - 1yr < == 0      -0.31391    0.17252  -1.820   0.3544  
## 2yr - 3yr - 1yr - 2yr == 0 -0.29528    0.13497  -2.188   0.1789  
## 3yr - 4yr - 1yr - 2yr == 0 -0.23572    0.17607  -1.339   0.6596  
## Unburned - 1yr - 2yr == 0  -0.52831    0.17338  -3.047   0.0187 *
## 3yr - 4yr - 2yr - 3yr == 0  0.05955    0.17408   0.342   0.9969  
## Unburned - 2yr - 3yr == 0  -0.23303    0.17356  -1.343   0.6572  
## Unburned - 3yr - 4yr == 0  -0.29258    0.21842  -1.340   0.6591  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_TA.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Total_Biomass)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilM, REML = FALSE)
## 
## Quantile = 2.7137
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate lwr      upr     
## 1yr - 2yr - 1yr < == 0      0.21440 -0.15317  0.58196
## 2yr - 3yr - 1yr < == 0     -0.08088 -0.44817  0.28642
## 3yr - 4yr - 1yr < == 0     -0.02133 -0.49367  0.45102
## Unburned - 1yr < == 0      -0.31391 -0.78209  0.15427
## 2yr - 3yr - 1yr - 2yr == 0 -0.29528 -0.66154  0.07099
## 3yr - 4yr - 1yr - 2yr == 0 -0.23572 -0.71352  0.24208
## Unburned - 1yr - 2yr == 0  -0.52831 -0.99882 -0.05780
## 3yr - 4yr - 2yr - 3yr == 0  0.05955 -0.41284  0.53194
## Unburned - 2yr - 3yr == 0  -0.23303 -0.70403  0.23797
## Unburned - 3yr - 4yr == 0  -0.29258 -0.88533  0.30016
Mult_TA.ESD <- glht(TA.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_TA.ESD) #sandy lower than all except clayey
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Total_Biomass)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilM, REML = FALSE)
## 
## Linear Hypotheses:
##                                    Estimate Std. Error z value Pr(>|z|)    
## Loamy - Clayey == 0                  0.1552     0.1984   0.782   0.9278    
## Saline Lowland - Clayey == 0         0.3455     0.1547   2.233   0.1492    
## Sandy - Clayey == 0                 -0.3609     0.1410  -2.560   0.0677 .  
## Thin Claypan - Clayey == 0           1.1060     0.3791   2.918   0.0248 *  
## Saline Lowland - Loamy == 0          0.1903     0.1999   0.952   0.8624    
## Sandy - Loamy == 0                  -0.5161     0.1778  -2.902   0.0264 *  
## Thin Claypan - Loamy == 0            0.9508     0.3954   2.405   0.0997 .  
## Sandy - Saline Lowland == 0         -0.7064     0.1239  -5.703   <0.001 ***
## Thin Claypan - Saline Lowland == 0   0.7605     0.3580   2.125   0.1880    
## Thin Claypan - Sandy == 0            1.4669     0.3616   4.056   <0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_TA.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Total_Biomass)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilM, REML = FALSE)
## 
## Quantile = 2.6751
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                                    Estimate lwr      upr     
## Loamy - Clayey == 0                 0.15517 -0.37550  0.68583
## Saline Lowland - Clayey == 0        0.34549 -0.06848  0.75945
## Sandy - Clayey == 0                -0.36090 -0.73796  0.01616
## Thin Claypan - Clayey == 0          1.10601  0.09189  2.12013
## Saline Lowland - Loamy == 0         0.19032 -0.34446  0.72510
## Sandy - Loamy == 0                 -0.51607 -0.99171 -0.04042
## Thin Claypan - Loamy == 0           0.95085 -0.10684  2.00854
## Sandy - Saline Lowland == 0        -0.70639 -1.03774 -0.37503
## Thin Claypan - Saline Lowland == 0  0.76053 -0.19708  1.71813
## Thin Claypan - Sandy == 0           1.46691  0.49949  2.43434

Variables with single sampling event

P

#P Overall 
Pnorm <- fitdist(SoilJuly181920$P_ppm, "norm")
plot(Pnorm) #qq, empirical, and pp not good

Plognorm <- fitdist(log(SoilJuly181920$P_ppm), "norm")
plot(Plognorm) #slightly better

Pgamma <- fitdist(SoilJuly181920$P_ppm, "gamma")
plot(Pgamma) #qq wonky on right end

#untransformed
ggplot(SoilJuly181920, aes(x=Location, y=P_ppm, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="P_ppm", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

#with log
ggplot(SoilJuly181920, aes(x=Location, y=log(P_ppm), color=TSF))+
  geom_boxplot(size=1)+
  labs(y="log(P_ppm)", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

Pnull <-lmer(log(P_ppm) ~ 1 + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
PT <- lmer(log(P_ppm) ~ TSF + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
PE <- lmer(log(P_ppm) ~  ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
PTE <- lmer(log(P_ppm) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)

anova(Pnull, PT, PE, PTE)
## Data: SoilJuly181920
## Models:
## Pnull: log(P_ppm) ~ 1 + (1 | Location/Year)
## PT: log(P_ppm) ~ TSF + (1 | Location/Year)
## PE: log(P_ppm) ~ ESD + (1 | Location/Year)
## PTE: log(P_ppm) ~ TSF + ESD + (1 | Location/Year)
##       Df    AIC    BIC  logLik deviance   Chisq Chi Df Pr(>Chisq)    
## Pnull  4 455.36 470.01 -223.68   447.36                              
## PT     8 457.04 486.35 -220.52   441.04  6.3142      4     0.1769    
## PE     8 370.37 399.67 -177.18   354.37 86.6789      0     <2e-16 ***
## PTE   12 373.56 417.51 -174.78   349.56  4.8058      4     0.3078    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
P.tscale <- lmer(scale(log(P_ppm)) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
Mult_P.TSF <- glht(P.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_P.TSF) #no difference!
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(P_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)
## 1yr - 2yr - 1yr < == 0      0.12394    0.12050   1.029    0.837
## 2yr - 3yr - 1yr < == 0      0.03890    0.13824   0.281    0.999
## 3yr - 4yr - 1yr < == 0     -0.19467    0.18281  -1.065    0.819
## Unburned - 1yr < == 0      -0.08501    0.12618  -0.674    0.961
## 2yr - 3yr - 1yr - 2yr == 0 -0.08505    0.13802  -0.616    0.972
## 3yr - 4yr - 1yr - 2yr == 0 -0.31861    0.18214  -1.749    0.395
## Unburned - 1yr - 2yr == 0  -0.20895    0.12624  -1.655    0.453
## 3yr - 4yr - 2yr - 3yr == 0 -0.23356    0.18855  -1.239    0.722
## Unburned - 2yr - 3yr == 0  -0.12391    0.15028  -0.825    0.920
## Unburned - 3yr - 4yr == 0   0.10965    0.19644   0.558    0.980
## (Adjusted p values reported -- single-step method)
confint(Mult_P.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(P_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.7107
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate lwr      upr     
## 1yr - 2yr - 1yr < == 0      0.12394 -0.20269  0.45057
## 2yr - 3yr - 1yr < == 0      0.03890 -0.33582  0.41361
## 3yr - 4yr - 1yr < == 0     -0.19467 -0.69021  0.30088
## Unburned - 1yr < == 0      -0.08501 -0.42703  0.25701
## 2yr - 3yr - 1yr - 2yr == 0 -0.08505 -0.45917  0.28908
## 3yr - 4yr - 1yr - 2yr == 0 -0.31861 -0.81233  0.17512
## Unburned - 1yr - 2yr == 0  -0.20895 -0.55114  0.13324
## 3yr - 4yr - 2yr - 3yr == 0 -0.23356 -0.74465  0.27753
## Unburned - 2yr - 3yr == 0  -0.12391 -0.53127  0.28346
## Unburned - 3yr - 4yr == 0   0.10965 -0.42284  0.64215
Mult_P.ESD <- glht(P.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_P.ESD) #sandy lowest, salo lower than thin clay but not lower than clayey
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(P_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Loamy - Clayey == 0 -0.18971    0.17686  -1.073   0.8023    
## SaLo - Clayey == 0  -0.06339    0.13696  -0.463   0.9892    
## Sandy - Clayey == 0 -0.92992    0.12636  -7.359   <0.001 ***
## ThCl - Clayey == 0   0.86409    0.33768   2.559   0.0681 .  
## SaLo - Loamy == 0    0.12631    0.17887   0.706   0.9494    
## Sandy - Loamy == 0  -0.74021    0.15956  -4.639   <0.001 ***
## ThCl - Loamy == 0    1.05379    0.35340   2.982   0.0205 *  
## Sandy - SaLo == 0   -0.86653    0.11085  -7.817   <0.001 ***
## ThCl - SaLo == 0     0.92748    0.31985   2.900   0.0264 *  
## ThCl - Sandy == 0    1.79401    0.32233   5.566   <0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_P.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(P_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.6757
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate lwr      upr     
## Loamy - Clayey == 0 -0.18971 -0.66292  0.28351
## SaLo - Clayey == 0  -0.06339 -0.42985  0.30307
## Sandy - Clayey == 0 -0.92992 -1.26802 -0.59182
## ThCl - Clayey == 0   0.86409 -0.03945  1.76763
## SaLo - Loamy == 0    0.12631 -0.35229  0.60492
## Sandy - Loamy == 0  -0.74021 -1.16716 -0.31327
## ThCl - Loamy == 0    1.05379  0.10822  1.99937
## Sandy - SaLo == 0   -0.86653 -1.16313 -0.56993
## ThCl - SaLo == 0     0.92748  0.07165  1.78331
## ThCl - Sandy == 0    1.79401  0.93156  2.65645

K

#K Overall 
Knorm <- fitdist(SoilJuly181920$K_ppm, "norm")
plot(Knorm) #qq wonky

Klognorm <- fitdist(log(SoilJuly181920$K_ppm), "norm")
plot(Klognorm) #seems good

Kgamma <- fitdist(SoilJuly181920$K_ppm, "gamma")
plot(Kgamma) #qq wonky on right end

#untransformed
ggplot(SoilJuly181920, aes(x=Location, y=K_ppm, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="K_ppm", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

#with log
ggplot(SoilJuly181920, aes(x=Location, y=log(K_ppm), color=TSF))+
  geom_boxplot(size=1)+
  labs(y="log(K_ppm)", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

Knull <-lmer(log(K_ppm) ~ 1 + (1|Location/Year), data=SoilJuly181920, REML = FALSE) #singular
## boundary (singular) fit: see ?isSingular
KT <- lmer(log(K_ppm) ~ TSF + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
KE <- lmer(log(K_ppm) ~  ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) #singular
## boundary (singular) fit: see ?isSingular
KTE <- lmer(log(K_ppm) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) #singular
## boundary (singular) fit: see ?isSingular
anova(Knull, KT, KE, KTE)
## Data: SoilJuly181920
## Models:
## Knull: log(K_ppm) ~ 1 + (1 | Location/Year)
## KT: log(K_ppm) ~ TSF + (1 | Location/Year)
## KE: log(K_ppm) ~ ESD + (1 | Location/Year)
## KTE: log(K_ppm) ~ TSF + ESD + (1 | Location/Year)
##       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## Knull  4 206.57 221.22 -99.287   198.57                             
## KT     8 202.34 231.65 -93.171   186.34 12.232      4   0.015704 *  
## KE     8 147.69 176.99 -65.842   131.69 54.656      0  < 2.2e-16 ***
## KTE   12 140.73 184.69 -58.366   116.73 14.952      4   0.004801 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
K.tscale <- lmer(scale(log(K_ppm)) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
Mult_K.TSF <- glht(K.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_K.TSF) #RB, 1-2, and 3-4 are higher than unburned
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(K_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                             Estimate Std. Error z value Pr(>|z|)   
## 1yr - 2yr - 1yr < == 0      0.002468   0.133650   0.018  1.00000   
## 2yr - 3yr - 1yr < == 0     -0.092252   0.152797  -0.604  0.97362   
## 3yr - 4yr - 1yr < == 0      0.122725   0.200961   0.611  0.97250   
## Unburned - 1yr < == 0      -0.480132   0.139076  -3.452  0.00471 **
## 2yr - 3yr - 1yr - 2yr == 0 -0.094720   0.152575  -0.621  0.97080   
## 3yr - 4yr - 1yr - 2yr == 0  0.120258   0.200260   0.601  0.97414   
## Unburned - 1yr - 2yr == 0  -0.482600   0.139126  -3.469  0.00464 **
## 3yr - 4yr - 2yr - 3yr == 0  0.214977   0.208113   1.033  0.83553   
## Unburned - 2yr - 3yr == 0  -0.387880   0.164365  -2.360  0.12216   
## Unburned - 3yr - 4yr == 0  -0.602857   0.213909  -2.818  0.03723 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_K.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(K_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.7124
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate  lwr       upr      
## 1yr - 2yr - 1yr < == 0      0.002468 -0.360043  0.364979
## 2yr - 3yr - 1yr < == 0     -0.092252 -0.506695  0.322192
## 3yr - 4yr - 1yr < == 0      0.122725 -0.422358  0.667808
## Unburned - 1yr < == 0      -0.480132 -0.857360 -0.102904
## 2yr - 3yr - 1yr - 2yr == 0 -0.094720 -0.508562  0.319123
## 3yr - 4yr - 1yr - 2yr == 0  0.120258 -0.422925  0.663440
## Unburned - 1yr - 2yr == 0  -0.482600 -0.859963 -0.105236
## 3yr - 4yr - 2yr - 3yr == 0  0.214977 -0.349504  0.779458
## Unburned - 2yr - 3yr == 0  -0.387880 -0.833701  0.057941
## Unburned - 3yr - 4yr == 0  -0.602857 -1.183060 -0.022655
Mult_K.ESD <- glht(K.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_K.ESD) #sandy lower than clayey, loamy, and salo
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(K_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Loamy - Clayey == 0  0.12937    0.19239   0.672    0.958    
## SaLo - Clayey == 0   0.14269    0.14835   0.962    0.859    
## Sandy - Clayey == 0 -0.77311    0.13836  -5.588   <0.001 ***
## ThCl - Clayey == 0  -0.63529    0.36660  -1.733    0.385    
## SaLo - Loamy == 0    0.01332    0.18966   0.070    1.000    
## Sandy - Loamy == 0  -0.90248    0.17327  -5.209   <0.001 ***
## ThCl - Loamy == 0   -0.76466    0.38200  -2.002    0.241    
## Sandy - SaLo == 0   -0.91580    0.12054  -7.598   <0.001 ***
## ThCl - SaLo == 0    -0.77798    0.35071  -2.218    0.155    
## ThCl - Sandy == 0    0.13782    0.35181   0.392    0.994    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_K.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(K_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.6756
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate lwr      upr     
## Loamy - Clayey == 0  0.12937 -0.38540  0.64414
## SaLo - Clayey == 0   0.14269 -0.25425  0.53964
## Sandy - Clayey == 0 -0.77311 -1.14331 -0.40291
## ThCl - Clayey == 0  -0.63529 -1.61617  0.34559
## SaLo - Loamy == 0    0.01332 -0.49415  0.52080
## Sandy - Loamy == 0  -0.90248 -1.36608 -0.43887
## ThCl - Loamy == 0   -0.76466 -1.78674  0.25743
## Sandy - SaLo == 0   -0.91580 -1.23831 -0.59329
## ThCl - SaLo == 0    -0.77798 -1.71636  0.16040
## ThCl - Sandy == 0    0.13782 -0.80350  1.07915

