3 Main data
3.1 By question and trial type
Trials 1:4 are claimed(choice)-claimed(narrative), 5:8 are notclaimed-notclaimed, 9:12 are claimed-notclaimed, 13:16 are notclaimed-claimed, 17:20 are unknown-claimed, 21-24 are unknown-notclaimed, 25 is claimed-unknown, 26 is notclaimed-unknown, 27 is unknown-unknown.
# Exclude if less than 5/6 comprehension checks correct
compFailed <- filter(compData, compData$accuracy < 5)
rawN <- length(data$subN)
failN <- length(compFailed$subN)
cleanN <- rawN - failN
q_key <- read_csv("/Users/judykim/Dropbox/Judy Moral Narratives/Claim Task Perception/nar_perception_gif_key.csv")
q_key <- bind_rows(replicate(cleanN, q_key, simplify=FALSE))
data <- filter(data, !subN %in% compFailed$subN)
Excluding 9 participants for getting more than 1 comprehension question wrong. This leaves 41 participants.
3.1.1 "Does the worker seem selfish (0) or generous (100)? "
data_long <- data %>%
dplyr::select(subN, generous_1_1:app_honest_27_1) %>%
pivot_longer(generous_1_1:app_honest_27_1, names_to="questions",values_to="responses")
data_long <- data_long %>%
filter(!grepl('Q',questions)) %>%
mutate(q_key)
d_generous <- data_long %>%
dplyr::select(subN, questions, responses, trial, choice, narrative, narrative_v) %>%
filter(grepl('generous',questions)) %>%
group_by(choice, narrative, narrative_v, trial) %>%
summarise(M = mean(responses, na.rm=T), SD = sd(responses, na.rm=T),
NN = length(responses))
d_generous$SE <- d_generous$SD/sqrt(d_generous$NN)
d_generous$Low <- d_generous$M - 1.96*d_generous$SE
d_generous$High <- d_generous$M + 1.96*d_generous$SE
d_generous %>%
ggplot(aes(x=trial, y=M)) +
geom_point() +
geom_errorbar(aes(ymin=Low, ymax=High, width=.1)) +
ylim(0,100) +
geom_point(aes(x=trial,y=M), color="steelblue", alpha=.3) +
ggtitle("Does the worker seem selfish or generous?") +
ylab("Ratings") + xlab("Type of claim + narrative")
3.1.2 "How honest do you think the worker was about their motivations? "
d_honest <- data_long %>%
dplyr::select(subN, questions, responses, trial, choice, narrative, narrative_v) %>%
filter(grepl('honest',questions) & !grepl('app',questions)) %>%
group_by(choice, narrative, narrative_v, trial) %>%
summarise(M = mean(responses, na.rm=T), SD = sd(responses, na.rm=T),
NN = length(responses))
d_honest$SE <- d_honest$SD/sqrt(d_honest$NN)
d_honest$Low <- d_honest$M - 1.96*d_honest$SE
d_honest$High <- d_honest$M + 1.96*d_honest$SE
d_honest %>%
ggplot(aes(x=trial, y=M)) +
geom_point() +
geom_errorbar(aes(ymin=Low, ymax=High, width=.1)) +
ylim(0,100) +
geom_point(aes(x=trial,y=M), color="steelblue", alpha=.3) +
ggtitle("How honest do you think the worker was about their motivations?") +
ylab("Ratings") + xlab("Type of claim + narrative")
3.1.3 "How much do you think the worker cared about appearing generous in their statement? "
d_app_gen <- data_long %>%
dplyr::select(subN, questions, responses, trial, choice, narrative, narrative_v) %>%
filter(grepl('app_gen',questions)) %>%
group_by(choice, narrative, narrative_v, trial) %>%
summarise(M = mean(responses, na.rm=T), SD = sd(responses, na.rm=T),
NN = length(responses))
d_app_gen$SE <- d_app_gen$SD/sqrt(d_app_gen$NN)
d_app_gen$Low <- d_app_gen$M - 1.96*d_app_gen$SE
d_app_gen$High <- d_app_gen$M + 1.96*d_app_gen$SE
d_app_gen %>%
ggplot(aes(x=trial, y=M)) +
geom_point() +
geom_errorbar(aes(ymin=Low, ymax=High, width=.1)) +
ylim(0,100) +
geom_point(aes(x=trial,y=M), color="steelblue", alpha=.3) +
ggtitle("How much do you think the worker cared about appearing generous in their statement") +
ylab("Ratings") + xlab("Type of claim + narrative")
3.1.4 "How much do you think the worker cared about their statement being believable?"
d_app_honest <- data_long %>%
dplyr::select(subN, questions, responses, trial, choice, narrative, narrative_v) %>%
filter(grepl('app_honest',questions)) %>%
group_by(choice, narrative, narrative_v, trial) %>%
summarise(M = mean(responses, na.rm=T), SD = sd(responses, na.rm=T),
NN = length(responses))
d_app_honest$SE <- d_app_honest$SD/sqrt(d_app_honest$NN)
d_app_honest$Low <- d_app_honest$M - 1.96*d_app_honest$SE
d_app_honest$High <- d_app_honest$M + 1.96*d_app_honest$SE
d_app_honest %>%
ggplot(aes(x=trial, y=M)) +
geom_point() +
geom_errorbar(aes(ymin=Low, ymax=High, width=.1)) +
ylim(0,100) +
geom_point(aes(x=trial,y=M), color="steelblue", alpha=.3) +
ggtitle("How much do you think the worker cared about their statement being believable?") +
ylab("Ratings") + xlab("Type of claim + narrative")
3.1.5 "How likely do you think it is that the worker claimed the raise? "
d_likely <- data_long %>%
dplyr::select(subN, questions, responses, trial, choice, narrative, narrative_v) %>%
filter(grepl('likely',questions)) %>%
group_by(choice, narrative, narrative_v, trial) %>%
summarise(M = mean(responses, na.rm=T), SD = sd(responses, na.rm=T),
NN = length(responses))
d_likely$SE <- d_likely$SD/sqrt(d_likely$NN)
d_likely$Low <- d_likely$M - 1.96*d_likely$SE
d_likely$High <- d_likely$M + 1.96*d_likely$SE
d_likely %>%
ggplot(aes(x=trial, y=M)) +
geom_point() +
geom_errorbar(aes(ymin=Low, ymax=High, width=.1)) +
ylim(0,100) + xlim(0,27) +
geom_point(aes(x=trial,y=M), color="steelblue", alpha=.3) +
ggtitle("How likely do you think it is that the worker claimed the raise?") +
ylab("Ratings") + xlab("Type of claim + narrative")