library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.0.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.4 v stringr 1.4.0
## v tidyr 1.1.2 v forcats 0.5.0
## v readr 1.4.0
## Warning: package 'ggplot2' was built under R version 4.0.3
## Warning: package 'tibble' was built under R version 4.0.3
## Warning: package 'tidyr' was built under R version 4.0.3
## Warning: package 'forcats' was built under R version 4.0.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(haven)
## Warning: package 'haven' was built under R version 4.0.3
survey13 <- read_sav("C:/Users/Priscila/Downloads/04113.SAV")
survey14 <- read_sav("C:/Users/Priscila/Downloads/04114.SAV")
survey15 <- read_sav("C:/Users/Priscila/Downloads/04115.SAV")
survey16 <- read_sav("C:/Users/Priscila/Downloads/04116.SAV")
survey17 <- read_sav("C:/Users/Priscila/Downloads/04117.SAV")
survey13$SEXO<-as.factor(survey13$SEXO)
survey14$SEXO<- as.factor(survey14$SEXO)
survey15$SEXO<- as.factor(survey15$SEXO)
tabela_sexo_survey13 <- table(survey13$P02, survey13$SEXO)
tabela_sexo_survey13
##
## 1 2
## 1 97 79
## 2 8 13
## 3 12 11
## 4 13 11
## 6 32 29
## 8 18 16
## 9 12 18
## 96 13 8
## 97 54 62
## 99 119 180
teste_qui_sexo_survey13 <- chisq.test(tabela_sexo_survey13)
teste_qui_sexo_survey13$expected
##
## 1 2
## 1 82.64348 93.35652
## 2 9.86087 11.13913
## 3 10.80000 12.20000
## 4 11.26957 12.73043
## 6 28.64348 32.35652
## 8 15.96522 18.03478
## 9 14.08696 15.91304
## 96 9.86087 11.13913
## 97 54.46957 61.53043
## 99 140.40000 158.60000
teste_qui_sexo_survey13
##
## Pearson's Chi-squared test
##
## data: tabela_sexo_survey13
## X-squared = 15.97, df = 9, p-value = 0.0675
tabela_sexo_survey14 <- table(survey14$P02, survey14$SEXO)
tabela_sexo_survey14
##
## 1 2
## 1 164 144
## 2 6 13
## 3 18 11
## 4 8 15
## 6 52 62
## 8 25 32
## 9 16 26
## 96 6 3
## 97 27 38
## 99 54 85
teste_qui_sexo_survey14 <- chisq.test(tabela_sexo_survey14)
## Warning in chisq.test(tabela_sexo_survey14): Chi-squared approximation may be
## incorrect
teste_qui_sexo_survey14$expected
##
## 1 2
## 1 143.860870 164.139130
## 2 8.874534 10.125466
## 3 13.545342 15.454658
## 4 10.742857 12.257143
## 6 53.247205 60.752795
## 8 26.623602 30.376398
## 9 19.617391 22.382609
## 96 4.203727 4.796273
## 97 30.360248 34.639752
## 99 64.924224 74.075776
teste_de_fisher_sexo_survey14<-fisher.test(tabela_sexo_survey14, hybrid = TRUE)
teste_de_fisher_sexo_survey14
##
## Fisher's Exact Test for Count Data hybrid using asym.chisq. iff
## (exp=5, perc=80, Emin=1)
##
## data: tabela_sexo_survey14
## p-value = 0.03481
## alternative hypothesis: two.sided
tabela_sexo_survey15 <- table(survey15$P02, survey15$SEXO)
tabela_sexo_survey15
##
## 1 2
## 1 163 148
## 2 7 11
## 3 16 17
## 4 23 20
## 5 6 6
## 6 59 87
## 7 7 3
## 8 25 30
## 9 21 26
## 96 0 1
## 97 27 38
## 99 23 41
teste_qui_sexo_survey15 <- chisq.test(tabela_sexo_survey15)
## Warning in chisq.test(tabela_sexo_survey15): Chi-squared approximation may be
## incorrect
teste_qui_sexo_survey15$expected
##
## 1 2
## 1 145.648447 165.351553
## 2 8.429814 9.570186
## 3 15.454658 17.545342
## 4 20.137888 22.862112
## 5 5.619876 6.380124
## 6 68.375155 77.624845
## 7 4.683230 5.316770
## 8 25.757764 29.242236
## 9 22.011180 24.988820
## 96 0.468323 0.531677
## 97 30.440994 34.559006
## 99 29.972671 34.027329
teste_de_fisher_sexo_survey15<-fisher.test(tabela_sexo_survey15, hybrid = TRUE)
teste_de_fisher_sexo_survey15
##
## Fisher's Exact Test for Count Data hybrid using asym.chisq. iff
## (exp=5, perc=80, Emin=1)
##
## data: tabela_sexo_survey15
## p-value = 0.1965
## alternative hypothesis: two.sided
survey13$IDAD<-as.factor(survey13$IDAD)
survey14$IDAD<- as.factor(survey14$IDAD)
survey15$IDAD<- as.factor(survey15$IDAD)
tabela_idade_survey13 <- table(survey13$P02, survey13$IDAD)
tabela_idade_survey13
##
## 1 2 3 4 5 6 7
## 1 1 38 48 39 24 22 4
## 2 0 5 6 3 3 2 2
## 3 0 2 9 8 2 1 1
## 4 0 6 2 9 5 2 0
## 6 0 10 13 13 13 7 5
## 8 1 9 13 3 4 4 0
## 9 0 8 9 12 1 0 0
## 96 0 4 6 7 2 1 1
## 97 2 20 34 22 21 13 4
## 99 8 51 101 56 42 27 14
teste_qui_idade_survey13 <- chisq.test(tabela_idade_survey13)
## Warning in chisq.test(tabela_idade_survey13): Chi-squared approximation may be
## incorrect
teste_qui_idade_survey13$expected
