MINNIE BELL - BABYNAMES
I was born in 1973 and named after my mother’s mother, who was also named after her mother’s mother, who in turn was also named after her mother’s mother.
However, in 1973 Minnie was not a very popular name. I was one of 108 Minnies born that year.
babynames %>%
filter(year == 1973, sex == "F") %>%
mutate(rank = row_number()) %>%
mutate(percent = round(prop * 100, 1)) %>%
filter(name == "Minnie")
Below is a word cloud with the most popular names for 1973. Notice that Minnie was not in the top 100 names.
babynames %>%
filter(year == 1973) %>% # use only one year
filter(sex == "F") %>% # use only one sex
select(name, n) %>% # select the two relevant variables: the name and how often it occurs
top_n(100, n) %>% # use only the top names or it could get too big
wordcloud2(size = .5, shape = "diamond", color = "pink")
Throughout history, the name Minnie has not been very popular. Note in the graph below the steady decline of the name and that it has not been used since the mid-1970s.
babynames %>% # start with the data
filter(name == "Minnie", sex == "F") %>% # choose the name and sex
ggplot(aes(x = year, y = prop)) + # put year on the x-axis and prop (proportion) on y
geom_line() # make it a line graph

The name Minnie was far more popular in the late 1800’s.
babynames %>% # Start with the dataset
filter(name == "Minnie", sex == "F") %>% # only look at the name and sex you want
top_n(10, prop) %>% # get the top 10 names
arrange(-prop) # sort in descending order
Compared to other names at that time, such as Esther and Helen, Minnie was still the least popular name of the time.
babynames %>%
filter(name == "Minnie" | name == "Esther" | name == "Helen") %>%
filter(sex == "F") %>%
filter(year > 1880) %>%
ggplot(aes(x = year, y = n, color = name)) +
geom_line()

However unpopular the name Minnie was, and no matter how much taunting I received as a child for having it, I am still very grateful to be named after my mother’s mother :)
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpNSU5OSUUgQkVMTCAtIEJBQllOQU1FUw0KDQpJIHdhcyBib3JuIGluIDE5NzMgYW5kIG5hbWVkIGFmdGVyIG15IG1vdGhlcidzIG1vdGhlciwgd2hvIHdhcyBhbHNvIG5hbWVkIGFmdGVyIGhlciBtb3RoZXIncyBtb3RoZXIsIHdobyBpbiB0dXJuIHdhcyBhbHNvIG5hbWVkIGFmdGVyIGhlciBtb3RoZXIncyBtb3RoZXIuDQoNCkhvd2V2ZXIsIGluIDE5NzMgTWlubmllIHdhcyBub3QgYSB2ZXJ5IHBvcHVsYXIgbmFtZS4gSSB3YXMgb25lIG9mIDEwOCBNaW5uaWVzIGJvcm4gdGhhdCB5ZWFyLg0KDQpgYGB7cn0NCmJhYnluYW1lcyAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICAgIA0KICBmaWx0ZXIoeWVhciA9PSAxOTczLCBzZXggPT0gIkYiKSAlPiUgICAgDQogIG11dGF0ZShyYW5rID0gcm93X251bWJlcigpKSAlPiUgICAgICAgICANCiAgbXV0YXRlKHBlcmNlbnQgPSByb