Ca

#Ca Overall 
Canorm <- fitdist(SoilJuly181920$Ca_ppm, "norm")
plot(Canorm) #all pretty bad!

Calognorm <- fitdist(log(SoilJuly181920$Ca_ppm), "norm")
plot(Calognorm) #qq and pp are off more than other log's, but it's what we have 

#Cagamma <- fitdist(SoilJuly181920$Ca_ppm, "gamma") #errors out
#plot(Cagamma) #qq wonky on right end

#untransformed
ggplot(SoilJuly181920, aes(x=Location, y=Ca_ppm, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="Ca_ppm", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

#with log
ggplot(SoilJuly181920, aes(x=Location, y=log(Ca_ppm), color=TSF))+
  geom_boxplot(size=1)+
  labs(y="log(Ca_ppm)", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

ggplot(SoilJuly181920, aes(x=Location, y=log(Ca_ppm), color=ESD))+
  geom_boxplot(size=1)+
  labs(y="log(Ca_ppm)", x="Location")+
  scale_color_brewer(palette = "Dark2")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

Canull <-lmer(log(Ca_ppm) ~ 1 + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
CaT <- lmer(log(Ca_ppm) ~ TSF + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
CaE <- lmer(log(Ca_ppm) ~  ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) 
CaTE <- lmer(log(Ca_ppm) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)

anova(Canull, CaT, CaE, CaTE)
## Data: SoilJuly181920
## Models:
## Canull: log(Ca_ppm) ~ 1 + (1 | Location/Year)
## CaT: log(Ca_ppm) ~ TSF + (1 | Location/Year)
## CaE: log(Ca_ppm) ~ ESD + (1 | Location/Year)
## CaTE: log(Ca_ppm) ~ TSF + ESD + (1 | Location/Year)
##        Df    AIC    BIC  logLik deviance   Chisq Chi Df Pr(>Chisq)    
## Canull  4 432.76 447.41 -212.38   424.76                              
## CaT     8 438.48 467.78 -211.24   422.48  2.2761      4     0.6851    
## CaE     8 417.61 446.91 -200.80   401.61 20.8714      0     <2e-16 ***
## CaTE   12 421.98 465.94 -198.99   397.98  3.6262      4     0.4590    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Ca.tscale <- lmer(scale(log(Ca_ppm)) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
Mult_Ca.TSF <- glht(Ca.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_Ca.TSF) #No TSF difference
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Ca_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)
## 1yr - 2yr - 1yr < == 0      0.01238    0.13255   0.093    1.000
## 2yr - 3yr - 1yr < == 0      0.04106    0.15094   0.272    0.999
## 3yr - 4yr - 1yr < == 0     -0.05178    0.19738  -0.262    0.999
## Unburned - 1yr < == 0      -0.20908    0.13694  -1.527    0.537
## 2yr - 3yr - 1yr - 2yr == 0  0.02868    0.15072   0.190    1.000
## 3yr - 4yr - 1yr - 2yr == 0 -0.06416    0.19666  -0.326    0.997
## Unburned - 1yr - 2yr == 0  -0.22146    0.13698  -1.617    0.478
## 3yr - 4yr - 2yr - 3yr == 0 -0.09284    0.20527  -0.452    0.991
## Unburned - 2yr - 3yr == 0  -0.25014    0.16035  -1.560    0.515
## Unburned - 3yr - 4yr == 0  -0.15730    0.20763  -0.758    0.941
## (Adjusted p values reported -- single-step method)
confint(Mult_Ca.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Ca_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.7137
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate lwr      upr     
## 1yr - 2yr - 1yr < == 0      0.01238 -0.34733  0.37210
## 2yr - 3yr - 1yr < == 0      0.04106 -0.36855  0.45067
## 3yr - 4yr - 1yr < == 0     -0.05178 -0.58742  0.48386
## Unburned - 1yr < == 0      -0.20908 -0.58069  0.16254
## 2yr - 3yr - 1yr - 2yr == 0  0.02868 -0.38033  0.43768
## 3yr - 4yr - 1yr - 2yr == 0 -0.06416 -0.59785  0.46953
## Unburned - 1yr - 2yr == 0  -0.22146 -0.59317  0.15025
## 3yr - 4yr - 2yr - 3yr == 0 -0.09284 -0.64989  0.46421
## Unburned - 2yr - 3yr == 0  -0.25014 -0.68528  0.18501
## Unburned - 3yr - 4yr == 0  -0.15730 -0.72075  0.40615
Mult_Ca.ESD <- glht(Ca.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_Ca.ESD) #sandy is higher than clayey and thin claypan? Loamy is highest
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Ca_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)   
## Loamy - Clayey == 0   0.5916     0.1948   3.037  0.01716 * 
## SaLo - Clayey == 0    0.3907     0.1509   2.590  0.06280 . 
## Sandy - Clayey == 0   0.4438     0.1391   3.191  0.01040 * 
## ThCl - Clayey == 0   -0.8073     0.3720  -2.170  0.17079   
## SaLo - Loamy == 0    -0.2008     0.1973  -1.018  0.83098   
## Sandy - Loamy == 0   -0.1477     0.1758  -0.840  0.90813   
## ThCl - Loamy == 0    -1.3988     0.3895  -3.592  0.00250 **
## Sandy - SaLo == 0     0.0531     0.1221   0.435  0.99149   
## ThCl - SaLo == 0     -1.1980     0.3520  -3.403  0.00506 **
## ThCl - Sandy == 0    -1.2511     0.3549  -3.525  0.00326 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_Ca.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Ca_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.6751
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate lwr      upr     
## Loamy - Clayey == 0  0.59155  0.07041  1.11269
## SaLo - Clayey == 0   0.39072 -0.01284  0.79428
## Sandy - Clayey == 0  0.44382  0.07170  0.81594
## ThCl - Clayey == 0  -0.80730 -1.80242  0.18782
## SaLo - Loamy == 0   -0.20083 -0.72874  0.32708
## Sandy - Loamy == 0  -0.14773 -0.61797  0.32252
## ThCl - Loamy == 0   -1.39884 -2.44066 -0.35703
## Sandy - SaLo == 0    0.05310 -0.27343  0.37963
## ThCl - SaLo == 0    -1.19802 -2.13975 -0.25628
## ThCl - Sandy == 0   -1.25112 -2.20058 -0.30165

Mg

#Mg Overall 
Mgnorm <- fitdist(SoilJuly181920$Mg_ppm, "norm")
plot(Mgnorm) #pp is wonky

Mglognorm <- fitdist(log(SoilJuly181920$Mg_ppm), "norm")
plot(Mglognorm) #better 

Mggamma <- fitdist(SoilJuly181920$Mg_ppm, "gamma") #errors out
plot(Mggamma) #better than normal, not better than log

#untransformed
ggplot(SoilJuly181920, aes(x=Location, y=Mg_ppm, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="Mg_ppm (scales free)", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1, scales = "free")

ggplot(SoilJuly181920, aes(x=Location, y=Mg_ppm, color=ESD))+
  geom_boxplot(size=1)+
  labs(y="Mg_ppm (scales free)", x="Location")+
  scale_color_brewer(palette = "Dark2")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1, scales = "free")

#with log
ggplot(SoilJuly181920, aes(x=Location, y=log(Mg_ppm), color=TSF))+
  geom_boxplot(size=1)+
  labs(y="log(Mg_ppm)", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

ggplot(SoilJuly181920, aes(x=Location, y=log(Mg_ppm), color=ESD))+
  geom_boxplot(size=1)+
  labs(y="log(Mg_ppm) (scales free)", x="Location")+
  scale_color_brewer(palette = "Dark2")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1, scales = "free")

Mgnull <-lmer(log(Mg_ppm) ~ 1 + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
MgT <- lmer(log(Mg_ppm) ~ TSF + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
MgE <- lmer(log(Mg_ppm) ~  ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) 
MgTE <- lmer(log(Mg_ppm) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)

anova(Mgnull, MgT, MgE, MgTE)
## Data: SoilJuly181920
## Models:
## Mgnull: log(Mg_ppm) ~ 1 + (1 | Location/Year)
## MgT: log(Mg_ppm) ~ TSF + (1 | Location/Year)
## MgE: log(Mg_ppm) ~ ESD + (1 | Location/Year)
## MgTE: log(Mg_ppm) ~ TSF + ESD + (1 | Location/Year)
##        Df    AIC    BIC  logLik deviance   Chisq Chi Df Pr(>Chisq)    
## Mgnull  4 242.41 257.06 -117.21   234.41                              
## MgT     8 245.24 274.55 -114.62   229.24  5.1688      4     0.2704    
## MgE     8 228.63 257.94 -106.32   212.63 16.6122      0     <2e-16 ***
## MgTE   12 232.64 276.60 -104.32   208.64  3.9907      4     0.4073    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mg.tscale <- lmer(scale(log(Mg_ppm)) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
Mult_Mg.TSF <- glht(Mg.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_Mg.TSF) #No TSF difference
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Mg_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)
## 1yr - 2yr - 1yr < == 0      0.06333    0.14587   0.434    0.992
## 2yr - 3yr - 1yr < == 0      0.04985    0.16692   0.299    0.998
## 3yr - 4yr - 1yr < == 0     -0.10525    0.21987  -0.479    0.989
## Unburned - 1yr < == 0      -0.21089    0.15204  -1.387    0.628
## 2yr - 3yr - 1yr - 2yr == 0 -0.01348    0.16666  -0.081    1.000
## 3yr - 4yr - 1yr - 2yr == 0 -0.16858    0.21908  -0.769    0.937
## Unburned - 1yr - 2yr == 0  -0.27423    0.15210  -1.803    0.364
## 3yr - 4yr - 2yr - 3yr == 0 -0.15510    0.22744  -0.682    0.959
## Unburned - 2yr - 3yr == 0  -0.26075    0.18005  -1.448    0.588
## Unburned - 3yr - 4yr == 0  -0.10565    0.23461  -0.450    0.991
## (Adjusted p values reported -- single-step method)
confint(Mult_Mg.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Mg_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.7133
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate lwr      upr     
## 1yr - 2yr - 1yr < == 0      0.06333 -0.33244  0.45911
## 2yr - 3yr - 1yr < == 0      0.04985 -0.40304  0.50274
## 3yr - 4yr - 1yr < == 0     -0.10525 -0.70182  0.49132
## Unburned - 1yr < == 0      -0.21089 -0.62341  0.20162
## 2yr - 3yr - 1yr - 2yr == 0 -0.01348 -0.46568  0.43872
## 3yr - 4yr - 1yr - 2yr == 0 -0.16858 -0.76300  0.42584
## Unburned - 1yr - 2yr == 0  -0.27423 -0.68691  0.13845
## 3yr - 4yr - 2yr - 3yr == 0 -0.15510 -0.77220  0.46201
## Unburned - 2yr - 3yr == 0  -0.26075 -0.74928  0.22779
## Unburned - 3yr - 4yr == 0  -0.10565 -0.74221  0.53091
Mult_Mg.ESD <- glht(Mg.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_Mg.ESD) #sandy is lower than thin clay and salo
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Mg_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Loamy - Clayey == 0 -0.03693    0.21267  -0.174   0.9998    
## SaLo - Clayey == 0   0.22015    0.16443   1.339   0.6403    
## Sandy - Clayey == 0 -0.32282    0.15230  -2.120   0.1903    
## ThCl - Clayey == 0   0.76271    0.40580   1.880   0.3011    
## SaLo - Loamy == 0    0.25708    0.21320   1.206   0.7253    
## Sandy - Loamy == 0  -0.28589    0.19174  -1.491   0.5392    
## ThCl - Loamy == 0    0.79964    0.42400   1.886   0.2982    
## Sandy - SaLo == 0   -0.54297    0.13326  -4.075   <0.001 ***
## ThCl - SaLo == 0     0.54256    0.38567   1.407   0.5954    
## ThCl - Sandy == 0    1.08553    0.38804   2.797   0.0356 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_Mg.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(log(Mg_ppm)) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.6751
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate lwr      upr     
## Loamy - Clayey == 0 -0.03693 -0.60587  0.53200
## SaLo - Clayey == 0   0.22015 -0.21973  0.66003
## Sandy - Clayey == 0 -0.32282 -0.73024  0.08460
## ThCl - Clayey == 0   0.76271 -0.32285  1.84827
## SaLo - Loamy == 0    0.25708 -0.31327  0.82743
## Sandy - Loamy == 0  -0.28589 -0.79882  0.22704
## ThCl - Loamy == 0    0.79964 -0.33463  1.93391
## Sandy - SaLo == 0   -0.54297 -0.89945 -0.18648
## ThCl - SaLo == 0     0.54256 -0.48917  1.57430
## ThCl - Sandy == 0    1.08553  0.04747  2.12359

Total Nitrogen

#TN Overall 
TNnorm <- fitdist(SoilJuly181920$TotalN_percent, "norm")
plot(TNnorm) #qq could be better

TNlognorm <- fitdist(log(SoilJuly181920$TotalN_percent), "norm")
plot(TNlognorm) #better, but lots of negative values? 