##
## 1 2 3 4 5 6 7
## 1 2.6236025 33.450932 52.690683 37.604969 25.580124 17.272050 6.7776398
## 2 0.3130435 3.991304 6.286957 4.486957 3.052174 2.060870 0.8086957
## 3 0.3428571 4.371429 6.885714 4.914286 3.342857 2.257143 0.8857143
## 4 0.3577640 4.561491 7.185093 5.127950 3.488199 2.355280 0.9242236
## 6 0.9093168 11.593789 18.262112 13.033540 8.865839 5.986335 2.3490683
## 8 0.5068323 6.462112 10.178882 7.264596 4.941615 3.336646 1.3093168
## 9 0.4472050 5.701863 8.981366 6.409938 4.360248 2.944099 1.1552795
## 96 0.3130435 3.991304 6.286957 4.486957 3.052174 2.060870 0.8086957
## 97 1.7291925 22.047205 34.727950 24.785093 16.859627 11.383851 4.4670807
## 99 4.4571429 56.828571 89.514286 63.885714 43.457143 29.342857 11.5142857
teste_de_fisher_idade_survey13 <- fisher.test (tabela_idade_survey13, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_idade_survey13
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_idade_survey13
## p-value = 0.2434
## alternative hypothesis: two.sided
tabela_idade_survey14 <- table(survey14$P02, survey14$IDAD)
tabela_idade_survey14
##
## 1 2 3 4 5 6 7
## 1 4 65 92 70 42 27 8
## 2 1 6 3 5 2 0 2
## 3 0 11 10 6 1 1 0
## 4 0 3 9 5 2 2 2
## 6 1 20 24 22 25 15 7
## 8 1 8 20 12 7 9 0
## 9 0 12 13 9 5 2 1
## 96 0 1 4 3 1 0 0
## 97 2 9 17 19 13 2 3
## 99 3 30 32 36 17 13 8
teste_qui_idade_survey14 <- chisq.test(tabela_idade_survey14)
## Warning in chisq.test(tabela_idade_survey14): Chi-squared approximation may be
## incorrect
teste_qui_idade_survey14$expected
##
## 1 2 3 4 5 6 7
## 1 4.5913043 63.130435 85.704348 71.547826 44.000000 27.1652174 11.8608696
## 2 0.2832298 3.894410 5.286957 4.413665 2.714286 1.6757764 0.7316770
## 3 0.4322981 5.944099 8.069565 6.736646 4.142857 2.5577640 1.1167702
## 4 0.3428571 4.714286 6.400000 5.342857 3.285714 2.0285714 0.8857143
## 6 1.6993789 23.366460 31.721739 26.481988 16.285714 10.0546584 4.3900621
## 8 0.8496894 11.683230 15.860870 13.240994 8.142857 5.0273292 2.1950311
## 9 0.6260870 8.608696 11.686957 9.756522 6.000000 3.7043478 1.6173913
## 96 0.1341615 1.844720 2.504348 2.090683 1.285714 0.7937888 0.3465839
## 97 0.9689441 13.322981 18.086957 15.099379 9.285714 5.7329193 2.5031056
## 99 2.0720497 28.490683 38.678261 32.289441 19.857143 12.2596273 5.3527950
teste_de_fisher_idade_survey14 <- fisher.test (tabela_idade_survey14, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_idade_survey14
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_idade_survey14
## p-value = 0.2094
## alternative hypothesis: two.sided
tabela_idade_survey15 <- table(survey15$P02, survey15$IDAD)
tabela_idade_survey15
##
## 1 2 3 4 5 6 7
## 1 3 67 82 86 36 24 13
## 2 1 4 6 2 4 1 0
## 3 0 7 15 5 4 1 1
## 4 0 10 10 5 9 6 3
## 5 0 2 4 1 5 0 0
## 6 3 29 44 35 21 9 5
## 7 0 1 3 3 2 1 0
## 8 1 14 16 12 5 4 3
## 9 1 15 15 6 6 3 1
## 96 0 0 0 1 0 0 0
## 97 1 8 13 16 12 11 4
## 99 0 9 21 21 9 3 1
teste_qui_idade_survey15 <- chisq.test(tabela_idade_survey15)
## Warning in chisq.test(tabela_idade_survey15): Chi-squared approximation may be
## incorrect
teste_qui_idade_survey15$expected
##
## 1 2 3 4 5 6
## 1 3.86335404 64.1316770 88.470807 74.5627329 43.6559006 24.33913043
## 2 0.22360248 3.7118012 5.120497 4.3155280 2.5267081 1.40869565
## 3 0.40993789 6.8049689 9.387578 7.9118012 4.6322981 2.58260870
## 4 0.53416149 8.8670807 12.232298 10.3093168 6.0360248 3.36521739
## 5 0.14906832 2.4745342 3.413665 2.8770186 1.6844720 0.93913043
## 6 1.81366460 30.1068323 41.532919 35.0037267 20.4944099 11.42608696
## 7 0.12422360 2.0621118 2.844720 2.3975155 1.4037267 0.78260870
## 8 0.68322981 11.3416149 15.645963 13.1863354 7.7204969 4.30434783
## 9 0.58385093 9.6919255 13.370186 11.2683230 6.5975155 3.67826087
## 96 0.01242236 0.2062112 0.284472 0.2397516 0.1403727 0.07826087
## 97 0.80745342 13.4037267 18.490683 15.5838509 9.1242236 5.08695652
## 99 0.79503106 13.1975155 18.206211 15.3440994 8.9838509 5.00869565
##
## 7
## 1 11.97639752
## 2 0.69316770
## 3 1.27080745
## 4 1.65590062
## 5 0.46211180
## 6 5.62236025
## 7 0.38509317
## 8 2.11801242
## 9 1.80993789
## 96 0.03850932
## 97 2.50310559
## 99 2.46459627
teste_de_fisher_idade_survey15 <- fisher.test (tabela_idade_survey15, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_idade_survey15
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_idade_survey15
## p-value = 0.3348
## alternative hypothesis: two.sided
#####p-value = 0.3458, logo, por ser maior que alpha, não rejeita H0. Desta forma, não existe associação entre as variáveis.
