getwd()
[1] "C:/Users/Hariharan/Documents"
setwd("C:/Users/Hariharan/Documents")
adult.dataset<-read.csv('adult.csv')
##How many male are not married?
suppressMessages(
adult.dataset %>%
  group_by(gender,marital.status)%>%
  filter(marital.status=="Never-married")%>%
  summarise(gender_count = n()))
##find the summary of the data
summary(adult.dataset)
      age         workclass             fnlwgt         education         educational.num marital.status    
 Min.   :17.00   Length:48842       Min.   :  12285   Length:48842       Min.   : 1.00   Length:48842      
 1st Qu.:28.00   Class :character   1st Qu.: 117551   Class :character   1st Qu.: 9.00   Class :character  
 Median :37.00   Mode  :character   Median : 178145   Mode  :character   Median :10.00   Mode  :character  
 Mean   :38.64                      Mean   : 189664                      Mean   :10.08                     
 3rd Qu.:48.00                      3rd Qu.: 237642                      3rd Qu.:12.00                     
 Max.   :90.00                      Max.   :1490400                      Max.   :16.00                     
  occupation        relationship           race              gender           capital.gain  
 Length:48842       Length:48842       Length:48842       Length:48842       Min.   :    0  
 Class :character   Class :character   Class :character   Class :character   1st Qu.:    0  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character   Median :    0  
                                                                             Mean   : 1079  
                                                                             3rd Qu.:    0  
                                                                             Max.   :99999  
  capital.loss    hours.per.week  native.country        income         
 Min.   :   0.0   Min.   : 1.00   Length:48842       Length:48842      
 1st Qu.:   0.0   1st Qu.:40.00   Class :character   Class :character  
 Median :   0.0   Median :40.00   Mode  :character   Mode  :character  
 Mean   :  87.5   Mean   :40.42                                        
 3rd Qu.:   0.0   3rd Qu.:45.00                                        
 Max.   :4356.0   Max.   :99.00                                        
##how many citizens are high qualified and what is their race?
suppressMessages(
adult.dataset%>%
  group_by(race,educational.num)%>%
  filter(educational.num>=16)%>%
  summarise(citizen_count = n()))
NA
##how many citizens are high qualified and what is their race?
adult.dataset%>%
  group_by(race,educational.num)%>%
  filter(educational.num>=10)%>%
  tally()
##what is the average working hour per week of a person?
mean(adult.dataset$hours.per.week)
[1] 40.42238
##what is the average working hour per week for male and female?
suppressMessages(
adult.dataset%>%
  group_by(gender)%>%
  summarise(mean(hours.per.week)))
NA
##what is the female to male ratio?
suppressMessages(
adult.dataset%>%
  group_by(gender)%>%
  summarise(adult = n()))
NA
##percentage of male citizen
per_male = sum(adult.dataset$gender=="Male")/length(adult.dataset$gender)*100
per_male
[1] 66.8482
##percentage of female
per_female = sum(adult.dataset$gender=="Female")/length(adult.dataset$gender)*100
per_female
[1] 33.1518
##who are never married where their age is above 30
filter(adult.dataset,age>30,marital.status=="Never-married")
##whose occupasion is Prof-specialty and sales