TNgamma <- fitdist(SoilJuly181920$TotalN_percent, "gamma") #errors out
plot(TNgamma) #about the same as normal

#untransformed
ggplot(SoilJuly181920, aes(x=Location, y=TotalN_percent, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="TotalN_percent", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

ggplot(SoilJuly181920, aes(x=Location, y=TotalN_percent, color=ESD))+
  geom_boxplot(size=1)+
  labs(y="TotalN_percent", x="Location")+
  scale_color_brewer(palette = "Dark2")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

TNnull <-lmer(TotalN_percent ~ 1 + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
TNT <- lmer(TotalN_percent ~ TSF + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
TNE <- lmer(TotalN_percent ~  ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) 
TNTE <- lmer(TotalN_percent ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)

anova(TNnull, TNT, TNE, TNTE)
## Data: SoilJuly181920
## Models:
## TNnull: TotalN_percent ~ 1 + (1 | Location/Year)
## TNT: TotalN_percent ~ TSF + (1 | Location/Year)
## TNE: TotalN_percent ~ ESD + (1 | Location/Year)
## TNTE: TotalN_percent ~ TSF + ESD + (1 | Location/Year)
##        Df     AIC     BIC logLik deviance   Chisq Chi Df Pr(>Chisq)    
## TNnull  4 -859.54 -844.89 433.77  -867.54                              
## TNT     8 -858.41 -829.11 437.21  -874.41  6.8724      4     0.1428    
## TNE     8 -920.65 -891.35 468.32  -936.65 62.2386      0     <2e-16 ***
## TNTE   12 -919.64 -875.68 471.82  -943.64  6.9901      4     0.1364    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TN.tscale <- lmer(scale(TotalN_percent) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
Mult_TN.TSF <- glht(TN.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_TN.TSF) #RB higher than NYB
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalN_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)  
## 1yr - 2yr - 1yr < == 0     -0.03529    0.12916  -0.273   0.9987  
## 2yr - 3yr - 1yr < == 0     -0.07438    0.14801  -0.503   0.9866  
## 3yr - 4yr - 1yr < == 0     -0.05738    0.19540  -0.294   0.9983  
## Unburned - 1yr < == 0      -0.33564    0.13497  -2.487   0.0898 .
## 2yr - 3yr - 1yr - 2yr == 0 -0.03909    0.14778  -0.265   0.9989  
## 3yr - 4yr - 1yr - 2yr == 0 -0.02209    0.19468  -0.113   1.0000  
## Unburned - 1yr - 2yr == 0  -0.30035    0.13503  -2.224   0.1650  
## 3yr - 4yr - 2yr - 3yr == 0  0.01700    0.20179   0.084   1.0000  
## Unburned - 2yr - 3yr == 0  -0.26126    0.16035  -1.629   0.4696  
## Unburned - 3yr - 4yr == 0  -0.27826    0.20931  -1.329   0.6651  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_TN.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalN_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.7108
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate lwr      upr     
## 1yr - 2yr - 1yr < == 0     -0.03529 -0.38542  0.31484
## 2yr - 3yr - 1yr < == 0     -0.07438 -0.47560  0.32684
## 3yr - 4yr - 1yr < == 0     -0.05738 -0.58708  0.47231
## Unburned - 1yr < == 0      -0.33564 -0.70151  0.03023
## 2yr - 3yr - 1yr - 2yr == 0 -0.03909 -0.43969  0.36151
## 3yr - 4yr - 1yr - 2yr == 0 -0.02209 -0.54984  0.50565
## Unburned - 1yr - 2yr == 0  -0.30035 -0.66639  0.06569
## 3yr - 4yr - 2yr - 3yr == 0  0.01700 -0.53002  0.56401
## Unburned - 2yr - 3yr == 0  -0.26126 -0.69593  0.17341
## Unburned - 3yr - 4yr == 0  -0.27826 -0.84565  0.28913
Mult_TN.ESD <- glht(TN.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_TN.ESD) #sandy is lower than clayey, salo, and loamy; salo is higher than clayey
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalN_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Loamy - Clayey == 0  0.08182    0.18959   0.432   0.9918    
## SaLo - Clayey == 0   0.38875    0.14681   2.648   0.0538 .  
## Sandy - Clayey == 0 -0.61022    0.13545  -4.505   <0.001 ***
## ThCl - Clayey == 0   0.04003    0.36199   0.111   1.0000    
## SaLo - Loamy == 0    0.30693    0.19176   1.601   0.4666    
## Sandy - Loamy == 0  -0.69204    0.17105  -4.046   <0.001 ***
## ThCl - Loamy == 0   -0.04179    0.37884  -0.110   1.0000    
## Sandy - SaLo == 0   -0.99896    0.11882  -8.407   <0.001 ***
## ThCl - SaLo == 0    -0.34872    0.34285  -1.017   0.8313    
## ThCl - Sandy == 0    0.65024    0.34552   1.882   0.2997    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_TN.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalN_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.6747
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate  lwr       upr      
## Loamy - Clayey == 0  0.081818 -0.425269  0.588905
## SaLo - Clayey == 0   0.388746 -0.003932  0.781423
## Sandy - Clayey == 0 -0.610219 -0.972501 -0.247936
## ThCl - Clayey == 0   0.040026 -0.928189  1.008240
## SaLo - Loamy == 0    0.306928 -0.205973  0.819829
## Sandy - Loamy == 0  -0.692037 -1.149541 -0.234532
## ThCl - Loamy == 0   -0.041792 -1.055079  0.971495
## Sandy - SaLo == 0   -0.998964 -1.316777 -0.681151
## ThCl - SaLo == 0    -0.348720 -1.265744  0.568304
## ThCl - Sandy == 0    0.650244 -0.273909  1.574397

Total Carbon

#TC Overall 
TCnorm <- fitdist(SoilJuly181920$TotalC_percent, "norm")
plot(TCnorm) #qq could be better

TClognorm <- fitdist(log(SoilJuly181920$TotalC_percent), "norm")
plot(TClognorm) #better, but some of negative values? 

TCgamma <- fitdist(SoilJuly181920$TotalC_percent, "gamma") #errors out
plot(TCgamma) #this is better

#untransformed
ggplot(SoilJuly181920, aes(x=Location, y=TotalC_percent, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="TotalC_percent", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

ggplot(SoilJuly181920, aes(x=Location, y=TotalC_percent, color=ESD))+
  geom_boxplot(size=1)+
  labs(y="TotalC_percent", x="Location")+
  scale_color_brewer(palette = "Dark2")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

TCnull <-lmer(TotalC_percent ~ 1 + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
TCT <- lmer(TotalC_percent ~ TSF + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
TCE <- lmer(TotalC_percent ~  ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) 
TCTE <- lmer(TotalC_percent ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)

anova(TCnull, TCT, TCE, TCTE)
## Data: SoilJuly181920
## Models:
## TCnull: TotalC_percent ~ 1 + (1 | Location/Year)
## TCT: TotalC_percent ~ TSF + (1 | Location/Year)
## TCE: TotalC_percent ~ ESD + (1 | Location/Year)
## TCTE: TotalC_percent ~ TSF + ESD + (1 | Location/Year)
##        Df    AIC    BIC  logLik deviance   Chisq Chi Df Pr(>Chisq)    
## TCnull  4 555.43 570.08 -273.71   547.43                              
## TCT     8 554.26 583.56 -269.13   538.26  9.1676      4    0.05704 .  
## TCE     8 491.74 521.04 -237.87   475.74 62.5231      0    < 2e-16 ***
## TCTE   12 489.61 533.57 -232.81   465.61 10.1276      4    0.03833 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TC.tscale <- lmer(scale(TotalC_percent) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
Mult_TC.TSF <- glht(TC.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_TC.TSF) #1-2 higher than NYB
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalC_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)  
## 1yr - 2yr - 1yr < == 0      0.06101    0.13302   0.459   0.9906  
## 2yr - 3yr - 1yr < == 0     -0.12858    0.15043  -0.855   0.9109  
## 3yr - 4yr - 1yr < == 0     -0.03924    0.19467  -0.202   0.9996  
## Unburned - 1yr < == 0      -0.34344    0.13576  -2.530   0.0815 .
## 2yr - 3yr - 1yr - 2yr == 0 -0.18959    0.15022  -1.262   0.7087  
## 3yr - 4yr - 1yr - 2yr == 0 -0.10025    0.19398  -0.517   0.9853  
## Unburned - 1yr - 2yr == 0  -0.40445    0.13577  -2.979   0.0232 *
## 3yr - 4yr - 2yr - 3yr == 0  0.08934    0.20391   0.438   0.9921  
## Unburned - 2yr - 3yr == 0  -0.21486    0.15635  -1.374   0.6376  
## Unburned - 3yr - 4yr == 0  -0.30420    0.20057  -1.517   0.5443  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_TC.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalC_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.7146
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate lwr      upr     
## 1yr - 2yr - 1yr < == 0      0.06101 -0.30008  0.42210
## 2yr - 3yr - 1yr < == 0     -0.12858 -0.53693  0.27977
## 3yr - 4yr - 1yr < == 0     -0.03924 -0.56770  0.48921
## Unburned - 1yr < == 0      -0.34344 -0.71197  0.02508
## 2yr - 3yr - 1yr - 2yr == 0 -0.18959 -0.59737  0.21819
## 3yr - 4yr - 1yr - 2yr == 0 -0.10025 -0.62682  0.42631
## Unburned - 1yr - 2yr == 0  -0.40445 -0.77301 -0.03590
## 3yr - 4yr - 2yr - 3yr == 0  0.08934 -0.46420  0.64287
## Unburned - 2yr - 3yr == 0  -0.21486 -0.63929  0.20956
## Unburned - 3yr - 4yr == 0  -0.30420 -0.84867  0.24028
Mult_TC.ESD <- glht(TC.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_TC.ESD) #sandy is lower than clayey, salo, and loamy; salo is higher than clayey
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalC_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Loamy - Clayey == 0  0.33490    0.19522   1.716  0.39434    
## SaLo - Clayey == 0   0.58938    0.15108   3.901  < 0.001 ***
## Sandy - Clayey == 0 -0.45994    0.13945  -3.298  0.00729 ** 
## ThCl - Clayey == 0   0.28571    0.37270   0.767  0.93268    
## SaLo - Loamy == 0    0.25448    0.19735   1.289  0.67210    
## Sandy - Loamy == 0  -0.79484    0.17612  -4.513  < 0.001 ***
## ThCl - Loamy == 0   -0.04919    0.39006  -0.126  0.99993    
## Sandy - SaLo == 0   -1.04932    0.12227  -8.582  < 0.001 ***
## ThCl - SaLo == 0    -0.30367    0.35290  -0.860  0.90072    
## ThCl - Sandy == 0    0.74565    0.35572   2.096  0.19949    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_TC.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TotalC_percent) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.6728
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate lwr      upr     
## Loamy - Clayey == 0  0.33490 -0.18688  0.85668
## SaLo - Clayey == 0   0.58938  0.18558  0.99318
## Sandy - Clayey == 0 -0.45994 -0.83266 -0.08722
## ThCl - Clayey == 0   0.28571 -0.71045  1.28187
## SaLo - Loamy == 0    0.25448 -0.27301  0.78197
## Sandy - Loamy == 0  -0.79484 -1.26558 -0.32410
## ThCl - Loamy == 0   -0.04919 -1.09177  0.99338
## Sandy - SaLo == 0   -1.04932 -1.37612 -0.72251
## ThCl - SaLo == 0    -0.30367 -1.24692  0.63959
## ThCl - Sandy == 0    0.74565 -0.20513  1.69642

Total C:N

#TCNR Overall 
TCNRnorm <- fitdist(SoilJuly181920$TCNR, "norm")
plot(TCNRnorm) #qq and pp are off

TCNRlognorm <- fitdist(log(SoilJuly181920$TCNR), "norm")
plot(TCNRlognorm) #not really any better

TCNRgamma <- fitdist(SoilJuly181920$TCNR, "gamma") 
plot(TCNRgamma) #none are great, use normal?