3VuZChwcm9wICogMTAwLCAxKSkgJT4lIA0KICBmaWx0ZXIobmFtZSA9PSAiTWlubmllIikNCmBgYA0KDQpCZWxvdyBpcyBhIHdvcmQgY2xvdWQgd2l0aCB0aGUgbW9zdCBwb3B1bGFyIG5hbWVzIGZvciAxOTczLiBOb3RpY2UgdGhhdCBNaW5uaWUgd2FzIG5vdCBpbiB0aGUgdG9wIDEwMCBuYW1lcy4NCg0KYGBge3J9DQpiYWJ5bmFtZXMgJT4lDQogIGZpbHRlcih5ZWFyID09IDE5NzMpICU+JSAgICAgIyB1c2Ugb25seSBvbmUgeWVhcg0KICBmaWx0ZXIoc2V4ID09ICJGIikgJT4lICAgICAgICMgdXNlIG9ubHkgb25lIHNleA0KICBzZWxlY3QobmFtZSwgbikgJT4lICAgICAgICAgICMgc2VsZWN0IHRoZSB0d28gcmVsZXZhbnQgdmFyaWFibGVzOiB0aGUgbmFtZSBhbmQgaG93IG9mdGVuIGl0IG9jY3Vycw0KICB0b3BfbigxMDAsIG4pICU+JSAgICAgICAgICAgICMgdXNlIG9ubHkgdGhlIHRvcCBuYW1lcyBvciBpdCBjb3VsZCBnZXQgdG9vIGJpZw0KICB3b3JkY2xvdWQyKHNpemUgPSAuNSwgc2hhcGUgPSAiZGlhbW9uZCIsIGNvbG9yID0gInBpbmsiKSANCmBgYA0KDQpUaHJvdWdob3V0IGhpc3RvcnksIHRoZSBuYW1lIE1pbm5pZSBoYXMgbm90IGJlZW4gdmVyeSBwb3B1bGFyLiBOb3RlIGluIHRoZSBncmFwaCBiZWxvdyB0aGUgc3RlYWR5IGRlY2xpbmUgb2YgdGhlIG5hbWUgYW5kIHRoYXQgaXQgaGFzIG5vdCBiZWVuIHVzZWQgc2luY2UgdGhlIG1pZC0xOTcwcy4NCg0KYGBge3J9DQpiYWJ5bmFtZXMgJT4lICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBzdGFydCB3aXRoIHRoZSBkYXRhDQogIGZpbHRlcihuYW1lID09ICJNaW5uaWUiLCBzZXggPT0gIkYiKSAlPiUgICAgICAjIGNob29zZSB0aGUgbmFtZSBhbmQgc2V4DQogIGdncGxvdChhZXMoeCA9IHllYXIsIHkgPSBwcm9wKSkgKyAgICAgICAgICAgICAgIyBwdXQgeWVhciBvbiB0aGUgeC1heGlzIGFuZCBwcm9wIChwcm9wb3J0aW9uKSBvbiB5DQogIGdlb21fbGluZSgpICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBtYWtlIGl0IGEgbGluZSBncmFwaCANCg0KYGBgDQoNClRoZSBuYW1lIE1pbm5pZSB3YXMgZmFyIG1vcmUgcG9wdWxhciBpbiB0aGUgbGF0ZSAxODAwJ3MuDQoNCmBgYHtyfQ0KYmFieW5hbWVzICU+JSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAjIFN0YXJ0IHdpdGggdGhlIGRhdGFzZXQNCiAgZmlsdGVyKG5hbWUgPT0gIk1pbm5pZSIsIHNleCA9PSAiRiIpICU+JSAgICAjIG9ubHkgbG9vayBhdCB0aGUgbmFtZSBhbmQgc2V4IHlvdSB3YW50DQogIHRvcF9uKDEwLCBwcm9wKSAlPiUgICAgICAgICAgICAgICAgICAgICAgICAgICMgZ2V0IHRoZSB0b3AgMTAgbmFtZXMNCiAgYXJyYW5nZSgtcHJvcCkgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIyBzb3J0IGluIGRlc2NlbmRpbmcgb3JkZXINCmBgYA0KDQpDb21wYXJlZCB0byBvdGhlciBuYW1lcyBhdCB0aGF0IHRpbWUsIHN1Y2ggYXMgRXN0aGVyIGFuZCBIZWxlbiwgTWlubmllIHdhcyBzdGlsbCB0aGUgbGVhc3QgcG9wdWxhciBuYW1lIG9mIHRoZSB0aW1lLg0KDQpgYGB7cn0NCmJhYnluYW1lcyAlPiUNCiAgZmlsdGVyKG5hbWUgPT0gIk1pbm5pZSIgfCBuYW1lID09ICJFc3RoZXIiIHwgbmFtZSA9PSAiSGVsZW4iKSAlPiUgDQogIGZpbHRlcihzZXggPT0gIkYiKSAlPiUNCiAgZmlsdGVyKHllYXIgPiAxODgwKSAlPiUNCiAgZ2dwbG90KGFlcyh4ID0geWVhciwgeSA9IG4sIGNvbG9yID0gbmFtZSkpICsNCiAgZ2VvbV9saW5lKCkNCmBgYA0KDQpIb3dldmVyIHVucG9wdWxhciB0aGUgbmFtZSBNaW5uaWUgd2FzLCBhbmQgbm8gbWF0dGVyIGhvdyBtdWNoIHRhdW50aW5nIEkgcmVjZWl2ZWQgYXMgYSBjaGlsZCBmb3IgaGF2aW5nIGl0LCBJIGFtIHN0aWxsIHZlcnkgZ3JhdGVmdWwgdG8gYmUgbmFtZWQgYWZ0ZXIgbXkgbW90aGVyJ3MgbW90aGVyIDopDQo=