- Determine its rank the year you were born.
This will determine the rank in popularity of the name Kinsey among girls in the year 2000.
babynames %>%
filter(year == 2000, sex == "F") %>%
mutate(rank = row_number()) %>%
mutate(percent = round(prop * 100, 1)) %>%
filter(name == "Kinsey")
NA
Kinsey was the 877th most popular in the year 2000.
- Create a word cloud of the names of your sex and the year you were born.
Here is the word cloud of the popular names of Females in the year I was born.
babynames %>%
filter(year == 2000) %>% # use only one year
filter(sex == "F") %>% # use only one sex
select(name, n) %>% # select the two relevant variables: the name and how often it occurs
top_n(100, n) %>% # use only the top names or it could get too big
wordcloud2() # generate the word cloud
Emily was the most popular name in 2000.
- Graph its popularity over time.
This will show the popularity of the name Kinsey over time.
babynames %>%
filter(name == "Kinsey", sex == "F") %>%
ggplot(aes(x = year, y = n)) +
geom_line()

The name Kinsey was most popular in the mid 2000’s.
- Create a table showing which years it was most popular.
This will show what years the name Kinsey was most popular.
babynames %>% # Start with the dataset
filter(name == "Kinsey", sex == "F") %>% # only look at the name and sex you want
top_n(10, prop) %>% # get the top 10 names
arrange(-prop) # sort in descending order
NA
This shows that the name Kinsey was most popular in the year 2011.
- Graph its popularity in comparison to another name or two (e.g., a friend, family member, etc.). To keep it simple, use other names of the same sex.
This will show a comparison of poularity between the names Kinsey, Calli, and Emily.
babynames %>%
filter(name == "Kinsey" | name == "Calli" | name == "Emily") %>%
filter(sex == "F") %>%
filter(year>2000) %>%
ggplot(aes(x = year, y = n, color = name)) +
geom_line()

This shows that the name Emliy is far more popular than the names Kinsey and Calli.
LS0tCnRpdGxlOiAibmFtZSBhbmFseXNpcyIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKMS4gRGV0ZXJtaW5lIGl0cyByYW5rIHRoZSB5ZWFyIHlvdSB3ZXJlIGJvcm4uCgpUaGlzIHdpbGwgZGV0ZXJtaW5lIHRoZSByYW5rIGluIHBvcHVsYXJpdHkgb2YgdGhlIG5hbWUgS2luc2V5IGFtb25nIGdpcmxzIGluIHRoZSB5ZWFyIDIwMDAuIApgYGB7cn0KCmJhYnluYW1lcyAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogIGZpbHRlcih5ZWFyID09IDIwMDAsIHNleCA9PSAiRiIpICU+JSAgICAKICBtdXRhdGUocmFuayA9IHJvd19udW1iZXIoKSkgJT4lICAgICAgICAgCiAgbXV0YXRlKHBlcmNlbnQgPSByb3VuZChwcm9wICogMTAwLCAxKSkgJT4lIAogIGZpbHRlcihuYW1lID09ICJLaW5zZXkiKSAgICAgICAgICAgICAgIAoKYGBgCktpbnNleSB3YXMgdGhlIDg3N3RoIG1vc3QgcG9wdWxhciBpbiB0aGUgeWVhciAyMDAwLgoKCgoyLiBDcmVhdGUgYSB3b3JkIGNsb3VkIG9mIHRoZSBuYW1lcyBvZiB5b3VyIHNleCBhbmQgdGhlIHllYXIgeW91IHdlcmUgYm9ybi4gIAoKSGVyZSBpcyB0aGUgd29yZCBjbG91ZCBvZiB0aGUgcG9wdWxhciBuYW1lcyBvZiBGZW1hbGVzIGluIHRoZSB5ZWFyIEkgd2FzIGJvcm4uCmBgYHtyfQpiYWJ5bmFtZXMgJT4lCiAgZmlsdGVyKHllYXIgPT0gMjAwMCkgJT4lICAgICAjIHVzZSBvbmx5IG9uZSB5ZWFyCiAgZmlsdGVyKHNleCA9PSAiRiIpICU+JSAgICAgICAjIHVzZSBvbmx5IG9uZSBzZXgKICBzZWxlY3QobmFtZSwgbikgJT4lICAgICAgICAgICMgc2VsZWN0IHRoZSB0d28gcmVsZXZhbnQgdmFyaWFibGVzOiB0aGUgbmFtZSBhbmQgaG93IG9mdGVuIGl0IG9jY3VycwogIHRvcF9uKDEwMCwgbikgJT4lICAgICAgICAgICAgIyB1c2Ugb25seSB0aGUgdG9wIG5hbWVzIG9yIGl0IGNvdWxkIGdldCB0b28gYmlnCiAgd29yZGNsb3VkMigpICAgICAgICAgICAgICAgICAjIGdlbmVyYXRlIHRoZSB3b3JkIGNsb3VkCmBgYApFbWlseSB3YXMgdGhlIG1vc3QgcG9wdWxhciBuYW1lIGluIDIwMDAuCgoKCjMuIEdyYXBoIGl0cyBwb3B1bGFyaXR5IG92ZXIgdGltZS4gCgpUaGlzIHdpbGwgc2hvdyB0aGUgcG9wdWxhcml0eSBvZiB0aGUgbmFtZSBLaW5zZXkgb3ZlciB0aW1lLgpgYGB7cn0KYmFieW5hbWVzICU+JQogIGZpbHRlcihuYW1lID09ICJLaW5zZXkiLCBzZXggPT0gIkYiKSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0geWVhciwgeSA9IG4pKSArCiAgZ2VvbV9saW5lKCkKYGBgClRoZSBuYW1lIEtpbnNleSB3YXMgbW9zdCBwb3B1bGFyIGluIHRoZSBtaWQgMjAwMCdzLiAKCgoKNC4gQ3JlYXRlIGEgdGFibGUgc2hvd2luZyB3aGljaCB5ZWFycyBpdCB3YXMgbW9zdCBwb3B1bGFyLiAgCgpUaGlzIHdpbGwgc2hvdyB3aGF0IHllYXJzIHRoZSBuYW1lIEtpbnNleSB3YXMgbW9zdCBwb3B1bGFyLiAKYGBge3J9CmJhYnluYW1lcyAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBTdGFydCB3aXRoIHRoZSBkYXRhc2V0CiAgZmlsdGVyKG5hbWUgPT0gIktpbnNleSIsIHNleCA9PSAiRiIpICU+JSAgICAjIG9ubHkgbG9vayBhdCB0aGUgbmFtZSBhbmQgc2V4IHlvdSB3YW50CiAgdG9wX24oMTAsIHByb3ApICU+JSAgICAgICAgICAgICAgICAgICAgICAgICAgIyBnZXQgdGhlIHRvcCAxMCBuYW1lcwogIGFycmFuZ2UoLXByb3ApICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICMgc29ydCBpbiBkZXNjZW5kaW5nIG9yZGVyCgpgYGAKVGhpcyBzaG93cyB0aGF0IHRoZSBuYW1lIEtpbnNleSB3YXMgbW9zdCBwb3B1bGFyIGluIHRoZSB5ZWFyIDIwMTEuCgoKCjUuIEdyYXBoIGl0cyBwb3B1bGFyaXR5IGluIGNvbXBhcmlzb24gdG8gYW5vdGhlciBuYW1lIG9yIHR3byAoZS5nLiwgYSBmcmllbmQsIGZhbWlseSBtZW1iZXIsIGV0Yy4pLiBUbyBrZWVwIGl0IHNpbXBsZSwgdXNlIG90aGVyIG5hbWVzIG9mIHRoZSBzYW1lIHNleC4KClRoaXMgd2lsbCBzaG93IGEgY29tcGFyaXNvbiBvZiBwb3VsYXJpdHkgYmV0d2VlbiB0aGUgbmFtZXMgS2luc2V5LCBDYWxsaSwgYW5kIEVtaWx5LgpgYGB7cn0KYmFieW5hbWVzICU+JQogIGZpbHRlcihuYW1lID09ICJLaW5zZXkiIHwgbmFtZSA9PSAiQ2FsbGkiIHwgbmFtZSA9PSAiRW1pbHkiKSAlPiUgCiAgZmlsdGVyKHNleCA9PSAiRiIpICU+JSAKICBmaWx0ZXIoeWVhcj4yMDAwKSAlPiUKICBnZ3Bsb3QoYWVzKHggPSB5ZWFyLCB5ID0gbiwgY29sb3IgPSBuYW1lKSkgKwogIGdlb21fbGluZSgpCmBgYApUaGlzIHNob3dzIHRoYXQgdGhlIG5hbWUgRW1saXkgaXMgZmFyIG1vcmUgcG9wdWxhciB0aGFuIHRoZSBuYW1lcyBLaW5zZXkgYW5kIENhbGxpLiAKCgoKCgoKCg==