#untransformed
ggplot(SoilJuly181920, aes(x=Location, y=TCNR, color=TSF))+
  geom_boxplot(size=1)+
  labs(y="TCNR (scales free)", x="Location")+
  scale_color_brewer(palette = "Set1")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1, scales = "free")

ggplot(SoilJuly181920, aes(x=Location, y=TCNR, color=ESD))+
  geom_boxplot(size=1)+
  labs(y="TCNR", x="Location")+
  scale_color_brewer(palette = "Dark2")+
  theme_bw()+
  theme(legend.position = "bottom",
        axis.title=element_text(size=12, face="bold"), 
        axis.text=element_text(size=12),
        axis.text.x=element_text(angle=33, hjust=1),
        legend.text=element_text(size=8),
        legend.title = element_text(size=8),
        panel.grid.major.x = element_blank())+
  facet_wrap( ~ Year,ncol = 1)

TCNRnull <-lmer(TCNR ~ 1 + (1|Location/Year), data=SoilJuly181920, REML = FALSE) #failed to converge?
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00273451 (tol = 0.002, component 1)
TCNRT <- lmer(TCNR ~ TSF + (1|Location/Year), data=SoilJuly181920, REML = FALSE) #failed to converge
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00332473 (tol = 0.002, component 1)
TCNRE <- lmer(TCNR ~  ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) #converged
TCNRTE <- lmer(TCNR ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE) #converged

anova(TCNRnull, TCNRT, TCNRE, TCNRTE) #none are really good
## Data: SoilJuly181920
## Models:
## TCNRnull: TCNR ~ 1 + (1 | Location/Year)
## TCNRT: TCNR ~ TSF + (1 | Location/Year)
## TCNRE: TCNR ~ ESD + (1 | Location/Year)
## TCNRTE: TCNR ~ TSF + ESD + (1 | Location/Year)
##          Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## TCNRnull  4 1109.8 1124.5 -550.91   1101.8                             
## TCNRT     8 1111.2 1140.5 -547.61   1095.2 6.6050      4     0.1583    
## TCNRE     8 1103.6 1132.9 -543.80   1087.6 7.6138      0     <2e-16 ***
## TCNRTE   12 1106.4 1150.3 -541.18   1082.4 5.2481      4     0.2628    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(TCNRTE)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: TCNR ~ TSF + ESD + (1 | Location/Year)
##    Data: SoilJuly181920
## 
##      AIC      BIC   logLik deviance df.resid 
##   1106.4   1150.3   -541.2   1082.4      276 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.0956 -0.4277 -0.0565  0.2591  7.1247 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Year:Location (Intercept) 0.02591  0.1610  
##  Location      (Intercept) 0.10646  0.3263  
##  Residual                  2.43284  1.5598  
## Number of obs: 288, groups:  Year:Location, 18; Location, 6
## 
## Fixed effects:
##              Estimate Std. Error t value
## (Intercept)   9.14068    0.30959  29.525
## TSF1yr - 2yr  0.27314    0.26025   1.050
## TSF2yr - 3yr -0.27395    0.29233  -0.937
## TSF3yr - 4yr -0.48320    0.37442  -1.291
## TSFUnburned  -0.05413    0.26258  -0.206
## ESDLoamy      0.81454    0.37458   2.175
## ESDSaLo       0.78682    0.28861   2.726
## ESDSandy      0.14726    0.26931   0.547
## ESDThCl       0.83139    0.71362   1.165
## 
## Correlation of Fixed Effects:
##             (Intr) TSF1-2 TSF2-3 TSF3-4 TSFUnb ESDLmy ESDSaL ESDSnd
## TSF1yr-2yr  -0.430                                                 
## TSF2yr-3yr  -0.386  0.447                                          
## TSF3yr-4yr  -0.336  0.352  0.319                                   
## TSFUnburned -0.428  0.496  0.430  0.338                            
## ESDLoamy    -0.425  0.004 -0.006  0.040  0.032                     
## ESDSaLo     -0.594  0.034  0.042  0.098  0.016  0.404              
## ESDSandy    -0.597 -0.003  0.005  0.010 -0.006  0.491  0.649       
## ESDThCl     -0.277  0.006 -0.022  0.068  0.071  0.181  0.308  0.294
TCNR.tscale <- lmer(scale(TCNR) ~ TSF + ESD + (1|Location/Year), data=SoilJuly181920, REML = FALSE)
Mult_TCNR.TSF <- glht(TCNR.tscale, linfct=mcp(TSF = "Tukey"))
summary(Mult_TCNR.TSF) #No difference
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TCNR) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)
## 1yr - 2yr - 1yr < == 0      0.16525    0.15745   1.050    0.828
## 2yr - 3yr - 1yr < == 0     -0.16574    0.17686  -0.937    0.880
## 3yr - 4yr - 1yr < == 0     -0.29233    0.22652  -1.291    0.691
## Unburned - 1yr < == 0      -0.03275    0.15886  -0.206    1.000
## 2yr - 3yr - 1yr - 2yr == 0 -0.33099    0.17664  -1.874    0.325
## 3yr - 4yr - 1yr - 2yr == 0 -0.45758    0.22576  -2.027    0.247
## Unburned - 1yr - 2yr == 0  -0.19800    0.15884  -1.247    0.719
## 3yr - 4yr - 2yr - 3yr == 0 -0.12659    0.23882  -0.530    0.984
## Unburned - 2yr - 3yr == 0   0.13299    0.17986   0.739    0.946
## Unburned - 3yr - 4yr == 0   0.25958    0.22853   1.136    0.783
## (Adjusted p values reported -- single-step method)
confint(Mult_TCNR.TSF)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TCNR) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.717
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate lwr      upr     
## 1yr - 2yr - 1yr < == 0      0.16525 -0.26253  0.59303
## 2yr - 3yr - 1yr < == 0     -0.16574 -0.64626  0.31478
## 3yr - 4yr - 1yr < == 0     -0.29233 -0.90778  0.32311
## Unburned - 1yr < == 0      -0.03275 -0.46436  0.39886
## 2yr - 3yr - 1yr - 2yr == 0 -0.33099 -0.81090  0.14893
## 3yr - 4yr - 1yr - 2yr == 0 -0.45758 -1.07096  0.15580
## Unburned - 1yr - 2yr == 0  -0.19800 -0.62955  0.23356
## 3yr - 4yr - 2yr - 3yr == 0 -0.12659 -0.77546  0.52228
## Unburned - 2yr - 3yr == 0   0.13299 -0.35569  0.62167
## Unburned - 3yr - 4yr == 0   0.25958 -0.36133  0.88049
Mult_TCNR.ESD <- glht(TCNR.tscale, linfct=mcp(ESD = "Tukey"))
summary(Mult_TCNR.ESD) #Salo higher than clayey, sandy lower than salo
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TCNR) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)  
## Loamy - Clayey == 0  0.49279    0.22662   2.175   0.1699  
## SaLo - Clayey == 0   0.47602    0.17461   2.726   0.0434 *
## Sandy - Clayey == 0  0.08909    0.16293   0.547   0.9800  
## ThCl - Clayey == 0   0.50299    0.43173   1.165   0.7507  
## SaLo - Loamy == 0   -0.01677    0.22328  -0.075   1.0000  
## Sandy - Loamy == 0  -0.40370    0.20408  -1.978   0.2522  
## ThCl - Loamy == 0    0.01020    0.44990   0.023   1.0000  
## Sandy - SaLo == 0   -0.38693    0.14186  -2.728   0.0434 *
## ThCl - SaLo == 0     0.02697    0.41288   0.065   1.0000  
## ThCl - Sandy == 0    0.41390    0.41429   0.999   0.8411  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_TCNR.ESD)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = scale(TCNR) ~ TSF + ESD + (1 | Location/Year), 
##     data = SoilJuly181920, REML = FALSE)
## 
## Quantile = 2.6768
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate  lwr       upr      
## Loamy - Clayey == 0  0.492790 -0.113811  1.099390
## SaLo - Clayey == 0   0.476022  0.008632  0.943412
## Sandy - Clayey == 0  0.089093 -0.347030  0.525215
## ThCl - Clayey == 0   0.502988 -0.652670  1.658646
## SaLo - Loamy == 0   -0.016768 -0.614442  0.580907
## Sandy - Loamy == 0  -0.403697 -0.949978  0.142584
## ThCl - Loamy == 0    0.010198 -1.194090  1.214487
## Sandy - SaLo == 0   -0.386929 -0.766659 -0.007200
## ThCl - SaLo == 0     0.026966 -1.078237  1.132169
## ThCl - Sandy == 0    0.413895 -0.695060  1.522850

Moisture

#Moisture
Mnorm <- fitdist(Soil1920$Moisture, "norm")
plot(Mnorm) #ok

Mlognorm <- fitdist(log(Soil1920$Moisture), "norm")
plot(Mlognorm) #best

Mgamma <- fitdist(Soil1920$Moisture, "gamma") 
plot(Mgamma) 

#Full nesting

Mnull1 <-lmer(log(Moisture) ~ 1 + (1|Location/Month/Year), data=Soil1920, REML = FALSE)
MT1 <-lmer(log(Moisture) ~ TSF + (1|Location/Month/Year), data=Soil1920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
ME1 <-lmer(log(Moisture) ~ ESD + (1|Location/Month/Year), data=Soil1920, REML = FALSE)
MTE1 <-lmer(log(Moisture) ~ TSF + ESD + (1|Location/Month/Year), data=Soil1920, REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00426226 (tol = 0.002, component 1)
anova(Mnull1, MT1, ME1, MTE1)
## Data: Soil1920
## Models:
## Mnull1: log(Moisture) ~ 1 + (1 | Location/Month/Year)
## MT1: log(Moisture) ~ TSF + (1 | Location/Month/Year)
## ME1: log(Moisture) ~ ESD + (1 | Location/Month/Year)
## MTE1: log(Moisture) ~ TSF + ESD + (1 | Location/Month/Year)
##        Df    AIC    BIC   logLik deviance   Chisq Chi Df Pr(>Chisq)    
## Mnull1  5 341.16 364.38 -165.582   331.16                              
## MT1     9 316.71 358.50 -149.355   298.71  32.454      4  1.545e-06 ***
## ME1     9 212.40 254.19  -97.198   194.40 104.314      0  < 2.2e-16 ***
## MTE1   13 187.65 248.02  -80.827   161.65  32.741      4  1.350e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mult_MT1 <- glht(MTE1, linfct=mcp(TSF = "Tukey"))
summary(Mult_MT1) #Everybody higher than NYB! 
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Moisture) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil1920, REML = FALSE)
## 
## Linear Hypotheses:
##                             Estimate Std. Error z value Pr(>|z|)    
## 1yr - 2yr - 1yr < == 0      0.064146   0.024817   2.585  0.07061 .  
## 2yr - 3yr - 1yr < == 0      0.008855   0.024806   0.357  0.99640    
## 3yr - 4yr - 1yr < == 0      0.061268   0.031893   1.921  0.29863    
## Unburned - 1yr < == 0      -0.114635   0.031660  -3.621  0.00268 ** 
## 2yr - 3yr - 1yr - 2yr == 0 -0.055291   0.024643  -2.244  0.15877    
## 3yr - 4yr - 1yr - 2yr == 0 -0.002878   0.032149  -0.090  0.99998    
## Unburned - 1yr - 2yr == 0  -0.178781   0.031793  -5.623  < 0.001 ***
## 3yr - 4yr - 2yr - 3yr == 0  0.052413   0.031893   1.643  0.46118    
## Unburned - 2yr - 3yr == 0  -0.123489   0.031821  -3.881  < 0.001 ***
## Unburned - 3yr - 4yr == 0  -0.175903   0.040103  -4.386  < 0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_MT1)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Moisture) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil1920, REML = FALSE)
## 
## Quantile = 2.7135
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate  lwr       upr      
## 1yr - 2yr - 1yr < == 0      0.064146 -0.003194  0.131486
## 2yr - 3yr - 1yr < == 0      0.008855 -0.058456  0.076166
## 3yr - 4yr - 1yr < == 0      0.061268 -0.025273  0.147809
## Unburned - 1yr < == 0      -0.114635 -0.200545 -0.028724
## 2yr - 3yr - 1yr - 2yr == 0 -0.055291 -0.122161  0.011579
## 3yr - 4yr - 1yr - 2yr == 0 -0.002878 -0.090115  0.084358
## Unburned - 1yr - 2yr == 0  -0.178781 -0.265051 -0.092510
## 3yr - 4yr - 2yr - 3yr == 0  0.052413 -0.034129  0.138956
## Unburned - 2yr - 3yr == 0  -0.123489 -0.209835 -0.037144
## Unburned - 3yr - 4yr == 0  -0.175903 -0.284722 -0.067083
Mult_ME1 <- glht(MTE1, linfct=mcp(ESD = "Tukey"))
summary(Mult_ME1) #Sandy is the lowest; Salo Thin Claypan > Clayey Loamy
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Moisture) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil1920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)    
## Loamy - Clayey == 0  0.02318    0.03640   0.637  0.96485    
## SaLo - Clayey == 0   0.12904    0.02833   4.555  < 0.001 ***
## Sandy - Clayey == 0 -0.13082    0.02588  -5.056  < 0.001 ***
## ThCl - Clayey == 0   0.25007    0.06973   3.586  0.00281 ** 
## SaLo - Loamy == 0    0.10586    0.03692   2.868  0.02877 *  
## Sandy - Loamy == 0  -0.15401    0.03275  -4.703  < 0.001 ***
## ThCl - Loamy == 0    0.22689    0.07281   3.116  0.01348 *  
## Sandy - SaLo == 0   -0.25987    0.02277 -11.412  < 0.001 ***
## ThCl - SaLo == 0     0.12102    0.06572   1.842  0.32102    
## ThCl - Sandy == 0    0.38089    0.06645   5.732  < 0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_ME1)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Moisture) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil1920, REML = FALSE)
## 
## Quantile = 2.6739
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate  lwr       upr      
## Loamy - Clayey == 0  0.023182 -0.074139  0.120503
## SaLo - Clayey == 0   0.129044  0.053294  0.204793
## Sandy - Clayey == 0 -0.130824 -0.200014 -0.061633
## ThCl - Clayey == 0   0.250068  0.063615  0.436521
## SaLo - Loamy == 0    0.105862  0.007148  0.204576
## Sandy - Loamy == 0  -0.154005 -0.241563 -0.066448
## ThCl - Loamy == 0    0.226887  0.032211  0.421562
## Sandy - SaLo == 0   -0.259868 -0.320757 -0.198978
## ThCl - SaLo == 0     0.121024 -0.054699  0.296748
## ThCl - Sandy == 0    0.380892  0.203223  0.558561
#For testing diiferences between months 
Mnull <-lmer(log(Moisture) ~ 1 + (1|Location/Year), data=Soil1920, REML = FALSE) 
MMTE <-lmer(log(Moisture) ~ Month + TSF + ESD + (1|Location/Year), data=Soil1920, REML = FALSE) 

