setwd("~/Documents/Teresa/MedScholars/Data/Data files/CSV")
del1 <- read.csv("working data_DEL_ApoE clean.csv")
del2 <- read.csv("working data_DEL_ms_age.csv")
Predicting DEL:
Gene x Gender ANOVA
d1 <- aov(DEL ~ sex + ApoE + sex:ApoE, data = del1)
summary (d1)
## Df Sum Sq Mean Sq F value Pr(>F)
## sex 1 0.135 0.1346 1.511 0.2242
## ApoE 3 1.017 0.3390 3.806 0.0149 *
## sex:ApoE 3 0.347 0.1158 1.300 0.2835
## Residuals 56 4.989 0.0891
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gender x Dx ANOVA (Significant Main Effect of both Gender and Dx, but no interaction. Why no ME of Gender on previous anova?)
d2 <- aov(DEL~sex+Dx+Dx:sex, data= del1)
summary (d2)
## Df Sum Sq Mean Sq F value Pr(>F)
## sex 1 0.135 0.1346 4.826 0.032 *
## Dx 2 4.735 2.3676 84.919 <2e-16 ***
## sex:Dx 2 0.001 0.0004 0.016 0.984
## Residuals 58 1.617 0.0279
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Gene x Gender x Dx ANOVA (only Dx is significant, trend for ApoE)
d3 <- aov(DEL~(Dx*sex*ApoE), data=del1)
summary (d3)
## Df Sum Sq Mean Sq F value Pr(>F)
## Dx 2 4.859 2.4294 84.846 7.95e-16 ***
## sex 1 0.011 0.0110 0.384 0.5389
## ApoE 3 0.195 0.0650 2.269 0.0937 .
## Dx:sex 2 0.000 0.0001 0.004 0.9961
## Dx:ApoE 5 0.053 0.0105 0.368 0.8678
## sex:ApoE 3 0.030 0.0101 0.353 0.7872
## Dx:sex:ApoE 3 0.080 0.0267 0.932 0.4335
## Residuals 44 1.260 0.0286
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Linear Regression with Dx, Age, and Edu - Edu is significant, but not age
s4 <- lm(DEL~Dx + Age + education, data=del1)
summary (s4)
##
## Call:
## lm(formula = DEL ~ Dx + Age + education, data = del1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.34417 -0.09940 0.00367 0.11504 0.34222
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.125797 0.223241 0.564 0.5752
## DxMCI 0.021854 0.060400 0.362 0.7188
## DxNC 0.539068 0.057255 9.415 2.34e-13 ***
## Age -0.003400 0.002507 -1.356 0.1803
## education 0.019639 0.009368 2.096 0.0403 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1585 on 59 degrees of freedom
## Multiple R-squared: 0.7716, Adjusted R-squared: 0.7561
## F-statistic: 49.84 on 4 and 59 DF, p-value: < 2.2e-16
Median split on age - age is now significiant. But, no age x gender interaction, nor age x dx interaction
s5 <- aov(DEL~sex+Age+Age:sex, data=del2)
summary (s5)
## Df Sum Sq Mean Sq F value Pr(>F)
## sex 1 0.135 0.1346 1.469 0.2302
## Age 1 0.767 0.7670 8.374 0.0053 **
## sex:Age 1 0.091 0.0908 0.991 0.3235
## Residuals 60 5.495 0.0916
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
s6 <- aov(DEL~Age+Dx+Age:Dx, data=del2)
summary (s6)
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 0.701 0.7014 26.674 3.09e-06 ***
## Dx 2 4.209 2.1047 80.041 < 2e-16 ***
## Age:Dx 2 0.052 0.0259 0.985 0.38
## Residuals 58 1.525 0.0263
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.