survey13$INST<-as.factor(survey13$INST)
survey14$INST<- as.factor(survey14$INST)
survey15$INST<- as.factor(survey15$INST)
tabela_escolaridade_survey13 <- table(survey13$P02, survey13$INST)
tabela_escolaridade_survey13
##
## 1 2 3 4 5 6 7 8 9 10
## 1 3 2 3 7 19 16 22 66 22 16
## 2 1 0 1 0 0 2 3 13 1 0
## 3 0 0 1 2 0 1 3 8 2 6
## 4 0 0 1 1 0 3 4 9 5 1
## 6 0 0 1 4 3 9 4 21 12 7
## 8 0 1 0 2 3 6 0 13 5 4
## 9 0 1 0 1 2 1 6 15 4 0
## 96 0 0 1 2 0 2 3 11 1 1
## 97 1 0 0 5 17 8 7 47 14 17
## 99 6 1 6 19 25 32 27 118 32 33
teste_qui_escolaridade_survey13 <- chisq.test(tabela_escolaridade_survey13)
## Warning in chisq.test(tabela_escolaridade_survey13): Chi-squared approximation
## may be incorrect
teste_qui_escolaridade_survey13$expected
##
## 1 2 3 4 5 6 7
## 1 2.4049689 1.0931677 3.0608696 9.401242 15.085714 17.490683 17.272050
## 2 0.2869565 0.1304348 0.3652174 1.121739 1.800000 2.086957 2.060870
## 3 0.3142857 0.1428571 0.4000000 1.228571 1.971429 2.285714 2.257143
## 4 0.3279503 0.1490683 0.4173913 1.281988 2.057143 2.385093 2.355280
## 6 0.8335404 0.3788820 1.0608696 3.258385 5.228571 6.062112 5.986335
## 8 0.4645963 0.2111801 0.5913043 1.816149 2.914286 3.378882 3.336646
## 9 0.4099379 0.1863354 0.5217391 1.602484 2.571429 2.981366 2.944099
## 96 0.2869565 0.1304348 0.3652174 1.121739 1.800000 2.086957 2.060870
## 97 1.5850932 0.7204969 2.0173913 6.196273 9.942857 11.527950 11.383851
## 99 4.0857143 1.8571429 5.2000000 15.971429 25.628571 29.714286 29.342857
##
## 8 9 10
## 1 70.181366 21.426087 18.583851
## 2 8.373913 2.556522 2.217391
## 3 9.171429 2.800000 2.428571
## 4 9.570186 2.921739 2.534161
## 6 24.324224 7.426087 6.440994
## 8 13.557764 4.139130 3.590062
## 9 11.962733 3.652174 3.167702
## 96 8.373913 2.556522 2.217391
## 97 46.255901 14.121739 12.248447
## 99 119.228571 36.400000 31.571429
teste_de_fisher_escolaridade_survey13 <- fisher.test (tabela_escolaridade_survey13, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_escolaridade_survey13
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_escolaridade_survey13
## p-value = 0.1829
## alternative hypothesis: two.sided
tabela_escolaridade_survey14 <- table(survey14$P02, survey14$INST)
tabela_escolaridade_survey14
##
## 1 2 3 4 5 6 7 8 9 10
## 1 6 2 6 11 27 25 41 110 42 38
## 2 0 0 1 2 1 2 4 4 4 1
## 3 0 0 0 0 1 2 2 17 4 3
## 4 0 0 0 0 0 2 2 11 2 6
## 6 2 0 2 7 11 11 7 47 16 11
## 8 0 0 0 3 3 7 6 22 12 4
## 9 0 0 0 3 2 6 4 21 5 1
## 96 0 0 0 0 3 0 0 5 1 0
## 97 0 0 1 1 2 6 10 33 6 6
## 99 4 0 2 6 17 14 12 55 17 12
teste_qui_escolaridade_survey14 <- chisq.test(tabela_escolaridade_survey14)
## Warning in chisq.test(tabela_escolaridade_survey14): Chi-squared approximation
## may be incorrect
teste_qui_escolaridade_survey14$expected
##
## 1 2 3 4 5 6 7
## 1 4.5913043 0.76521739 4.5913043 12.6260870 25.6347826 28.6956522 33.6695652
## 2 0.2832298 0.04720497 0.2832298 0.7788820 1.5813665 1.7701863 2.0770186
## 3 0.4322981 0.07204969 0.4322981 1.1888199 2.4136646 2.7018634 3.1701863
## 4 0.3428571 0.05714286 0.3428571 0.9428571 1.9142857 2.1428571 2.5142857
## 6 1.6993789 0.28322981 1.6993789 4.6732919 9.4881988 10.6211180 12.4621118
## 8 0.8496894 0.14161491 0.8496894 2.3366460 4.7440994 5.3105590 6.2310559
## 9 0.6260870 0.10434783 0.6260870 1.7217391 3.4956522 3.9130435 4.5913043
## 96 0.1341615 0.02236025 0.1341615 0.3689441 0.7490683 0.8385093 0.9838509
## 97 0.9689441 0.16149068 0.9689441 2.6645963 5.4099379 6.0559006 7.1055901
## 99 2.0720497 0.34534161 2.0720497 5.6981366 11.5689441 12.9503106 15.1950311
##
## 8 9 10
## 1 124.347826 41.704348 31.3739130
## 2 7.670807 2.572671 1.9354037
## 3 11.708075 3.926708 2.9540373
## 4 9.285714 3.114286 2.3428571
## 6 46.024845 15.436025 11.6124224
## 8 23.012422 7.718012 5.8062112
## 9 16.956522 5.686957 4.2782609
## 96 3.633540 1.218634 0.9167702
## 97 26.242236 8.801242 6.6211180
## 99 56.118012 18.821118 14.1590062
teste_de_fisher_escolaridade_survey14 <- fisher.test (tabela_escolaridade_survey14, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_escolaridade_survey14
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_escolaridade_survey14
## p-value = 0.7161
## alternative hypothesis: two.sided
tabela_escolaridade_survey15 <- table(survey15$P02, survey15$INST)
tabela_escolaridade_survey15