Mult_MM <- glht(MMTE, linfct=mcp(Month = "Tukey"))
summary(Mult_MM) #September > July > June > August
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Moisture) ~ Month + TSF + ESD + (1 | Location/Year), 
##     data = Soil1920, REML = FALSE)
## 
## Linear Hypotheses:
##                         Estimate Std. Error z value Pr(>|z|)    
## July - June == 0         0.26885    0.03219   8.351   <1e-04 ***
## August - June == 0      -0.17190    0.03219  -5.340   <1e-04 ***
## September - June == 0    0.40820    0.03219  12.680   <1e-04 ***
## August - July == 0      -0.44075    0.03219 -13.692   <1e-04 ***
## September - July == 0    0.13935    0.03219   4.329   <1e-04 ***
## September - August == 0  0.58010    0.03219  18.020   <1e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_MM)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Moisture) ~ Month + TSF + ESD + (1 | Location/Year), 
##     data = Soil1920, REML = FALSE)
## 
## Quantile = 2.5699
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                         Estimate lwr      upr     
## July - June == 0         0.26885  0.18612  0.35158
## August - June == 0      -0.17190 -0.25463 -0.08917
## September - June == 0    0.40820  0.32547  0.49093
## August - July == 0      -0.44075 -0.52348 -0.35802
## September - July == 0    0.13935  0.05662  0.22208
## September - August == 0  0.58010  0.49737  0.66283
Soil1920 <- 
  Soil1920 %>%
  unite("MonthTSF", c("Month", "TSF"), remove = F ) %>%
  as_tibble() 

Soil1920 <- 
  Soil1920 %>%
  unite("MonthESD", c("Month", "ESD"), remove = F ) %>%
  as_tibble()

This is a mess!

MTMint <- lmer(log(Moisture) ~ MonthTSF + (1|Location/Year), data=Soil1920, REML = FALSE)

Mult_MTMint <- glht(MTMint, linfct=mcp(MonthTSF = "Tukey"))
summary(Mult_MTMint) #a mess!
## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps

## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Moisture) ~ MonthTSF + (1 | Location/Year), 
##     data = Soil1920, REML = FALSE)
## 
## Linear Hypotheses:
##                                                  Estimate Std. Error z value
## August_1yr < - August_1yr - 2yr == 0           -0.1491571  0.0646880  -2.306
## August_2yr - 3yr - August_1yr - 2yr == 0       -0.1068955  0.0646880  -1.652
## August_3yr - 4yr - August_1yr - 2yr == 0        0.1027790  0.0801984   1.282
## August_Unburned - August_1yr - 2yr == 0        -0.5139975  0.0801984  -6.409
## July_1yr - 2yr - August_1yr - 2yr == 0          0.3963020  0.0646880   6.126
## July_1yr < - August_1yr - 2yr == 0              0.2861533  0.0646880   4.424
## July_2yr - 3yr - August_1yr - 2yr == 0          0.3528516  0.0646880   5.455
## July_3yr - 4yr - August_1yr - 2yr == 0          0.0550594  0.0801984   0.687
## July_Unburned - August_1yr - 2yr == 0           0.4770062  0.0801984   5.948
## June_1yr - 2yr - August_1yr - 2yr == 0          0.0935199  0.0646880   1.446
## June_1yr < - August_1yr - 2yr == 0              0.1041125  0.0650360   1.601
## June_2yr - 3yr - August_1yr - 2yr == 0          0.0127489  0.0646880   0.197
## June_3yr - 4yr - August_1yr - 2yr == 0          0.1906136  0.0791613   2.408
## June_Unburned - August_1yr - 2yr == 0          -0.1660102  0.0801984  -2.070
## September_1yr - 2yr - August_1yr - 2yr == 0     0.5311686  0.0646880   8.211
## September_1yr < - August_1yr - 2yr == 0         0.4302591  0.0646880   6.651
## September_2yr - 3yr - August_1yr - 2yr == 0     0.4763019  0.0646880   7.363
## September_3yr - 4yr - August_1yr - 2yr == 0     0.3890918  0.0801984   4.852
## September_Unburned - August_1yr - 2yr == 0      0.4529313  0.0801984   5.648
## August_2yr - 3yr - August_1yr < == 0            0.0422616  0.0646880   0.653
## August_3yr - 4yr - August_1yr < == 0            0.2519361  0.0801984   3.141
## August_Unburned - August_1yr < == 0            -0.3648404  0.0801984  -4.549
## July_1yr - 2yr - August_1yr < == 0              0.5454591  0.0646880   8.432
## July_1yr < - August_1yr < == 0                  0.4353104  0.0646880   6.729
## July_2yr - 3yr - August_1yr < == 0              0.5020087  0.0646880   7.760
## July_3yr - 4yr - August_1yr < == 0              0.2042165  0.0801984   2.546
## July_Unburned - August_1yr < == 0               0.6261633  0.0801984   7.808
## June_1yr - 2yr - August_1yr < == 0              0.2426770  0.0646880   3.751
## June_1yr < - August_1yr < == 0                  0.2532696  0.0650360   3.894
## June_2yr - 3yr - August_1yr < == 0              0.1619060  0.0646880   2.503
## June_3yr - 4yr - August_1yr < == 0              0.3397707  0.0791613   4.292
## June_Unburned - August_1yr < == 0              -0.0168531  0.0801984  -0.210
## September_1yr - 2yr - August_1yr < == 0         0.6803257  0.0646880  10.517
## September_1yr < - August_1yr < == 0             0.5794162  0.0646880   8.957
## September_2yr - 3yr - August_1yr < == 0         0.6254590  0.0646880   9.669
## September_3yr - 4yr - August_1yr < == 0         0.5382489  0.0801984   6.711
## September_Unburned - August_1yr < == 0          0.6020884  0.0801984   7.507
## August_3yr - 4yr - August_2yr - 3yr == 0        0.2096746  0.0801984   2.614
## August_Unburned - August_2yr - 3yr == 0        -0.4071019  0.0801984  -5.076
## July_1yr - 2yr - August_2yr - 3yr == 0          0.5031976  0.0646880   7.779
## July_1yr < - August_2yr - 3yr == 0              0.3930489  0.0646880   6.076
## July_2yr - 3yr - August_2yr - 3yr == 0          0.4597472  0.0646880   7.107
## July_3yr - 4yr - August_2yr - 3yr == 0          0.1619549  0.0801984   2.019
## July_Unburned - August_2yr - 3yr == 0           0.5839018  0.0801984   7.281
## June_1yr - 2yr - August_2yr - 3yr == 0          0.2004155  0.0646880   3.098
## June_1yr < - August_2yr - 3yr == 0              0.2110080  0.0650360   3.244
## June_2yr - 3yr - August_2yr - 3yr == 0          0.1196445  0.0646880   1.850
## June_3yr - 4yr - August_2yr - 3yr == 0          0.2975091  0.0791613   3.758
## June_Unburned - August_2yr - 3yr == 0          -0.0591146  0.0801984  -0.737
## September_1yr - 2yr - August_2yr - 3yr == 0     0.6380641  0.0646880   9.864
## September_1yr < - August_2yr - 3yr == 0         0.5371546  0.0646880   8.304
## September_2yr - 3yr - August_2yr - 3yr == 0     0.5831974  0.0646880   9.016
## September_3yr - 4yr - August_2yr - 3yr == 0     0.4959874  0.0801984   6.185
## September_Unburned - August_2yr - 3yr == 0      0.5598268  0.0801984   6.981
## August_Unburned - August_3yr - 4yr == 0        -0.6167765  0.0948103  -6.505
## July_1yr - 2yr - August_3yr - 4yr == 0          0.2935230  0.0801984   3.660
## July_1yr < - August_3yr - 4yr == 0              0.1833743  0.0801984   2.287
## July_2yr - 3yr - August_3yr - 4yr == 0          0.2500726  0.0801984   3.118
## July_3yr - 4yr - August_3yr - 4yr == 0         -0.0477196  0.0914827  -0.522
## July_Unburned - August_3yr - 4yr == 0           0.3742272  0.0948103   3.947
## June_1yr - 2yr - August_3yr - 4yr == 0         -0.0092591  0.0801984  -0.115
## June_1yr < - August_3yr - 4yr == 0              0.0013334  0.0805208   0.017
## June_2yr - 3yr - August_3yr - 4yr == 0         -0.0900301  0.0801984  -1.123
## June_3yr - 4yr - August_3yr - 4yr == 0          0.0878346  0.0905740   0.970
## June_Unburned - August_3yr - 4yr == 0          -0.2687892  0.0948103  -2.835
## September_1yr - 2yr - August_3yr - 4yr == 0     0.4283896  0.0801984   5.342
## September_1yr < - August_3yr - 4yr == 0         0.3274800  0.0801984   4.083
## September_2yr - 3yr - August_3yr - 4yr == 0     0.3735228  0.0801984   4.657
## September_3yr - 4yr - August_3yr - 4yr == 0     0.2863128  0.0914827   3.130
## September_Unburned - August_3yr - 4yr == 0      0.3501523  0.0948103   3.693
## July_1yr - 2yr - August_Unburned == 0           0.9102995  0.0801984  11.351
## July_1yr < - August_Unburned == 0               0.8001508  0.0801984   9.977
## July_2yr - 3yr - August_Unburned == 0           0.8668491  0.0801984  10.809
## July_3yr - 4yr - August_Unburned == 0           0.5690569  0.0948103   6.002
## July_Unburned - August_Unburned == 0            0.9910037  0.0914827  10.833
## June_1yr - 2yr - August_Unburned == 0           0.6075174  0.0801984   7.575
## June_1yr < - August_Unburned == 0               0.6181099  0.0804379   7.684
## June_2yr - 3yr - August_Unburned == 0           0.5267464  0.0801984   6.568
## June_3yr - 4yr - August_Unburned == 0           0.7046111  0.0939355   7.501
## June_Unburned - August_Unburned == 0            0.3479873  0.0914827   3.804
## September_1yr - 2yr - August_Unburned == 0      1.0451661  0.0801984  13.032
## September_1yr < - August_Unburned == 0          0.9442565  0.0801984  11.774
## September_2yr - 3yr - August_Unburned == 0      0.9902993  0.0801984  12.348
## September_3yr - 4yr - August_Unburned == 0      0.9030893  0.0948103   9.525
## September_Unburned - August_Unburned == 0       0.9669288  0.0914827  10.570
## July_1yr < - July_1yr - 2yr == 0               -0.1101487  0.0646880  -1.703
## July_2yr - 3yr - July_1yr - 2yr == 0           -0.0434504  0.0646880  -0.672
## July_3yr - 4yr - July_1yr - 2yr == 0           -0.3412426  0.0801984  -4.255
## July_Unburned - July_1yr - 2yr == 0             0.0807042  0.0801984   1.006
## June_1yr - 2yr - July_1yr - 2yr == 0           -0.3027821  0.0646880  -4.681
## June_1yr < - July_1yr - 2yr == 0               -0.2921895  0.0650360  -4.493
## June_2yr - 3yr - July_1yr - 2yr == 0           -0.3835531  0.0646880  -5.929
## June_3yr - 4yr - July_1yr - 2yr == 0           -0.2056884  0.0791613  -2.598
## June_Unburned - July_1yr - 2yr == 0            -0.5623122  0.0801984  -7.012
## September_1yr - 2yr - July_1yr - 2yr == 0       0.1348666  0.0646880   2.085
## September_1yr < - July_1yr - 2yr == 0           0.0339570  0.0646880   0.525
## September_2yr - 3yr - July_1yr - 2yr == 0       0.0799999  0.0646880   1.237
## September_3yr - 4yr - July_1yr - 2yr == 0      -0.0072102  0.0801984  -0.090
## September_Unburned - July_1yr - 2yr == 0        0.0566293  0.0801984   0.706
## July_2yr - 3yr - July_1yr < == 0                0.0666983  0.0646880   1.031
## July_3yr - 4yr - July_1yr < == 0               -0.2310939  0.0801984  -2.882
## July_Unburned - July_1yr < == 0                 0.1908529  0.0801984   2.380
## June_1yr - 2yr - July_1yr < == 0               -0.1926334  0.0646880  -2.978
## June_1yr < - July_1yr < == 0                   -0.1820409  0.0650360  -2.799
## June_2yr - 3yr - July_1yr < == 0               -0.2734044  0.0646880  -4.227
## June_3yr - 4yr - July_1yr < == 0               -0.0955397  0.0791613  -1.207
## June_Unburned - July_1yr < == 0                -0.4521635  0.0801984  -5.638
## September_1yr - 2yr - July_1yr < == 0           0.2450153  0.0646880   3.788
## September_1yr < - July_1yr < == 0               0.1441057  0.0646880   2.228
## September_2yr - 3yr - July_1yr < == 0           0.1901485  0.0646880   2.939
## September_3yr - 4yr - July_1yr < == 0           0.1029385  0.0801984   1.284
## September_Unburned - July_1yr < == 0            0.1667780  0.0801984   2.080
## July_3yr - 4yr - July_2yr - 3yr == 0           -0.2977922  0.0801984  -3.713
## July_Unburned - July_2yr - 3yr == 0             0.1241546  0.0801984   1.548
## June_1yr - 2yr - July_2yr - 3yr == 0           -0.2593317  0.0646880  -4.009
## June_1yr < - July_2yr - 3yr == 0               -0.2487392  0.0650360  -3.825
## June_2yr - 3yr - July_2yr - 3yr == 0           -0.3401027  0.0646880  -5.258
## June_3yr - 4yr - July_2yr - 3yr == 0           -0.1622380  0.0791613  -2.049
## June_Unburned - July_2yr - 3yr == 0            -0.5188618  0.0801984  -6.470
## September_1yr - 2yr - July_2yr - 3yr == 0       0.1783170  0.0646880   2.757
## September_1yr < - July_2yr - 3yr == 0           0.0774074  0.0646880   1.197
## September_2yr - 3yr - July_2yr - 3yr == 0       0.1234503  0.0646880   1.908
## September_3yr - 4yr - July_2yr - 3yr == 0       0.0362402  0.0801984   0.452
## September_Unburned - July_2yr - 3yr == 0        0.1000797  0.0801984   1.248
## July_Unburned - July_3yr - 4yr == 0             0.4219468  0.0948103   4.450
## June_1yr - 2yr - July_3yr - 4yr == 0            0.0384605  0.0801984   0.480
## June_1yr < - July_3yr - 4yr == 0                0.0490531  0.0805208   0.609
## June_2yr - 3yr - July_3yr - 4yr == 0           -0.0423105  0.0801984  -0.528
## June_3yr - 4yr - July_3yr - 4yr == 0            0.1355542  0.0905740   1.497
## June_Unburned - July_3yr - 4yr == 0            -0.2210696  0.0948103  -2.332
## September_1yr - 2yr - July_3yr - 4yr == 0       0.4761092  0.0801984   5.937
## September_1yr < - July_3yr - 4yr == 0           0.3751997  0.0801984   4.678
## September_2yr - 3yr - July_3yr - 4yr == 0       0.4212425  0.0801984   5.253
## September_3yr - 4yr - July_3yr - 4yr == 0       0.3340324  0.0914827   3.651
## September_Unburned - July_3yr - 4yr == 0        0.3978719  0.0948103   4.197
## June_1yr - 2yr - July_Unburned == 0            -0.3834863  0.0801984  -4.782
## June_1yr < - July_Unburned == 0                -0.3728938  0.0804379  -4.636
## June_2yr - 3yr - July_Unburned == 0            -0.4642573  0.0801984  -5.789
## June_3yr - 4yr - July_Unburned == 0            -0.2863926  0.0939355  -3.049
## June_Unburned - July_Unburned == 0             -0.6430164  0.0914827  -7.029
## September_1yr - 2yr - July_Unburned == 0        0.0541624  0.0801984   0.675
## September_1yr < - July_Unburned == 0           -0.0467472  0.0801984  -0.583
## September_2yr - 3yr - July_Unburned == 0       -0.0007044  0.0801984  -0.009
## September_3yr - 4yr - July_Unburned == 0       -0.0879144  0.0948103  -0.927
## September_Unburned - July_Unburned == 0        -0.0240749  0.0914827  -0.263
## June_1yr < - June_1yr - 2yr == 0                0.0105926  0.0650360   0.163
## June_2yr - 3yr - June_1yr - 2yr == 0           -0.0807710  0.0646880  -1.249
## June_3yr - 4yr - June_1yr - 2yr == 0            0.0970937  0.0791613   1.227
## June_Unburned - June_1yr - 2yr == 0            -0.2595301  0.0801984  -3.236
## September_1yr - 2yr - June_1yr - 2yr == 0       0.4376487  0.0646880   6.766
## September_1yr < - June_1yr - 2yr == 0           0.3367391  0.0646880   5.206
## September_2yr - 3yr - June_1yr - 2yr == 0       0.3827820  0.0646880   5.917
## September_3yr - 4yr - June_1yr - 2yr == 0       0.2955719  0.0801984   3.686
## September_Unburned - June_1yr - 2yr == 0        0.3594114  0.0801984   4.482
## June_2yr - 3yr - June_1yr < == 0               -0.0913636  0.0650360  -1.405
## June_3yr - 4yr - June_1yr < == 0                0.0865011  0.0795011   1.088
## June_Unburned - June_1yr < == 0                -0.2701226  0.0804379  -3.358
## September_1yr - 2yr - June_1yr < == 0           0.4270561  0.0650360   6.566
## September_1yr < - June_1yr < == 0               0.3261466  0.0650360   5.015
## September_2yr - 3yr - June_1yr < == 0           0.3721894  0.0650360   5.723
## September_3yr - 4yr - June_1yr < == 0           0.2849794  0.0805208   3.539
## September_Unburned - June_1yr < == 0            0.3488188  0.0804379   4.336
## June_3yr - 4yr - June_2yr - 3yr == 0            0.1778647  0.0791613   2.247
## June_Unburned - June_2yr - 3yr == 0            -0.1787591  0.0801984  -2.229
## September_1yr - 2yr - June_2yr - 3yr == 0       0.5184197  0.0646880   8.014
## September_1yr < - June_2yr - 3yr == 0           0.4175102  0.0646880   6.454
## September_2yr - 3yr - June_2yr - 3yr == 0       0.4635530  0.0646880   7.166
## September_3yr - 4yr - June_2yr - 3yr == 0       0.3763429  0.0801984   4.693
## September_Unburned - June_2yr - 3yr == 0        0.4401824  0.0801984   5.489
## June_Unburned - June_3yr - 4yr == 0            -0.3566238  0.0939355  -3.796
## September_1yr - 2yr - June_3yr - 4yr == 0       0.3405550  0.0791613   4.302
## September_1yr < - June_3yr - 4yr == 0           0.2396455  0.0791613   3.027
## September_2yr - 3yr - June_3yr - 4yr == 0       0.2856883  0.0791613   3.609
## September_3yr - 4yr - June_3yr - 4yr == 0       0.1984782  0.0905740   2.191
## September_Unburned - June_3yr - 4yr == 0        0.2623177  0.0939355   2.793
## September_1yr - 2yr - June_Unburned == 0        0.6971788  0.0801984   8.693
## September_1yr < - June_Unburned == 0            0.5962692  0.0801984   7.435
## September_2yr - 3yr - June_Unburned == 0        0.6423120  