#load library
library(readr)
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ dplyr 1.0.2
## ✓ tibble 3.0.4 ✓ stringr 1.4.0
## ✓ tidyr 1.1.2 ✓ forcats 0.5.0
## ✓ purrr 0.3.4
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
getwd()
## [1] "/Users/krise/R Mac working folder/Controllable Meta-mindset data"
#load data
d.study <- read_csv("~/R Mac working folder/Controllable Meta-mindset data/raw data files - controllable meta-mindset/CMM_pilot_study_1_December 8, 2020_11.16_raw.csv")
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## .default = col_character()
## )
## ℹ Use `spec()` for the full column specifications.
#drop 2nd row
glimpse(d.study)
## Rows: 51
## Columns: 45
## $ StartDate <chr> "Start Date", "{\"ImportId\":\"startDate\",\"…
## $ EndDate <chr> "End Date", "{\"ImportId\":\"endDate\",\"time…
## $ Status <chr> "Response Type", "{\"ImportId\":\"status\"}",…
## $ IPAddress <chr> "IP Address", "{\"ImportId\":\"ipAddress\"}",…
## $ Progress <chr> "Progress", "{\"ImportId\":\"progress\"}", "1…
## $ `Duration (in seconds)` <chr> "Duration (in seconds)", "{\"ImportId\":\"dur…
## $ Finished <chr> "Finished", "{\"ImportId\":\"finished\"}", "1…
## $ RecordedDate <chr> "Recorded Date", "{\"ImportId\":\"recordedDat…
## $ ResponseId <chr> "Response ID", "{\"ImportId\":\"_recordId\"}"…
## $ RecipientLastName <chr> "Recipient Last Name", "{\"ImportId\":\"recip…
## $ RecipientFirstName <chr> "Recipient First Name", "{\"ImportId\":\"reci…
## $ RecipientEmail <chr> "Recipient Email", "{\"ImportId\":\"recipient…
## $ ExternalReference <chr> "External Data Reference", "{\"ImportId\":\"e…
## $ LocationLatitude <chr> "Location Latitude", "{\"ImportId\":\"locatio…
## $ LocationLongitude <chr> "Location Longitude", "{\"ImportId\":\"locati…
## $ DistributionChannel <chr> "Distribution Channel", "{\"ImportId\":\"dist…
## $ UserLanguage <chr> "User Language", "{\"ImportId\":\"userLanguag…
## $ cons <chr> "DESCRIPTION: The purpose of this research st…
## $ cmm_L_1 <chr> "The statements below describe your beliefs a…
## $ cmm_L_2 <chr> "The statements below describe your beliefs a…
## $ cmm_L_3 <chr> "The statements below describe your beliefs a…
## $ cmm_L_4 <chr> "The statements below describe your beliefs a…
## $ cmm_s_1 <chr> "The statements below describe your beliefs a…
## $ cmm_s_2 <chr> "The statements below describe your beliefs a…
## $ cmm_s_3 <chr> "The statements below describe your beliefs a…
## $ cmm_s_4 <chr> "The statements below describe your beliefs a…
## $ qq_1 <chr> "In your own words, what is a mindset?", "{\"…
## $ qq_2 <chr> "Can you give an example of some of the minds…
## $ qq_3 <chr> "Can you give an example of a time when a min…
## $ qq_4 <chr> "Describe a time that you did or didn’t chang…
## $ qq_5 <chr> "If you wanted to change your mindset, what m…
## $ qq_6 <chr> "Please tell us some other mindsets you think…
## $ dem_age <chr> "What is your age? (number only)", "{\"Import…
## $ dem_race <chr> "Which race/ethnicity best describes you? Sel…
## $ dem_race_6_TEXT <chr> "Which race/ethnicity best describes you? Sel…
## $ dem_gender <chr> "What is your gender? - Selected Choice", "{\…
## $ dem_gender_5_TEXT <chr> "What is your gender? - Other (please specify…
## $ dem_inc <chr> "What is your approximate combined annual hou…
## $ dem_ed <chr> "What is the highest education level you have…
## $ dem_emp <chr> "Employment\nStatus: Are you currently…?", "{…
## $ debrief_else <chr> "Is there anything else you want to tell us?"…
## $ Q_TotalDuration <chr> "Q_TotalDuration", "{\"ImportId\":\"Q_TotalDu…
## $ workerId <chr> "workerId", "{\"ImportId\":\"workerId\"}", NA…
## $ assignmentId <chr> "assignmentId", "{\"ImportId\":\"assignmentId…
## $ hitId <chr> "hitId", "{\"ImportId\":\"hitId\"}", NA, NA, …
head(d.study)
## # A tibble: 6 x 45
## StartDate EndDate Status IPAddress Progress `Duration (in s… Finished
## <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 "Start D… "End D… "Resp… "IP Addr… "Progre… "Duration (in s… "Finish…
## 2 "{\"Impo… "{\"Im… "{\"I… "{\"Impo… "{\"Imp… "{\"ImportId\":… "{\"Imp…
## 3 "12/8/20… "12/8/… "0" "165.225… "100" "275" "1"
## 4 "12/8/20… "12/8/… "0" "82.132.… "100" "361" "1"
## 5 "12/8/20… "12/8/… "0" "122.56.… "100" "449" "1"
## 6 "12/8/20… "12/8/… "0" "75.85.5… "100" "566" "1"
## # … with 38 more variables: RecordedDate <chr>, ResponseId <chr>,
## # RecipientLastName <chr>, RecipientFirstName <chr>, RecipientEmail <chr>,
## # ExternalReference <chr>, LocationLatitude <chr>, LocationLongitude <chr>,
## # DistributionChannel <chr>, UserLanguage <chr>, cons <chr>, cmm_L_1 <chr>,
## # cmm_L_2 <chr>, cmm_L_3 <chr>, cmm_L_4 <chr>, cmm_s_1 <chr>, cmm_s_2 <chr>,
## # cmm_s_3 <chr>, cmm_s_4 <chr>, qq_1 <chr>, qq_2 <chr>, qq_3 <chr>,
## # qq_4 <chr>, qq_5 <chr>, qq_6 <chr>, dem_age <chr>, dem_race <chr>,
## # dem_race_6_TEXT <chr>, dem_gender <chr>, dem_gender_5_TEXT <chr>,
## # dem_inc <chr>, dem_ed <chr>, dem_emp <chr>, debrief_else <chr>,
## # Q_TotalDuration <chr>, workerId <chr>, assignmentId <chr>, hitId <chr>
c.study <- (d.study[ -c(1, 2), ])
#keep all those that were finished, didnt drop anyone
#select key variables
cmm.study <- c.study %>% filter(Finished == "1") %>% select(cmm_L_1, cmm_L_2, cmm_L_3, cmm_L_4, cmm_s_1, cmm_s_2, cmm_s_3, cmm_s_4, qq_1, qq_2, qq_3, qq_4, qq_5, qq_6, dem_age, dem_race, dem_race_6_TEXT, dem_gender, dem_gender_5_TEXT, dem_inc, dem_ed, dem_emp, debrief_else)
#In this questionnaire you will be shown a number of statements regarding mindsets. Please indicate your agreement with each statement by selecting the number that best represents your answer on the scale presented below the statement.