##
## 1 3 4 5 6 7 8 9 10
## 1 3 6 7 20 28 26 139 36 46
## 2 0 0 2 0 2 1 5 4 4
## 3 0 0 3 1 1 4 15 5 4
## 4 0 0 2 3 2 3 25 5 3
## 5 0 0 0 0 0 0 8 2 2
## 6 3 3 3 7 20 13 70 11 16
## 7 0 0 0 1 1 1 6 1 0
## 8 0 0 4 6 6 11 20 4 4
## 9 0 0 2 2 2 9 22 8 2
## 96 0 0 0 0 0 0 0 1 0
## 97 2 3 2 6 2 8 31 5 6
## 99 2 0 3 7 2 8 28 7 7
teste_qui_escolaridade_survey15 <- chisq.test(tabela_escolaridade_survey15)
## Warning in chisq.test(tabela_escolaridade_survey15): Chi-squared approximation
## may be incorrect
teste_qui_escolaridade_survey15$expected
##
## 1 3 4 5 6 7
## 1 3.86335404 4.63602484 10.81739130 20.47577640 25.49813665 32.4521739
## 2 0.22360248 0.26832298 0.62608696 1.18509317 1.47577640 1.8782609
## 3 0.40993789 0.49192547 1.14782609 2.17267081 2.70559006 3.4434783
## 4 0.53416149 0.64099379 1.49565217 2.83105590 3.52546584 4.4869565
## 5 0.14906832 0.17888199 0.41739130 0.79006211 0.98385093 1.2521739
## 6 1.81366460 2.17639752 5.07826087 9.61242236 11.97018634 15.2347826
## 7 0.12422360 0.14906832 0.34782609 0.65838509 0.81987578 1.0434783
## 8 0.68322981 0.81987578 1.91304348 3.62111801 4.50931677 5.7391304
## 9 0.58385093 0.70062112 1.63478261 3.09440994 3.85341615 4.9043478
## 96 0.01242236 0.01490683 0.03478261 0.06583851 0.08198758 0.1043478
## 97 0.80745342 0.96894410 2.26086957 4.27950311 5.32919255 6.7826087
## 99 0.79503106 0.95403727 2.22608696 4.21366460 5.24720497 6.6782609
##
## 8 9 10
## 1 142.5577640 34.383851 36.3155280
## 2 8.2509317 1.990062 2.1018634
## 3 15.1267081 3.648447 3.8534161
## 4 19.7105590 4.754037 5.0211180
## 5 5.5006211 1.326708 1.4012422
## 6 66.9242236 16.141615 17.0484472
## 7 4.5838509 1.105590 1.1677019
## 8 25.2111801 6.080745 6.4223602
## 9 21.5440994 5.196273 5.4881988
## 96 0.4583851 0.110559 0.1167702
## 97 29.7950311 7.186335 7.5900621
## 99 29.3366460 7.075776 7.4732919
teste_de_fisher_escolaridade_survey15 <- fisher.test (tabela_escolaridade_survey15, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_escolaridade_survey15
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_escolaridade_survey15
## p-value = 0.2844
## alternative hypothesis: two.sided
survey13$REND1<-as.factor(survey13$REND1)
survey14$REND1<- as.factor(survey14$REND1)
survey15$REND1<- as.factor(survey15$REND1)
tabela_rendaind_survey13 <- table(survey13$P02, survey13$REND1)
tabela_rendaind_survey13
##
## 1 2 3 4 5 6 98 99
## 1 0 1 5 28 48 70 22 2
## 2 0 0 0 0 5 14 1 1
## 3 1 0 0 6 7 7 2 0
## 4 0 0 0 2 8 9 3 2
## 6 0 1 1 9 15 25 7 3
## 8 0 0 0 5 8 12 8 1
## 9 0 1 0 3 5 18 3 0
## 96 0 0 0 4 5 11 1 0
## 97 0 5 2 19 19 54 14 3
## 99 0 2 3 32 61 156 38 7
teste_qui_rendaind_survey13 <- chisq.test(tabela_rendaind_survey13)
## Warning in chisq.test(tabela_rendaind_survey13): Chi-squared approximation may
## be incorrect
teste_qui_rendaind_survey13$expected
##
## 1 2 3 4 5 6 98
## 1 0.21863354 2.1863354 2.4049689 23.612422 39.572671 82.206211 21.644720
## 2 0.02608696 0.2608696 0.2869565 2.817391 4.721739 9.808696 2.582609
## 3 0.02857143 0.2857143 0.3142857 3.085714 5.171429 10.742857 2.828571
## 4 0.02981366 0.2981366 0.3279503 3.219876 5.396273 11.209938 2.951553
## 6 0.07577640 0.7577640 0.8335404 8.183851 13.715528 28.491925 7.501863
## 8 0.04223602 0.4223602 0.4645963 4.561491 7.644720 15.880745 4.181366
## 9 0.03726708 0.3726708 0.4099379 4.024845 6.745342 14.012422 3.689441
## 96 0.02608696 0.2608696 0.2869565 2.817391 4.721739 9.808696 2.582609
## 97 0.14409938 1.4409938 1.5850932 15.562733 26.081988 54.181366 14.265839
## 99 0.37142857 3.7142857 4.0857143 40.114286 67.228571 139.657143 36.771429
##
## 99
## 1 4.1540373
## 2 0.4956522
## 3 0.5428571
## 4 0.5664596
## 6 1.4397516
## 8 0.8024845
## 9 0.7080745
## 96 0.4956522
## 97 2.7378882
## 99 7.0571429
teste_de_fisher_rendaind_survey13 <- fisher.test (tabela_rendaind_survey13, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_rendaind_survey13
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_rendaind_survey13
## p-value = 0.2234
## alternative hypothesis: two.sided
tabela_rendaind_survey14 <- table(survey14$P02, survey14$REND1)
tabela_rendaind_survey14
##
## 1 2 3 4 5 6 98 99
## 1 2 2 10 43 81 125 41 4
## 2 0 0 0 2 1 9 7 0
## 3 0 1 2 3 9 8 6 0
## 4 0 1 1 6 5 6 4 0
## 6 0 2 2 15 26 51 13 5
## 8 0 1 2 6 18 22 6 2
## 9 0 0 4 2 10 22 4 0
## 96 0 0 0 2 2 4 0 1
## 97 0 0 2 7 17 26 10 3
## 99 0 1 2 11 36 58 25 6
teste_qui_rendaind_survey14 <- chisq.test(tabela_rendaind_survey14)