0.0801984   8.009
## September_3yr - 4yr - June_Unburned == 0        0.5551020  0.0948103   5.855
## September_Unburned - June_Unburned == 0         0.6189415  0.0914827   6.766
## September_1yr < - September_1yr - 2yr == 0     -0.1009095  0.0646880  -1.560
## September_2yr - 3yr - September_1yr - 2yr == 0 -0.0548667  0.0646880  -0.848
## September_3yr - 4yr - September_1yr - 2yr == 0 -0.1420768  0.0801984  -1.772
## September_Unburned - September_1yr - 2yr == 0  -0.0782373  0.0801984  -0.976
## September_2yr - 3yr - September_1yr < == 0      0.0460428  0.0646880   0.712
## September_3yr - 4yr - September_1yr < == 0     -0.0411672  0.0801984  -0.513
## September_Unburned - September_1yr < == 0       0.0226722  0.0801984   0.283
## September_3yr - 4yr - September_2yr - 3yr == 0 -0.0872100  0.0801984  -1.087
## September_Unburned - September_2yr - 3yr == 0  -0.0233706  0.0801984  -0.291
## September_Unburned - September_3yr - 4yr == 0   0.0638395  0.0948103   0.673
##                                                Pr(>|z|)    
## August_1yr < - August_1yr - 2yr == 0             0.7218    
## August_2yr - 3yr - August_1yr - 2yr == 0         0.9837    
## August_3yr - 4yr - August_1yr - 2yr == 0         0.9993    
## August_Unburned - August_1yr - 2yr == 0           <0.01 ***
## July_1yr - 2yr - August_1yr - 2yr == 0            <0.01 ***
## July_1yr < - August_1yr - 2yr == 0                <0.01 ** 
## July_2yr - 3yr - August_1yr - 2yr == 0            <0.01 ***
## July_3yr - 4yr - August_1yr - 2yr == 0           1.0000    
## July_Unburned - August_1yr - 2yr == 0             <0.01 ***
## June_1yr - 2yr - August_1yr - 2yr == 0           0.9966    
## June_1yr < - August_1yr - 2yr == 0               0.9884    
## June_2yr - 3yr - August_1yr - 2yr == 0           1.0000    
## June_3yr - 4yr - August_1yr - 2yr == 0           0.6462    
## June_Unburned - August_1yr - 2yr == 0            0.8656    
## September_1yr - 2yr - August_1yr - 2yr == 0       <0.01 ***
## September_1yr < - August_1yr - 2yr == 0           <0.01 ***
## September_2yr - 3yr - August_1yr - 2yr == 0       <0.01 ***
## September_3yr - 4yr - August_1yr - 2yr == 0       <0.01 ***
## September_Unburned - August_1yr - 2yr == 0        <0.01 ***
## August_2yr - 3yr - August_1yr < == 0             1.0000    
## August_3yr - 4yr - August_1yr < == 0             0.1558    
## August_Unburned - August_1yr < == 0               <0.01 ***
## July_1yr - 2yr - August_1yr < == 0                <0.01 ***
## July_1yr < - August_1yr < == 0                    <0.01 ***
## July_2yr - 3yr - August_1yr < == 0                <0.01 ***
## July_3yr - 4yr - August_1yr < == 0               0.5371    
## July_Unburned - August_1yr < == 0                 <0.01 ***
## June_1yr - 2yr - August_1yr < == 0               0.0236 *  
## June_1yr < - August_1yr < == 0                   0.0142 *  
## June_2yr - 3yr - August_1yr < == 0               0.5719    
## June_3yr - 4yr - August_1yr < == 0                <0.01 ** 
## June_Unburned - August_1yr < == 0                1.0000    
## September_1yr - 2yr - August_1yr < == 0           <0.01 ***
## September_1yr < - August_1yr < == 0               <0.01 ***
## September_2yr - 3yr - August_1yr < == 0           <0.01 ***
## September_3yr - 4yr - August_1yr < == 0           <0.01 ***
## September_Unburned - August_1yr < == 0            <0.01 ***
## August_3yr - 4yr - August_2yr - 3yr == 0         0.4823    
## August_Unburned - August_2yr - 3yr == 0           <0.01 ***
## July_1yr - 2yr - August_2yr - 3yr == 0            <0.01 ***
## July_1yr < - August_2yr - 3yr == 0                <0.01 ***
## July_2yr - 3yr - August_2yr - 3yr == 0            <0.01 ***
## July_3yr - 4yr - August_2yr - 3yr == 0           0.8896    
## July_Unburned - August_2yr - 3yr == 0             <0.01 ***
## June_1yr - 2yr - August_2yr - 3yr == 0           0.1761    
## June_1yr < - August_2yr - 3yr == 0               0.1175    
## June_2yr - 3yr - August_2yr - 3yr == 0           0.9486    
## June_3yr - 4yr - August_2yr - 3yr == 0           0.0225 *  
## June_Unburned - August_2yr - 3yr == 0            1.0000    
## September_1yr - 2yr - August_2yr - 3yr == 0       <0.01 ***
## September_1yr < - August_2yr - 3yr == 0           <0.01 ***
## September_2yr - 3yr - August_2yr - 3yr == 0       <0.01 ***
## September_3yr - 4yr - August_2yr - 3yr == 0       <0.01 ***
## September_Unburned - August_2yr - 3yr == 0        <0.01 ***
## August_Unburned - August_3yr - 4yr == 0           <0.01 ***
## July_1yr - 2yr - August_3yr - 4yr == 0           0.0316 *  
## July_1yr < - August_3yr - 4yr == 0               0.7347    
## July_2yr - 3yr - August_3yr - 4yr == 0           0.1675    
## July_3yr - 4yr - August_3yr - 4yr == 0           1.0000    
## July_Unburned - August_3yr - 4yr == 0            0.0108 *  
## June_1yr - 2yr - August_3yr - 4yr == 0           1.0000    
## June_1yr < - August_3yr - 4yr == 0               1.0000    
## June_2yr - 3yr - August_3yr - 4yr == 0           0.9999    
## June_3yr - 4yr - August_3yr - 4yr == 0           1.0000    
## June_Unburned - August_3yr - 4yr == 0            0.3217    
## September_1yr - 2yr - August_3yr - 4yr == 0       <0.01 ***
## September_1yr < - August_3yr - 4yr == 0           <0.01 ** 
## September_2yr - 3yr - August_3yr - 4yr == 0       <0.01 ***
## September_3yr - 4yr - August_3yr - 4yr == 0      0.1616    
## September_Unburned - August_3yr - 4yr == 0       0.0290 *  
## July_1yr - 2yr - August_Unburned == 0             <0.01 ***
## July_1yr < - August_Unburned == 0                 <0.01 ***
## July_2yr - 3yr - August_Unburned == 0             <0.01 ***
## July_3yr - 4yr - August_Unburned == 0             <0.01 ***
## July_Unburned - August_Unburned == 0              <0.01 ***
## June_1yr - 2yr - August_Unburned == 0             <0.01 ***
## June_1yr < - August_Unburned == 0                 <0.01 ***
## June_2yr - 3yr - August_Unburned == 0             <0.01 ***
## June_3yr - 4yr - August_Unburned == 0             <0.01 ***
## June_Unburned - August_Unburned == 0             0.0200 *  
## September_1yr - 2yr - August_Unburned == 0        <0.01 ***
## September_1yr < - August_Unburned == 0            <0.01 ***
## September_2yr - 3yr - August_Unburned == 0        <0.01 ***
## September_3yr - 4yr - August_Unburned == 0        <0.01 ***
## September_Unburned - August_Unburned == 0         <0.01 ***
## July_1yr < - July_1yr - 2yr == 0                 0.9776    
## July_2yr - 3yr - July_1yr - 2yr == 0             1.0000    
## July_3yr - 4yr - July_1yr - 2yr == 0              <0.01 ** 
## July_Unburned - July_1yr - 2yr == 0              1.0000    
## June_1yr - 2yr - July_1yr - 2yr == 0              <0.01 ***
## June_1yr < - July_1yr - 2yr == 0                  <0.01 ***
## June_2yr - 3yr - July_1yr - 2yr == 0              <0.01 ***
## June_3yr - 4yr - July_1yr - 2yr == 0             0.4955    
## June_Unburned - July_1yr - 2yr == 0               <0.01 ***
## September_1yr - 2yr - July_1yr - 2yr == 0        0.8591    
## September_1yr < - July_1yr - 2yr == 0            1.0000    
## September_2yr - 3yr - July_1yr - 2yr == 0        0.9996    
## September_3yr - 4yr - July_1yr - 2yr == 0        1.0000    
## September_Unburned - July_1yr - 2yr == 0         1.0000    
## July_2yr - 3yr - July_1yr < == 0                 1.0000    
## July_3yr - 4yr - July_1yr < == 0                 0.2920    
## July_Unburned - July_1yr < == 0                  0.6679    
## June_1yr - 2yr - July_1yr < == 0                 0.2346    
## June_1yr < - July_1yr < == 0                     0.3461    
## June_2yr - 3yr - July_1yr < == 0                  <0.01 ** 
## June_3yr - 4yr - July_1yr < == 0                 0.9997    
## June_Unburned - July_1yr < == 0                   <0.01 ***
## September_1yr - 2yr - July_1yr < == 0            0.0204 *  
## September_1yr < - July_1yr < == 0                0.7762    
## September_2yr - 3yr - July_1yr < == 0            0.2566    
## September_3yr - 4yr - July_1yr < == 0            0.9993    
## September_Unburned - July_1yr < == 0             0.8611    
## July_3yr - 4yr - July_2yr - 3yr == 0             0.0276 *  
## July_Unburned - July_2yr - 3yr == 0              0.9923    
## June_1yr - 2yr - July_2yr - 3yr == 0              <0.01 ** 
## June_1yr < - July_2yr - 3yr == 0                 0.0183 *  
## June_2yr - 3yr - July_2yr - 3yr == 0              <0.01 ***
## June_3yr - 4yr - July_2yr - 3yr == 0             0.8750    
## June_Unburned - July_2yr - 3yr == 0               <0.01 ***
## September_1yr - 2yr - July_2yr - 3yr == 0        0.3740    
## September_1yr < - July_2yr - 3yr == 0            0.9997    
## September_2yr - 3yr - July_2yr - 3yr == 0        0.9315    
## September_3yr - 4yr - July_2yr - 3yr == 0        1.0000    
## September_Unburned - July_2yr - 3yr == 0         0.9995    
## July_Unburned - July_3yr - 4yr == 0               <0.01 ** 
## June_1yr - 2yr - July_3yr - 4yr == 0             1.0000    
## June_1yr < - July_3yr - 4yr == 0                 1.0000    
## June_2yr - 3yr - July_3yr - 4yr == 0             1.0000    
## June_3yr - 4yr - July_3yr - 4yr == 0             0.9948    
## June_Unburned - July_3yr - 4yr == 0              0.7025    
## September_1yr - 2yr - July_3yr - 4yr == 0         <0.01 ***
## September_1yr < - July_3yr - 4yr == 0             <0.01 ***
## September_2yr - 3yr - July_3yr - 4yr == 0         <0.01 ***
## September_3yr - 4yr - July_3yr - 4yr == 0        0.0338 *  
## September_Unburned - July_3yr - 4yr == 0          <0.01 ** 
## June_1yr - 2yr - July_Unburned == 0               <0.01 ***
## June_1yr < - July_Unburned == 0                   <0.01 ***
## June_2yr - 3yr - July_Unburned == 0               <0.01 ***
## June_3yr - 4yr - July_Unburned == 0              0.1978    
## June_Unburned - July_Unburned == 0                <0.01 ***
## September_1yr - 2yr - July_Unburned == 0         1.0000    
## September_1yr < - July_Unburned == 0             1.0000    
## September_2yr - 3yr - July_Unburned == 0         1.0000    
## September_3yr - 4yr - July_Unburned == 0         1.0000    
## September_Unburned - July_Unburned == 0          1.0000    
## June_1yr < - June_1yr - 2yr == 0                 1.0000    
## June_2yr - 3yr - June_1yr - 2yr == 0             0.9995    
## June_3yr - 4yr - June_1yr - 2yr == 0             0.9996    
## June_Unburned - June_1yr - 2yr == 0              0.1224    
## September_1yr - 2yr - June_1yr - 2yr == 0         <0.01 ***
## September_1yr < - June_1yr - 2yr == 0             <0.01 ***
## September_2yr - 3yr - June_1yr - 2yr == 0         <0.01 ***
## September_3yr - 4yr - June_1yr - 2yr == 0        0.0295 *  
## September_Unburned - June_1yr - 2yr == 0          <0.01 ** 
## June_2yr - 3yr - June_1yr < == 0                 0.9977    
## June_3yr - 4yr - June_1yr < == 0                 0.9999    
## June_Unburned - June_1yr < == 0                  0.0838 .  
## September_1yr - 2yr - June_1yr < == 0             <0.01 ***
## September_1yr < - June_1yr < == 0                 <0.01 ***
## September_2yr - 3yr - June_1yr < == 0             <0.01 ***
## September_3yr - 4yr - June_1yr < == 0            0.0482 *  
## September_Unburned - June_1yr < == 0              <0.01 ** 
## June_3yr - 4yr - June_2yr - 3yr == 0             0.7610    
## June_Unburned - June_2yr - 3yr == 0              0.7734    
## September_1yr - 2yr - June_2yr - 3yr == 0         <0.01 ***
## September_1yr < - June_2yr - 3yr == 0             <0.01 ***
## September_2yr - 3yr - June_2yr - 3yr == 0         <0.01 ***
## September_3yr - 4yr - June_2yr - 3yr == 0         <0.01 ***
## September_Unburned - June_2yr - 3yr == 0          <0.01 ***
## June_Unburned - June_3yr - 4yr == 0              0.0202 *  
## September_1yr - 2yr - June_3yr - 4yr == 0         <0.01 ** 
## September_1yr < - June_3yr - 4yr == 0            0.2092    
## September_2yr - 3yr - June_3yr - 4yr == 0        0.0381 *  
## September_3yr - 4yr - June_3yr - 4yr == 0        0.7967    
## September_Unburned - June_3yr - 4yr == 0         0.3505    
## September_1yr - 2yr - June_Unburned == 0          <0.01 ***
## September_1yr < - June_Unburned == 0              <0.01 ***
## September_2yr - 3yr - June_Unburned == 0          <0.01 ***
## September_3yr - 4yr - June_Unburned == 0          <0.01 ***
## September_Unburned - June_Unburned == 0           <0.01 ***
## September_1yr < - September_1yr - 2yr == 0       0.9915    
## September_2yr - 3yr - September_1yr - 2yr == 0   1.0000    
## September_3yr - 4yr - September_1yr - 2yr == 0   0.9656    
## September_Unburned - September_1yr - 2yr == 0    1.0000    
## September_2yr - 3yr - September_1yr < == 0       1.0000    
## September_3yr - 4yr - September_1yr < == 0       1.0000    
## September_Unburned - September_1yr < == 0        1.0000    
## September_3yr - 4yr - September_2yr - 3yr == 0   0.9999    
## September_Unburned - September_2yr - 3yr == 0    1.0000    
## September_Unburned - September_3yr - 4yr == 0    1.0000    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(MTMint)
## Computing profile confidence intervals ...
##                                   2.5 %       97.5 %
## .sig01                       0.07158387  0.245583932
## .sig02                       0.00000000  0.249924267
## .sigma                       0.30157583  0.333578914
## (Intercept)                  2.10573708  2.401303183
## MonthTSFAugust_1yr <        -0.27610457 -0.022209649
## MonthTSFAugust_2yr - 3yr    -0.23384301  0.020051918
## MonthTSFAugust_3yr - 4yr    -0.05506473  0.260519575
## MonthTSFAugust_Unburned     -0.67173804 -0.356153730
## MonthTSFJuly_1yr - 2yr       0.26935455  0.523249477
## MonthTSFJuly_1yr <           0.15920587  0.413100798
## MonthTSFJuly_2yr - 3yr       0.22590416  0.479799081
## MonthTSFJuly_3yr - 4yr      -0.10278437  0.212799945
## MonthTSFJuly_Unburned        0.31926566  0.634849973
## MonthTSFJune_1yr - 2yr      -0.03342755  0.220467373
## MonthTSFJune_1yr <          -0.02351644  0.231745339
## MonthTSFJune_2yr - 3yr      -0.11419856  0.139696370
## MonthTSFJune_3yr - 4yr       0.03477529  0.346338166
## MonthTSFJune_Unburned       -0.32375075 -0.008166436
## MonthTSFSeptember_1yr - 2yr  0.40422113  0.658116052
## MonthTSFSeptember_1yr <      0.30331160  0.557206523
## MonthTSFSeptember_2yr - 3yr  0.34935441  0.603249332
## MonthTSFSeptember_3yr - 4yr  0.23124807  0.546832373
## MonthTSFSeptember_Unburned   0.29519072  0.610775035

