crops <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-01-19/crops.csv')
##
## -- Column specification --------------------------------------------------------
## cols(
## SubCounty = col_character(),
## Farming = col_double(),
## Tea = col_double(),
## Coffee = col_double(),
## Avocado = col_double(),
## Citrus = col_double(),
## Mango = col_double(),
## Coconut = col_double(),
## Macadamia = col_double(),
## `Cashew Nut` = col_double(),
## `Khat (Miraa)` = col_double()
## )
p_load_gh("Shelmith-Kariuki/rKenyaCensus")
county_gps <- rKenyaCensus::CountyGPS %>%
mutate(SubCounty = County)
df <- inner_join(crops, county_gps)
## Joining, by = "SubCounty"
df <- df %>%
select(-SubCounty) %>%
relocate(County, .before = Farming)
df <- df %>%
pivot_longer(Farming:`Khat (Miraa)`, names_to = "Crop", values_to = "Value")
df <- df %>%
mutate(Value = replace_na(Value, 0))
Plotting
df %>%
mutate(Crop = fct_reorder(Crop, Value, .desc = T)) %>%
ggplot(aes(Longitude, Latitude, size = Value, colour = Crop)) +
geom_point() +
facet_wrap(~Crop)
Shapefiles
shp_files <- rKenyaCensus::KenyaCounties_SHP
rKenyaCensus::V4_T2.24
## # A tibble: 393 x 19
## # Groups: County [48]
## County SubCounty AdminArea Farming ExoticCattle_Da~ ExoticCattle_Be~
## <chr> <chr> <chr> <dbl> <dbl> <dbl>
## 1 xxx KENYA xxx 6354211 2209980 559174
## 2 MOMBA~ MOMBASA County 12497 3015 1384
## 3 MOMBA~ CHANGAMWE SubCounty 618 49 39
## 4 MOMBA~ JOMVU SubCounty 2418 904 86
## 5 MOMBA~ KISAUNI SubCounty 6257 1034 552
## 6 MOMBA~ LIKONI SubCounty 1863 527 443
## 7 MOMBA~ MVITA SubCounty 309 114 81
## 8 MOMBA~ NYALI SubCounty 1032 387 183
## 9 KWALE KWALE County 108074 10811 6117
## 10 KWALE KINANGO SubCounty 13855 1036 1286
## # ... with 383 more rows, and 13 more variables: IndigenousCattle <dbl>,
## # Sheep <dbl>, Goats <dbl>, Camels <dbl>, Donkeys <dbl>, Pigs <dbl>,
## # IndigenousChicken <dbl>, ExoticChicken_Layers <dbl>,
## # ExoticChicken_Broilers <dbl>, Beehives <dbl>, Rabbits <dbl>,
## # FishPonds <dbl>, FishCages <dbl>
religions <- rKenyaCensus::V4_T2.30 %>% as_tibble()
df_2 <- inner_join(county_gps, religions)
## Joining, by = "County"
df_2 <- df_2 %>%
pivot_longer(Catholic:NotStated , names_to = "Religion", values_to = "Value")
df_2 <- df_2 %>%
mutate(Value = replace_na(Value, 0))
df_2 <- df_2 %>%
mutate(Religion_share = Value / Total)
library(scales)
##
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
##
## discard
## The following object is masked from 'package:readr':
##
## col_factor
# jpeg(
# filename="figures/kenya_religions_multiple.jpeg",
# width=8,
# height=6,
# units="in",
# res=1000)
df_2 %>%
filter(Religion != "NotStated") %>%
mutate(Religion = str_to_title(Religion)) %>%
mutate(Religion = fct_reorder(Religion, Value, .desc = T)) %>%
ggplot(aes(Longitude, Latitude, size = Religion_share, colour = Religion)) +
# geom_point(aes(Longitude, Latitude, size = 2*Religion_share), colour = "black") +
geom_point() +
borders(regions = "Kenya") +
facet_wrap(~ Religion) +
theme(legend.position = "bottom",
panel.grid = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank()) +
# scale_color_brewer(palette = "Paired") +
scale_size_continuous(labels = percent) +
labs(x = "",
y = "",
title = "Kenya's religions",
subtitle = "By county",
size = "Religion's share of county population",
caption = "Data: Shelmith Kariuki via TidyTuesday\nGraphic: Jonathan Jayes") +
guides(colour = "none")
# dev.off()
Decision boundary prep
# most prevalent religion
df_3 <- df_2 %>%
group_by(County) %>%
filter(Religion_share == max(Religion_share)) %>%
ungroup()
# jpeg(
# filename="figures/kenya_religions_dominant.jpeg",
# width=8,
# height=6,
# units="in",
# res=1000)
df_3 %>%
mutate(Religion = str_to_title(Religion),
County = str_to_title(County),
Religion = fct_reorder(Religion, Religion_share, .desc = T)) %>%
ggplot(aes(Longitude, Latitude)) +
geom_point(aes(size = Religion_share, colour = Religion)) +
geom_text(aes(Longitude, Latitude, label = County), check_overlap = T, vjust = 1) +
borders(regions = "Kenya") +
scale_color_brewer(palette = "Paired") +
theme(legend.position = "bottom",
legend.box = "vertical",
panel.grid = element_blank(),
axis.text = element_blank(),
axis.ticks = element_blank()) +
scale_size_continuous(labels = percent) +
labs(x = "",
y = "",
title = "Dominant religion in each Kenyan county",
size = "Religion's share of county population",
caption = "Data: Shelmith Kariuki via TidyTuesday\nGraphic: Jonathan Jayes")
# dev.off()