## Warning in chisq.test(tabela_rendaind_survey14): Chi-squared approximation may
## be incorrect
teste_qui_rendaind_survey14$expected
##
## 1 2 3 4 5 6 98
## 1 0.76521739 3.06086957 9.5652174 37.113043 78.434783 126.643478 44.382609
## 2 0.04720497 0.18881988 0.5900621 2.289441 4.838509 7.812422 2.737888
## 3 0.07204969 0.28819876 0.9006211 3.494410 7.385093 11.924224 4.178882
## 4 0.05714286 0.22857143 0.7142857 2.771429 5.857143 9.457143 3.314286
## 6 0.28322981 1.13291925 3.5403727 13.736646 29.031056 46.874534 16.427329
## 8 0.14161491 0.56645963 1.7701863 6.868323 14.515528 23.437267 8.213665
## 9 0.10434783 0.41739130 1.3043478 5.060870 10.695652 17.269565 6.052174
## 96 0.02236025 0.08944099 0.2795031 1.084472 2.291925 3.700621 1.296894
## 97 0.16149068 0.64596273 2.0186335 7.832298 16.552795 26.726708 9.366460
## 99 0.34534161 1.38136646 4.3167702 16.749068 35.397516 57.154037 20.029814
##
## 99
## 1 8.0347826
## 2 0.4956522
## 3 0.7565217
## 4 0.6000000
## 6 2.9739130
## 8 1.4869565
## 9 1.0956522
## 96 0.2347826
## 97 1.6956522
## 99 3.6260870
teste_de_fisher_rendaind_survey14 <- fisher.test (tabela_rendaind_survey14, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_rendaind_survey14
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_rendaind_survey14
## p-value = 0.2719
## alternative hypothesis: two.sided
tabela_rendaind_survey15 <- table(survey15$P02, survey15$REND1)
tabela_rendaind_survey15
##
## 1 2 3 4 5 6 98 99
## 1 1 5 18 44 84 109 47 3
## 2 0 0 1 3 4 4 5 1
## 3 0 0 0 8 7 11 7 0
## 4 0 0 1 7 13 17 5 0
## 5 0 1 2 2 4 2 1 0
## 6 2 1 8 22 33 55 23 2
## 7 0 0 0 3 3 3 1 0
## 8 1 0 2 9 14 21 8 0
## 9 0 0 0 6 13 20 7 1
## 96 0 0 0 0 0 1 0 0
## 97 0 0 1 9 15 26 11 3
## 99 0 0 0 7 16 23 15 3
teste_qui_rendaind_survey15 <- chisq.test(tabela_rendaind_survey15)
## Warning in chisq.test(tabela_rendaind_survey15): Chi-squared approximation may
## be incorrect
teste_qui_rendaind_survey15$expected
##
## 1 2 3 4 5 6
## 1 1.545341615 2.704347826 12.74906832 46.3602484 79.5850932 112.8099379
## 2 0.089440994 0.156521739 0.73788820 2.6832298 4.6062112 6.5291925
## 3 0.163975155 0.286956522 1.35279503 4.9192547 8.4447205 11.9701863
## 4 0.213664596 0.373913043 1.76273292 6.4099379 11.0037267 15.5975155
## 5 0.059627329 0.104347826 0.49192547 1.7888199 3.0708075 4.3527950
## 6 0.725465839 1.269565217 5.98509317 21.7639752 37.3614907 52.9590062
## 7 0.049689441 0.086956522 0.40993789 1.4906832 2.5590062 3.6273292
## 8 0.273291925 0.478260870 2.25465839 8.1987578 14.0745342 19.9503106
## 9 0.233540373 0.408695652 1.92670807 7.0062112 12.0273292 17.0484472
## 96 0.004968944 0.008695652 0.04099379 0.1490683 0.2559006 0.3627329
## 97 0.322981366 0.565217391 2.66459627 9.6894410 16.6335404 23.5776398
## 99 0.318012422 0.556521739 2.62360248 9.5403727 16.3776398 23.2149068
##
## 98 99
## 1 50.2236025 5.02236025
## 2 2.9068323 0.29068323
## 3 5.3291925 0.53291925
## 4 6.9440994 0.69440994
## 5 1.9378882 0.19378882
## 6 23.5776398 2.35776398
## 7 1.6149068 0.16149068
## 8 8.8819876 0.88819876
## 9 7.5900621 0.75900621
## 96 0.1614907 0.01614907
## 97 10.4968944 1.04968944
## 99 10.3354037 1.03354037
teste_de_fisher_rendaind_survey15 <- fisher.test (tabela_rendaind_survey15, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_rendaind_survey15
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_rendaind_survey15
## p-value = 0.8486
## alternative hypothesis: two.sided
survey13$REND2<-as.factor(survey13$REND2)
survey14$REND2<- as.factor(survey14$REND2)
survey15$REND2<- as.factor(survey15$REND2)
tabela_rendafam_survey13 <- table(survey13$P02, survey13$REND2)
tabela_rendafam_survey13
##
## 1 2 3 4 5 6 99
## 1 0 5 17 60 61 26 7
## 2 0 0 1 5 11 4 0
## 3 1 1 2 10 6 3 0
## 4 0 0 4 4 12 2 2
## 6 0 3 6 21 18 10 3
## 8 1 1 2 9 10 11 0
## 9 1 0 3 5 13 8 0
## 96 1 0 1 7 5 7 0
## 97 2 4 9 26 36 34 5
## 99 1 1 23 77 100 82 15
teste_qui_rendafam_survey13 <- chisq.test(tabela_rendaind_survey13)
## Warning in chisq.test(tabela_rendaind_survey13): Chi-squared approximation may
## be incorrect
teste_qui_rendafam_survey13$expected