Nitrate

#Nitrate

Nnorm <- fitdist(Soil181920$NO3_ppm, "norm")
plot(Nnorm) #Not good!

Nlognorm <- fitdist(log(Soil181920$NO3_ppm), "norm")
plot(Nlognorm) #best, but not perfect

Ngamma <- fitdist(Soil181920$NO3_ppm, "gamma") 
plot(Ngamma) #not good

#Full nesting

Nnull1 <-lmer(log(NO3_ppm) ~ 1 + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
NT1 <-lmer(log(NO3_ppm) ~ TSF + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
NE1 <-lmer(log(NO3_ppm) ~ ESD + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
NTE1 <-lmer(log(NO3_ppm) ~ TSF + ESD + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
anova(Nnull1, NT1, NE1, NTE1) #not much improvement over the null
## Data: Soil181920
## Models:
## Nnull1: log(NO3_ppm) ~ 1 + (1 | Location/Month/Year)
## NT1: log(NO3_ppm) ~ TSF + (1 | Location/Month/Year)
## NE1: log(NO3_ppm) ~ ESD + (1 | Location/Month/Year)
## NTE1: log(NO3_ppm) ~ TSF + ESD + (1 | Location/Month/Year)
##        Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)   
## Nnull1  5 2295.4 2320.6 -1142.7   2285.4                            
## NT1     9 2286.3 2331.7 -1134.2   2268.3 17.074      4   0.001870 **
## NE1     9 2290.7 2336.2 -1136.3   2272.7  0.000      0   1.000000   
## NTE1   13 2284.1 2349.7 -1129.0   2258.1 14.650      4   0.005486 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mult_NT1 <- glht(NTE1, linfct=mcp(TSF = "Tukey"))
summary(Mult_NT1) #RB higher than 3-4 and 2-3
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NO3_ppm) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)  
## 1yr - 2yr - 1yr < == 0     -0.05535    0.05004  -1.106   0.7974  
## 2yr - 3yr - 1yr < == 0     -0.17492    0.05767  -3.033   0.0194 *
## 3yr - 4yr - 1yr < == 0     -0.21708    0.07658  -2.835   0.0353 *
## Unburned - 1yr < == 0      -0.10953    0.05280  -2.075   0.2238  
## 2yr - 3yr - 1yr - 2yr == 0 -0.11957    0.05751  -2.079   0.2218  
## 3yr - 4yr - 1yr - 2yr == 0 -0.16173    0.07620  -2.122   0.2034  
## Unburned - 1yr - 2yr == 0  -0.05418    0.05281  -1.026   0.8383  
## 3yr - 4yr - 2yr - 3yr == 0 -0.04216    0.07848  -0.537   0.9828  
## Unburned - 2yr - 3yr == 0   0.06539    0.06348   1.030   0.8363  
## Unburned - 3yr - 4yr == 0   0.10755    0.08324   1.292   0.6881  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_NT1)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NO3_ppm) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Quantile = 2.712
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate  lwr       upr      
## 1yr - 2yr - 1yr < == 0     -0.055348 -0.191061  0.080365
## 2yr - 3yr - 1yr < == 0     -0.174919 -0.331312 -0.018525
## 3yr - 4yr - 1yr < == 0     -0.217080 -0.424765 -0.009395
## Unburned - 1yr < == 0      -0.109530 -0.252712  0.033652
## 2yr - 3yr - 1yr - 2yr == 0 -0.119570 -0.275544  0.036404
## 3yr - 4yr - 1yr - 2yr == 0 -0.161732 -0.368392  0.044928
## Unburned - 1yr - 2yr == 0  -0.054182 -0.197413  0.089050
## 3yr - 4yr - 2yr - 3yr == 0 -0.042161 -0.254992  0.170669
## Unburned - 2yr - 3yr == 0   0.065389 -0.106763  0.237540
## Unburned - 3yr - 4yr == 0   0.107550 -0.118201  0.333301
Mult_NE1 <- glht(NTE1, linfct=mcp(ESD = "Tukey"))
summary(Mult_NE1) #Sandy is lower than Salo; 
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NO3_ppm) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Linear Hypotheses:
##                      Estimate Std. Error z value Pr(>|z|)  
## Loamy - Clayey == 0  0.009215   0.073432   0.125   0.9999  
## SaLo - Clayey == 0   0.076718   0.056937   1.347   0.6343  
## Sandy - Clayey == 0 -0.053391   0.052435  -1.018   0.8308  
## ThCl - Clayey == 0   0.208172   0.140148   1.485   0.5424  
## SaLo - Loamy == 0    0.067503   0.074226   0.909   0.8811  
## Sandy - Loamy == 0  -0.062606   0.066182  -0.946   0.8653  
## ThCl - Loamy == 0    0.198957   0.146623   1.357   0.6280  
## Sandy - SaLo == 0   -0.130108   0.045970  -2.830   0.0321 *
## ThCl - SaLo == 0     0.131454   0.132722   0.990   0.8445  
## ThCl - Sandy == 0    0.261563   0.133734   1.956   0.2620  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_NE1)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NO3_ppm) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Quantile = 2.6752
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate  lwr       upr      
## Loamy - Clayey == 0  0.009215 -0.187227  0.205656
## SaLo - Clayey == 0   0.076718 -0.075597  0.229032
## Sandy - Clayey == 0 -0.053391 -0.193663  0.086881
## ThCl - Clayey == 0   0.208172 -0.166746  0.583090
## SaLo - Loamy == 0    0.067503 -0.131063  0.266068
## Sandy - Loamy == 0  -0.062606 -0.239652  0.114441
## ThCl - Loamy == 0    0.198957 -0.193283  0.591196
## Sandy - SaLo == 0   -0.130108 -0.253086 -0.007131
## ThCl - SaLo == 0     0.131454 -0.223599  0.486507
## ThCl - Sandy == 0    0.261563 -0.096197  0.619322
#For testing diiferences between months 
Nnull <-lmer(log(NO3_ppm) ~ 1 + (1|Location/Year), data=Soil181920, REML = FALSE) 
NM <-lmer(log(NO3_ppm) ~ Month + (1|Location/Year), data=Soil181920, REML = FALSE) 
NT <-lmer(log(NO3_ppm) ~  TSF + (1|Location/Year), data=Soil181920, REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00204976 (tol = 0.002, component 1)
NE <-lmer(log(NO3_ppm) ~  ESD + (1|Location/Year), data=Soil181920, REML = FALSE)
NMTE <-lmer(log(NO3_ppm) ~ Month + ESD + TSF + (1|Location/Year), data=Soil181920, REML = FALSE) 

anova(Nnull, NM, NT, NE, NMTE)
## Data: Soil181920
## Models:
## Nnull: log(NO3_ppm) ~ 1 + (1 | Location/Year)
## NM: log(NO3_ppm) ~ Month + (1 | Location/Year)
## NT: log(NO3_ppm) ~ TSF + (1 | Location/Year)
## NE: log(NO3_ppm) ~ ESD + (1 | Location/Year)
## NMTE: log(NO3_ppm) ~ Month + ESD + TSF + (1 | Location/Year)
##       Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)    
## Nnull  4 2584.1 2604.3 -1288.0   2576.1                             
## NM     7 2461.7 2497.0 -1223.8   2447.7 128.38      3     <2e-16 ***
## NT     8 2580.6 2621.0 -1282.3   2564.6   0.00      1          1    
## NE     8 2583.4 2623.8 -1283.7   2567.4   0.00      0          1    
## NMTE  15 2456.7 2532.5 -1213.4   2426.7 140.70      7     <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mult_NM <- glht(NMTE, linfct=mcp(Month = "Tukey"))
summary(Mult_NM) #September > July > June > August
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NO3_ppm) ~ Month + ESD + TSF + (1 | Location/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Linear Hypotheses:
##                         Estimate Std. Error z value Pr(>|z|)    
## July - June == 0        -0.14948    0.05685  -2.630  0.04246 *  
## August - June == 0      -0.20509    0.05685  -3.608  0.00169 ** 
## September - June == 0    0.40033    0.05685   7.042  < 0.001 ***
## August - July == 0      -0.05561    0.05684  -0.978  0.76183    
## September - July == 0    0.54981    0.05684   9.672  < 0.001 ***
## September - August == 0  0.60542    0.05684  10.650  < 0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(NM)
## Computing profile confidence intervals ...
##                     2.5 %      97.5 %
## .sig01          0.1359622  0.32772729
## .sig02          0.0000000  0.25595299
## .sigma          0.6617481  0.71853261
## (Intercept)     1.0804451  1.37733052
## MonthJuly      -0.2611914 -0.03587699
## MonthAugust    -0.3168039 -0.09148952
## MonthSeptember  0.2886149  0.51392933
#Ammonium
Anorm <- fitdist(Soil181920$NH4_ppm, "norm")
plot(Anorm) #Not good!

Alognorm <- fitdist(log(Soil181920$NH4_ppm), "norm")
plot(Alognorm) #best, but not perfect

Agamma <- fitdist(Soil181920$NH4_ppm, "gamma") 
plot(Agamma) #not good

#Full nesting

Anull1 <-lmer(log(NH4_ppm) ~ 1 + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
AT1 <-lmer(log(NH4_ppm) ~ TSF + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
AE1 <-lmer(log(NH4_ppm) ~ ESD + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
## boundary (singular) fit: see ?isSingular
ATE1 <-lmer(log(NH4_ppm) ~ TSF + ESD + (1|Location/Month/Year), data=Soil181920, REML = FALSE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00250854 (tol = 0.002, component 1)
anova(Anull1, AT1, AE1, ATE1) #ESD does not do much here
## Data: Soil181920
## Models:
## Anull1: log(NH4_ppm) ~ 1 + (1 | Location/Month/Year)
## AT1: log(NH4_ppm) ~ TSF + (1 | Location/Month/Year)
## AE1: log(NH4_ppm) ~ ESD + (1 | Location/Month/Year)
## ATE1: log(NH4_ppm) ~ TSF + ESD + (1 | Location/Month/Year)
##        Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)  
## Anull1  5 2577.8 2603.0 -1283.9   2567.8                           
## AT1     9 2574.8 2620.3 -1278.4   2556.8 10.959      4    0.02703 *
## AE1     9 2576.1 2621.6 -1279.1   2558.1  0.000      0    1.00000  
## ATE1   13 2572.3 2638.0 -1273.2   2546.3 11.785      4    0.01902 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Mult_AT1 <- glht(AT1, linfct=mcp(TSF = "Tukey"))
summary(Mult_AT1) #RB higher than 3-4 
## Warning in RET$pfunction("adjusted", ...): Completion with error > abseps
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NH4_ppm) ~ TSF + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)  
## 1yr - 2yr - 1yr < == 0     -0.13405    0.05436  -2.466   0.0941 .
## 2yr - 3yr - 1yr < == 0     -0.08826    0.06278  -1.406   0.6144  
## 3yr - 4yr - 1yr < == 0     -0.22983    0.08326  -2.761   0.0437 *
## Unburned - 1yr < == 0      -0.03005    0.05762  -0.522   0.9845  
## 2yr - 3yr - 1yr - 2yr == 0  0.04579    0.06271   0.730   0.9475  
## 3yr - 4yr - 1yr - 2yr == 0 -0.09578    0.08317  -1.152   0.7718  
## Unburned - 1yr - 2yr == 0   0.10400    0.05760   1.805   0.3607  
## 3yr - 4yr - 2yr - 3yr == 0 -0.14157    0.08522  -1.661   0.4480  
## Unburned - 2yr - 3yr == 0   0.05821    0.06960   0.836   0.9161  
## Unburned - 3yr - 4yr == 0   0.19978    0.09175   2.177   0.1811  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_AT1)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NH4_ppm) ~ TSF + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Quantile = 2.7105
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                            Estimate  lwr       upr      
## 1yr - 2yr - 1yr < == 0     -0.134048 -0.281378  0.013281
## 2yr - 3yr - 1yr < == 0     -0.088262 -0.258412  0.081888
## 3yr - 4yr - 1yr < == 0     -0.229828 -0.455490 -0.004166
## Unburned - 1yr < == 0      -0.030053 -0.186217  0.126112
## 2yr - 3yr - 1yr - 2yr == 0  0.045787 -0.124195  0.215768
## 3yr - 4yr - 1yr - 2yr == 0 -0.095780 -0.321196  0.129637
## Unburned - 1yr - 2yr == 0   0.103996 -0.052139  0.260130
## 3yr - 4yr - 2yr - 3yr == 0 -0.141566 -0.372541  0.089408
## Unburned - 2yr - 3yr == 0   0.058209 -0.130427  0.246846
## Unburned - 3yr - 4yr == 0   0.199776 -0.048914  0.448465
Mult_AE1 <- glht(ATE1, linfct=mcp(ESD = "Tukey"))
summary(Mult_AE1) #Sandy is lower than Salo; 
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NH4_ppm) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)  
## Loamy - Clayey == 0  0.09771    0.07980   1.225   0.7131  
## SaLo - Clayey == 0  -0.04102    0.06195  -0.662   0.9596  
## Sandy - Clayey == 0  0.00516    0.05690   0.091   1.0000  
## ThCl - Clayey == 0   0.37309    0.15237   2.449   0.0898 .
## SaLo - Loamy == 0   -0.13874    0.08112  -1.710   0.3973  
## Sandy - Loamy == 0  -0.09255    0.07196  -1.286   0.6739  
## ThCl - Loamy == 0    0.27538    0.15957   1.726   0.3880  
## Sandy - SaLo == 0    0.04618    0.04998   0.924   0.8747  
## ThCl - SaLo == 0     0.41411    0.14400   2.876   0.0281 *
## ThCl - Sandy == 0    0.36793    0.14524   2.533   0.0726 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
confint(Mult_AE1)
## 
##   Simultaneous Confidence Intervals
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(NH4_ppm) ~ TSF + ESD + (1 | Location/Month/Year), 
##     data = Soil181920, REML = FALSE)
## 
## Quantile = 2.6739
## 95% family-wise confidence level
##  
## 
## Linear Hypotheses:
##                     Estimate lwr      upr     
## Loamy - Clayey == 0  0.09771 -0.11566  0.31108
## SaLo - Clayey == 0  -0.04102 -0.20667  0.12462
## Sandy - Clayey == 0  0.00516 -0.14698  0.15729
## ThCl - Clayey == 0   0.37309 -0.03432  0.78050
## SaLo - Loamy == 0   -0.13874 -0.35565  0.07817
## Sandy - Loamy == 0  -0.09255 -0.28496  0.09986
## ThCl - Loamy == 0    0.27538 -0.15130  0.70206
## Sandy - SaLo == 0    0.04618 -0.08745  0.17982
## ThCl - SaLo == 0     0.41411  0.02908  0.79914
## ThCl - Sandy == 0    0.36793 -0.02041  0.75627