Plotly Graph
data(wrld_simpl)
slave_trade$isocode[slave_trade$isocode == 'ZAR'] <- 'COD'
isocodes <- slave_trade$isocode
afr <- wrld_simpl[wrld_simpl$REGION == 2, ]
afr_proj <- afr %>%
st_as_sf %>%
st_transform(3857)
geo_and_slave <- merge(x = afr_proj,
y = slave_trade,
by.x = 'ISO3',
by.y = 'isocode',
all = TRUE)
p1 <- ggplot(data = slave_trade,
mapping = aes(x = ln_export_area,
y = ln_maddison_pcgdp2000)) +
geom_point(mapping = aes(size = land_area,
text = country,
color = ethnic_fractionalization),
alpha = 0.7) +
geom_smooth(method = 'lm',
formula = y ~ x,
se = FALSE,
color = 'black') +
labs(title = 'Higher slave exports are associated with present-day poverty',
subtitle = 'Points scaled by area of country',
caption = 'Source: Nathan Nunn',
y = 'Log real per capita GDP in 2000',
x = 'Log slave exports normalized by land area') +
guides(size = 'none') +
scale_color_distiller(palette = 'YlOrRd',
direction = 0,
name = 'Ethnic\nFractionalization') +
theme_bw() +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),text = element_text(family = 'serif', size = 12))
ggplotly(p1, tooltip = 'text') %>%
layout(title = list(text = paste0('Higher slave exports are associated with present-day poverty',
'<br>',
'<sup>',
'Points scaled by area of country',
'</sup>')))