##
## 1 2 3 4 5 6 98
## 1 0.21863354 2.1863354 2.4049689 23.612422 39.572671 82.206211 21.644720
## 2 0.02608696 0.2608696 0.2869565 2.817391 4.721739 9.808696 2.582609
## 3 0.02857143 0.2857143 0.3142857 3.085714 5.171429 10.742857 2.828571
## 4 0.02981366 0.2981366 0.3279503 3.219876 5.396273 11.209938 2.951553
## 6 0.07577640 0.7577640 0.8335404 8.183851 13.715528 28.491925 7.501863
## 8 0.04223602 0.4223602 0.4645963 4.561491 7.644720 15.880745 4.181366
## 9 0.03726708 0.3726708 0.4099379 4.024845 6.745342 14.012422 3.689441
## 96 0.02608696 0.2608696 0.2869565 2.817391 4.721739 9.808696 2.582609
## 97 0.14409938 1.4409938 1.5850932 15.562733 26.081988 54.181366 14.265839
## 99 0.37142857 3.7142857 4.0857143 40.114286 67.228571 139.657143 36.771429
##
## 99
## 1 4.1540373
## 2 0.4956522
## 3 0.5428571
## 4 0.5664596
## 6 1.4397516
## 8 0.8024845
## 9 0.7080745
## 96 0.4956522
## 97 2.7378882
## 99 7.0571429
teste_de_fisher_rendafam_survey13 <- fisher.test (tabela_rendafam_survey13, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_rendafam_survey13
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_rendafam_survey13
## p-value = 0.02049
## alternative hypothesis: two.sided
tabela_rendafam_survey14 <- table(survey14$P02, survey14$REND2)
tabela_rendafam_survey14
##
## 1 2 3 4 5 6 99
## 1 3 12 34 101 93 52 13
## 2 0 0 1 4 8 6 0
## 3 1 1 3 9 8 5 2
## 4 1 1 2 9 5 5 0
## 6 2 3 12 33 23 29 12
## 8 0 4 7 16 20 8 2
## 9 0 3 2 12 19 5 1
## 96 0 0 1 3 2 2 1
## 97 1 1 5 15 24 13 6
## 99 2 2 8 32 50 36 9
teste_qui_rendafam_survey14 <- chisq.test(tabela_rendaind_survey14)
## Warning in chisq.test(tabela_rendaind_survey14): Chi-squared approximation may
## be incorrect
teste_qui_rendafam_survey14$expected
##
## 1 2 3 4 5 6 98
## 1 0.76521739 3.06086957 9.5652174 37.113043 78.434783 126.643478 44.382609
## 2 0.04720497 0.18881988 0.5900621 2.289441 4.838509 7.812422 2.737888
## 3 0.07204969 0.28819876 0.9006211 3.494410 7.385093 11.924224 4.178882
## 4 0.05714286 0.22857143 0.7142857 2.771429 5.857143 9.457143 3.314286
## 6 0.28322981 1.13291925 3.5403727 13.736646 29.031056 46.874534 16.427329
## 8 0.14161491 0.56645963 1.7701863 6.868323 14.515528 23.437267 8.213665
## 9 0.10434783 0.41739130 1.3043478 5.060870 10.695652 17.269565 6.052174
## 96 0.02236025 0.08944099 0.2795031 1.084472 2.291925 3.700621 1.296894
## 97 0.16149068 0.64596273 2.0186335 7.832298 16.552795 26.726708 9.366460
## 99 0.34534161 1.38136646 4.3167702 16.749068 35.397516 57.154037 20.029814
##
## 99
## 1 8.0347826
## 2 0.4956522
## 3 0.7565217
## 4 0.6000000
## 6 2.9739130
## 8 1.4869565
## 9 1.0956522
## 96 0.2347826
## 97 1.6956522
## 99 3.6260870
teste_de_fisher_rendafam_survey14 <- fisher.test (tabela_rendafam_survey14, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_rendafam_survey14
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_rendafam_survey14
## p-value = 0.2674
## alternative hypothesis: two.sided
tabela_rendafam_survey15 <- table(survey15$P02, survey15$REND2)
tabela_rendafam_survey15
##
## 1 2 3 4 5 6 99
## 1 6 8 40 115 86 44 12
## 2 0 2 1 5 3 4 3
## 3 0 0 0 13 12 8 0
## 4 1 0 3 16 13 9 1
## 5 1 2 1 3 4 1 0
## 6 3 8 14 49 39 28 5
## 7 0 0 3 4 2 1 0
## 8 1 1 4 17 15 15 2
## 9 0 1 5 15 16 9 1
## 96 0 0 0 1 0 0 0
## 97 0 2 5 15 20 18 5
## 99 0 0 6 16 22 15 5
teste_qui_rendafam_survey15 <- chisq.test(tabela_rendaind_survey15)
## Warning in chisq.test(tabela_rendaind_survey15): Chi-squared approximation may
## be incorrect
teste_qui_rendafam_survey15$expected
##
## 1 2 3 4 5 6
## 1 1.545341615 2.704347826 12.74906832 46.3602484 79.5850932 112.8099379
## 2 0.089440994 0.156521739 0.73788820 2.6832298 4.6062112 6.5291925
## 3 0.163975155 0.286956522 1.35279503 4.9192547 8.4447205 11.9701863
## 4 0.213664596 0.373913043 1.76273292 6.4099379 11.0037267 15.5975155
## 5 0.059627329 0.104347826 0.49192547 1.7888199 3.0708075 4.3527950
## 6 0.725465839 1.269565217 5.98509317 21.7639752 37.3614907 52.9590062
## 7 0.049689441 0.086956522 0.40993789 1.4906832 2.5590062 3.6273292
## 8 0.273291925 0.478260870 2.25465839 8.1987578 14.0745342 19.9503106
## 9 0.233540373 0.408695652 1.92670807 7.0062112 12.0273292 17.0484472
## 96 0.004968944 0.008695652 0.04099379 0.1490683 0.2559006 0.3627329
## 97 0.322981366 0.565217391 2.66459627 9.6894410 16.6335404 23.5776398
## 99 0.318012422 0.556521739 2.62360248 9.5403727 16.3776398 23.2149068
##
## 98 99
## 1 50.2236025 5.02236025
## 2 2.9068323 0.29068323
## 3 5.3291925 0.53291925
## 4 6.9440994 0.69440994
## 5 1.9378882 0.19378882
## 6 23.5776398 2.35776398
## 7 1.6149068 0.16149068
## 8 8.8819876 0.88819876
## 9 7.5900621 0.75900621
## 96 0.1614907 0.01614907
## 97 10.4968944 1.04968944
## 99 10.3354037 1.03354037
teste_de_fisher_rendafam_survey15 <- fisher.test (tabela_rendafam_survey15, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_rendafam_survey15