filter(adult.dataset,occupation=="Prof-specialty" | occupation=="sales")
##working hours for male & female
adult.dataset %>%
  select(gender,hours.per.week) %>%
  filter(gender=="Male")
adult.dataset %>%
  select(education,educational.num) %>%
  arrange(desc(educational.num))
adult.dataset%>%
  group_by(education,educational.num)%>%
  tally(sort = TRUE)
LS0tDQp0aXRsZTogImFkdWx0IGRhdGEiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KYGBge3J9DQpnZXR3ZCgpDQpzZXR3ZCgiQzovVXNlcnMvSGFyaWhhcmFuL0RvY3VtZW50cyIpDQphZHVsdC5kYXRhc2V0PC1yZWFkLmNzdignYWR1bHQuY3N2JykNCmBgYA0KDQpgYGB7cn0NCiMjSG93IG1hbnkgbWFsZSBhbmQgZmVtYWxlIGFyZSBub3QgbWFycmllZD8NCnN1cHByZXNzTWVzc2FnZXMoDQphZHVsdC5kYXRhc2V0ICU+JQ0KICBncm91cF9ieShnZW5kZXIsbWFyaXRhbC5zdGF0dXMpJT4lDQogIGZpbHRlcihtYXJpdGFsLnN0YXR1cz09Ik5ldmVyLW1hcnJpZWQiKSU+JQ0KICBzdW1tYXJpc2UoZ2VuZGVyX2NvdW50ID0gbigpKSkNCmBgYA0KYGBge3J9DQojI2ZpbmQgdGhlIHN1bW1hcnkgb2YgdGhlIGRhdGENCnN1bW1hcnkoYWR1bHQuZGF0YXNldCkNCmBgYA0KYGBge3J9DQojI2NpdGl6ZW5zIGNvbXBsZXRlZCB0aGVpciBkb2N0b3JhdGUgYW5kIHRoZWlyIHJhY2UNCnN1cHByZXNzTWVzc2FnZXMoDQphZHVsdC5kYXRhc2V0JT4lDQogIGdyb3VwX2J5KHJhY2UsZWR1Y2F0aW9uYWwubnVtKSU+JQ0KICBmaWx0ZXIoZWR1Y2F0aW9uYWwubnVtPj0xNiklPiUNCiAgc3VtbWFyaXNlKGNpdGl6ZW5fY291bnQgPSBuKCkpKQ0KICANCmBgYA0KYGBge3J9DQojI2hvdyBtYW55IGNpdGl6ZW5zIGFyZSBoaWdoIHF1YWxpZmllZCBhbmQgd2hhdCBpcyB0aGVpciByYWNlPw0KYWR1bHQuZGF0YXNldCU+JQ0KICBncm91cF9ieShyYWNlLGVkdWNhdGlvbmFsLm51bSklPiUNCiAgZmlsdGVyKGVkdWNhdGlvbmFsLm51bT49MTApJT4lDQogIHRhbGx5KCkNCmBgYA0KDQpgYGB7cn0NCiMjd2hhdCBpcyB0aGUgYXZlcmFnZSB3b3JraW5nIGhvdXIgcGVyIHdlZWsgb2YgYSBwZXJzb24/DQptZWFuKGFkdWx0LmRhdGFzZXQkaG91cnMucGVyLndlZWspDQpgYGANCmBgYHtyfQ0KIyN3aGF0IGlzIHRoZSBhdmVyYWdlIHdvcmtpbmcgaG91ciBwZXIgd2VlayBmb3IgbWFsZSBhbmQgZmVtYWxlPw0Kc3VwcHJlc3NNZXNzYWdlcygNCmFkdWx0LmRhdGFzZXQlPiUNCiAgZ3JvdXBfYnkoZ2VuZGVyKSU+JQ0KICBzdW1tYXJpc2UobWVhbihob3Vycy5wZXIud2VlaykpKQ0KDQpgYGANCg0KYGBge3J9DQojI2hvdyBtYW55IG1hbGUgYW5kIGZlbWFsZSBhcmUgdGhlcmU/DQpzdXBwcmVzc01lc3NhZ2VzKA0KYWR1bHQuZGF0YXNldCU+JQ0KICBncm91cF9ieShnZW5kZXIpJT4lDQogIHN1bW1hcmlzZShhZHVsdCA9IG4oKSkpDQoNCmBgYA0KYGBge3J9DQojI3BlcmNlbnRhZ2Ugb2YgbWFsZSBjaXRpemVuDQpwZXJfbWFsZSA9IHN1bShhZHVsdC5kYXRhc2V0JGdlbmRlcj09Ik1hbGUiKS9sZW5ndGgoYWR1bHQuZGF0YXNldCRnZW5kZXIpKjEwMA0KcGVyX21hbGUNCg0KYGBgDQpgYGB7cn0NCiMjcGVyY2VudGFnZSBvZiBmZW1hbGUNCnBlcl9mZW1hbGUgPSBzdW0oYWR1bHQuZGF0YXNldCRnZW5kZXI9PSJGZW1hbGUiKS9sZW5ndGgoYWR1bHQuZGF0YXNldCRnZW5kZXIpKjEwMA0KcGVyX2ZlbWFsZQ0KDQpgYGANCg0KYGBge3J9DQojI3dobyBhcmUgbmV2ZXIgbWFycmllZCB3aGVyZSB0aGVpciBhZ2UgaXMgYWJvdmUgMzANCmZpbHRlcihhZHVsdC5kYXRhc2V0LGFnZT4zMCxtYXJpdGFsLnN0YXR1cz09Ik5ldmVyLW1hcnJpZWQiKQ0KYGBgDQoNCmBgYHtyfQ0KIyN3aG9zZSBvY2N1cGFzaW9uIGlzIFByb2Ytc3BlY2lhbHR5IGFuZCBzYWxlcw0KZmlsdGVyKGFkdWx0LmRhdGFzZXQsb2NjdXBhdGlvbj09IlByb2Ytc3BlY2lhbHR5IiB8IG9jY3VwYXRpb249PSJzYWxlcyIpDQpgYGANCg0KYGBge3J9DQojI3Nob3cgdGhlIGluY29tZSB3aXRoIGVkdWNhdGlvbg0Kc2VsZWN0KGFkdWx0LmRhdGFzZXQsZWR1Y2F0aW9uLGluY29tZSkNCmBgYA0KDQoNCmBgYHtyfQ0KIyN3b3JraW5nIGhvdXJzIGZvciBtYWxlICYgZmVtYWxlDQphZHVsdC5kYXRhc2V0ICU+JQ0KICBzZWxlY3QoZ2VuZGVyLGhvdXJzLnBlci53ZWVrKSAlPiUNCiAgZmlsdGVyKGdlbmRlcj09Ik1hbGUiKQ0KYGBgDQoNCmBgYHtyfQ0KI0lzIEVkdWNhdGlvbiBhbmQgZWR1Y2F0aW9uIG51bWJlcnMgYm90aCBhcmUgcmVsYXRlZD8NCmFkdWx0LmRhdGFzZXQgJT4lDQogIHNlbGVjdChlZHVjYXRpb24sZWR1Y2F0aW9uYWwubnVtKSAlPiUNCiAgYXJyYW5nZShkZXNjKGVkdWNhdGlvbmFsLm51bSkpDQpgYGANCg0KYGBge3J9DQojI2xpc3QgdGhlIG5vLiBvZiBhZHVsdHMgYnkgZWR1Y2F0aW9uDQphZHVsdC5kYXRhc2V0JT4lDQogIGdyb3VwX2J5KGVkdWNhdGlvbixlZHVjYXRpb25hbC5udW0pJT4lDQogIHRhbGx5KHNvcnQgPSBUUlVFKQ0KYGBgDQoNCg0K