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_rendafam_survey15
## p-value = 0.2499
## alternative hypothesis: two.sided
tabela_avagovmun1_survey13 <- table(survey13$P02, survey13$P07)
tabela_avagovmun1_survey13
##
## 1 2 3 4 5 99
## 1 35 93 41 0 3 4
## 2 0 4 10 0 7 0
## 3 2 4 10 0 7 0
## 4 0 7 8 2 7 0
## 6 1 12 26 10 12 0
## 8 4 6 16 2 6 0
## 9 0 9 11 5 5 0
## 96 2 2 10 2 5 0
## 97 3 22 31 14 42 4
## 99 18 63 148 18 41 11
teste_qui_avagovmun1_survey13 <- chisq.test(tabela_avagovmun1_survey13)
## Warning in chisq.test(tabela_avagovmun1_survey13): Chi-squared approximation may
## be incorrect
teste_qui_avagovmun1_survey13$expected
##
## 1 2 3 4 5 99
## 1 14.211180 48.536646 67.995031 11.587578 29.515528 4.1540373
## 2 1.695652 5.791304 8.113043 1.382609 3.521739 0.4956522
## 3 1.857143 6.342857 8.885714 1.514286 3.857143 0.5428571
## 4 1.937888 6.618634 9.272050 1.580124 4.024845 0.5664596
## 6 4.925466 16.822360 23.566460 4.016149 10.229814 1.4397516
## 8 2.745342 9.376398 13.135404 2.238509 5.701863 0.8024845
## 9 2.422360 8.273292 11.590062 1.975155 5.031056 0.7080745
## 96 1.695652 5.791304 8.113043 1.382609 3.521739 0.4956522
## 97 9.366460 31.990062 44.814907 7.637267 19.453416 2.7378882
## 99 24.142857 82.457143 115.514286 19.685714 50.142857 7.0571429
teste_de_fisher_avagovmun1_survey13 <- fisher.test (tabela_avagovmun1_survey13, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_avagovmun1_survey13
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_avagovmun1_survey13
## p-value = 0.0004998
## alternative hypothesis: two.sided
tabela_avagovmun1_survey14 <- table(survey14$P02, survey14$P08)
tabela_avagovmun1_survey14
##
## 1 2 3 4 5 99
## 1 50 171 74 1 9 3
## 2 0 7 6 3 3 0
## 3 2 5 12 4 5 1
## 4 1 3 9 4 6 0
## 6 0 22 43 24 25 0
## 8 4 13 22 6 12 0
## 9 1 7 21 6 7 0
## 96 1 1 6 1 0 0
## 97 3 10 29 6 16 1
## 99 3 30 56 14 27 9
teste_qui_avagovmun1_survey14 <- chisq.test(tabela_avagovmun1_survey14)
## Warning in chisq.test(tabela_avagovmun1_survey14): Chi-squared approximation may
## be incorrect
teste_qui_avagovmun1_survey14$expected
##
## 1 2 3 4 5 99
## 1 24.8695652 102.921739 106.365217 26.4000000 42.086957 5.3565217
## 2 1.5341615 6.349068 6.561491 1.6285714 2.596273 0.3304348
## 3 2.3416149 9.690683 10.014907 2.4857143 3.962733 0.5043478
## 4 1.8571429 7.685714 7.942857 1.9714286 3.142857 0.4000000
## 6 9.2049689 38.094410 39.368944 9.7714286 15.577640 1.9826087
## 8 4.6024845 19.047205 19.684472 4.8857143 7.788820 0.9913043
## 9 3.3913043 14.034783 14.504348 3.6000000 5.739130 0.7304348
## 96 0.7267081 3.007453 3.108075 0.7714286 1.229814 0.1565217
## 97 5.2484472 21.720497 22.447205 5.5714286 8.881988 1.1304348
## 99 11.2236025 46.448447 48.002484 11.9142857 18.993789 2.4173913
teste_de_fisher_avagovmun1_survey14 <- fisher.test (tabela_avagovmun1_survey14, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_avagovmun1_survey14
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_avagovmun1_survey14
## p-value = 0.0004998
## alternative hypothesis: two.sided
tabela_avagovmun1_survey15 <- table(survey15$P02, survey15$P07)
tabela_avagovmun1_survey15
##
## 1 2 3 4 5 99
## 1 53 162 83 3 9 1
## 2 1 6 6 2 3 0
## 3 1 7 14 2 9 0
## 4 0 3 28 7 5 0
## 5 0 1 7 1 3 0
## 6 10 29 52 19 36 0
## 7 0 5 2 1 2 0
## 8 3 12 23 3 14 0
## 9 1 20 12 6 7 1
## 96 0 0 0 0 1 0
## 97 0 7 32 7 18 1
## 99 3 14 29 7 10 1
teste_qui_avagovmun1_survey15 <- chisq.test(tabela_avagovmun1_survey15)
## Warning in chisq.test(tabela_avagovmun1_survey15): Chi-squared approximation may
## be incorrect
teste_qui_avagovmun1_survey15$expected
##
## 1 2 3 4 5 99
## 1 27.81614907 102.7652174 111.264596 22.40745342 45.2012422 1.545341615
## 2 1.60993789 5.9478261 6.439752 1.29689441 2.6161491 0.089440994
## 3 2.95155280 10.9043478 11.806211 2.37763975 4.7962733 0.163975155
## 4 3.84596273 14.2086957 15.383851 3.09813665 6.2496894 0.213664596
## 5 1.07329193 3.9652174 4.293168 0.86459627 1.7440994 0.059627329
## 6 13.05838509 48.2434783 52.233540 10.51925466 21.2198758 0.725465839
## 7 0.89440994 3.3043478 3.577640 0.72049689 1.4534161 0.049689441
## 8 4.91925466 18.1739130 19.677019 3.96273292 7.9937888 0.273291925
## 9 4.20372671 15.5304348 16.814907 3.38633540 6.8310559 0.233540373
## 96 0.08944099 0.3304348 0.357764 0.07204969 0.1453416 0.004968944
## 97 5.81366460 21.4782609 23.254658 4.68322981 9.4472050 0.322981366
## 99 5.72422360 21.1478261 22.896894 4.61118012 9.3018634 0.318012422
teste_de_fisher_avagovmun1_survey15 <- fisher.test (tabela_avagovmun1_survey15, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_avagovmun1_survey15
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_avagovmun1_survey15
## p-value = 0.0004998
## alternative hypothesis: two.sided
survey13$P08<-as.factor(survey13$P08)
survey14$P09<- as.factor(survey14$P09)
survey15$P08<- as.factor(survey15$P08)
tabela_aprovgovmun1_survey13<- table(survey13$P02, survey13$P08)
tabela_aprovgovmun1_survey13
##
## 1 2 99
## 1 157 10 9
## 2 4 17 0
## 3 5 17 1
## 4 9 15 0
## 6 15 41 5
## 8 15 17 2
## 9 11 17 2
## 96 6 14 1
## 97 29 80 7
## 99 145 130 24
teste_qui_aprovgovmun1_survey13 <- chisq.test(tabela_aprovgovmun1_survey13)
## Warning in chisq.test(tabela_aprovgovmun1_survey13): Chi-squared approximation
## may be incorrect
teste_qui_aprovgovmun1_survey13$expected
##
## 1 2 99
## 1 86.57888 78.27081 11.150311
## 2 10.33043 9.33913 1.330435
## 3 11.31429 10.22857 1.457143
## 4 11.80621 10.67329 1.520497
## 6 30.00745 27.12795 3.864596
## 8 16.72547 15.12050 2.154037
## 9 14.75776 13.34161 1.900621
## 96 10.33043 9.33913 1.330435
## 97 57.06335 51.58758 7.349068
## 99 147.08571 132.97143 18.942857
teste_de_fisher_aprovgovmun1_survey13 <- fisher.test (tabela_aprovgovmun1_survey13, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_aprovgovmun1_survey13
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_aprovgovmun1_survey13
## p-value = 0.0004998
## alternative hypothesis: two.sided
tabela_aprovgovmun1_survey14<- table(survey14$P02, survey14$P09)
tabela_aprovgovmun1_survey14
##
## 1 2 99
## 1 268 24 16
## 2 12 7 0
## 3 12 17 0
## 4 5 17 1
## 6 32 74 8
## 8 20 33 4
## 9 16 26 0
## 96 4 5 0
## 97 20 37 8
## 99 46 69 24
teste_qui_aprovgovmun1_survey14 <- chisq.test(tabela_aprovgovmun1_survey14)
## Warning in chisq.test(tabela_aprovgovmun1_survey14): Chi-squared approximation
## may be incorrect
teste_qui_aprovgovmun1_survey14$expected
##
## 1 2 99
## 1 166.434783 118.226087 23.3391304
## 2 10.267081 7.293168 1.4397516
## 3 15.670807 11.131677 2.1975155
## 4 12.428571 8.828571 1.7428571
## 6 61.602484 43.759006 8.6385093
## 8 30.801242 21.879503 4.3192547
## 9 22.695652 16.121739 3.1826087
## 96 4.863354 3.454658 0.6819876
## 97 35.124224 24.950311 4.9254658
## 99 75.111801 53.355280 10.5329193
teste_de_fisher_aprovgovmun1_survey14 <- fisher.test (tabela_aprovgovmun1_survey14, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_aprovgovmun1_survey14
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_aprovgovmun1_survey14
## p-value = 0.0004998
## alternative hypothesis: two.sided
tabela_aprovgovmun1_survey15<- table(survey15$P02, survey15$P08)
tabela_aprovgovmun1_survey15
##
## 1 2 99
## 1 276 28 7
## 2 11 7 0
## 3 13 19 1
## 4 12 31 0
## 5 3 8 1
## 6 60 82 4
## 7 4 5 1
## 8 18 34 3
## 9 25 20 2
## 96 0 1 0
## 97 17 42 6
## 99 25 33 6
teste_qui_aprovgovmun1_survey15 <- chisq.test(tabela_aprovgovmun1_survey15)
## Warning in chisq.test(tabela_aprovgovmun1_survey15): Chi-squared approximation
## may be incorrect
teste_qui_aprovgovmun1_survey15$expected
##
## 1 2 99
## 1 179.2596273 119.7639752 11.97639752
## 2 10.3751553 6.9316770 0.69316770
## 3 19.0211180 12.7080745 1.27080745
## 4 24.7850932 16.5590062 1.65590062
## 5 6.9167702 4.6211180 0.46211180
## 6 84.1540373 56.2236025 5.62236025
## 7 5.7639752 3.8509317 0.38509317
## 8 31.7018634 21.1801242 2.11801242
## 9 27.0906832 18.0993789 1.80993789
## 96 0.5763975 0.3850932 0.03850932
## 97 37.4658385 25.0310559 2.50310559
## 99 36.8894410 24.6459627 2.46459627
teste_de_fisher_aprovgovmun1_survey15 <- fisher.test (tabela_aprovgovmun1_survey15, hybrid = TRUE, simulate.p.value=TRUE)
teste_de_fisher_aprovgovmun1_survey15
##
## Fisher's Exact Test for Count Data with simulated p-value (based on
## 2000 replicates)
##
## data: tabela_aprovgovmun1_survey15
## p-value = 0.0004998
## alternative hypothesis: two.sided