#add id number
cmm.study <- cmm.study %>% mutate(id = row_number())
#split into two data frames for short and long instructions
#tidy data so only filter all those with no response to q1
cmm.study.long <- cmm.study %>% filter(cmm_L_1 !="NA") %>% select(-cmm_s_1, -cmm_s_2, -cmm_s_3, -cmm_s_4)
#25 responses
cmm.study.short <- cmm.study %>% filter(cmm_s_1 !="NA") %>% select(-cmm_L_1, -cmm_L_2, -cmm_L_3, -cmm_L_4)
#24 responses
#turn the necessary variables into numeric because they are characters
cmm.study.long$cmm_L_1 <- as.numeric(cmm.study.long$cmm_L_1)
cmm.study.long$cmm_L_2 <- as.numeric(cmm.study.long$cmm_L_2)
cmm.study.long$cmm_L_3 <- as.numeric(cmm.study.long$cmm_L_3)
cmm.study.long$cmm_L_4 <- as.numeric(cmm.study.long$cmm_L_4)
cmm.study.short$cmm_s_1 <- as.numeric(cmm.study.short$cmm_s_1)
cmm.study.short$cmm_s_2 <- as.numeric(cmm.study.short$cmm_s_2)
cmm.study.short$cmm_s_3 <- as.numeric(cmm.study.short$cmm_s_3)
cmm.study.short$cmm_s_4 <- as.numeric(cmm.study.short$cmm_s_4)
#create CMM item score for long and short instructions
cmm.long.df <- cmm.study.long %>% mutate(cmm_Long_score = (cmm_L_1 + cmm_L_2 + cmm_L_3 + cmm_L_4)/4)
cmm.short.df <- cmm.study.short %>% mutate(cmm_Short_score = (cmm_s_1 + cmm_s_2 +
cmm_s_3 +
cmm_s_4)/4)
#mean of the two scores long = 2.99, short = 2.60
#mean of the long scores are .39 higher, suggest may be higher score responses on longer, will look at significant difference between the groups
mean(cmm.long.df$cmm_Long_score)
## [1] 2.99
mean(cmm.short.df$cmm_Short_score)
## [1] 2.604167
#summary
summary(cmm.long.df$cmm_Long_score)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.00 2.00 3.00 2.99 4.00 5.00
summary(cmm.short.df$cmm_Short_score)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.500 2.000 2.500 2.604 3.000 4.000
sd(cmm.long.df$cmm_Long_score) #sd long responses do have larder sd.3
## [1] 1.093256
sd(cmm.short.df$cmm_Short_score) #sd
## [1] 0.7294901
#in cmm pilot(n=324) mean = 3.16, sd=1.50
#view histogram of response cores for long adn short df - doesn't seem normally distributed with the obderved sample and responses
hist(cmm.long.df$cmm_Long_score)
hist(cmm.short.df$cmm_Short_score)
boxplot(cmm.long.df$cmm_Long_score)
boxplot(cmm.short.df$cmm_Short_score)
#no outliers only 224 and 25 obs each variable
#export the data score and open ended question responses
xcl.short.df <- cmm.long.df %>% select(id, cmm_Long_score, qq_1, qq_2, qq_3, qq_4, qq_5, qq_6)
xcl.long.df <- cmm.short.df %>% select(id, cmm_Short_score, qq_1, qq_2, qq_3, qq_4, qq_5, qq_6)
write.csv(xcl.long.df,'cmm.pilot3.long.csv')
write.csv(xcl.short.df,'cmm.pilot3.short.csv')
#Analyses and tests
#do the populations have the same variances? -- reject the null so the two samples do not have the same variance
cmm.ftest <- var.test(cmm.long.df$cmm_Long_score, cmm.short.df$cmm_Short_score)
cmm.ftest
##
## F test to compare two variances
##
## data: cmm.long.df$cmm_Long_score and cmm.short.df$cmm_Short_score
## F = 2.246, num df = 24, denom df = 23, p-value = 0.05657
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.9769749 5.1254711
## sample estimates:
## ratio of variances
## 2.245974
# is data normally distributed? - cannot reject the null, data seem to be normally distributed
shapiro.test(cmm.long.df$cmm_Long_score) #shapiro test- [value-0.06] > .05 - we assume normal distribution - long version seems normally distributed
##
## Shapiro-Wilk normality test
##
## data: cmm.long.df$cmm_Long_score
## W = 0.925, p-value = 0.06668
shapiro.test(cmm.short.df$cmm_Short_score) #pvalue = .305 same as above
##
## Shapiro-Wilk normality test
##
## data: cmm.short.df$cmm_Short_score
## W = 0.95241, p-value = 0.3053
#could try to run more samples at this response and do analyses?
#is there a sig diff between the mean scores?
#Run a paired T-test of mean scores, reject null, the true difference in means is not = 0, it is positive meaning significantly higher at post
#independent 2 group t test? treat treatedthem as independet groups because two groups took different measures, using welch two sample t test -
cmm.ttest <- t.test(cmm.long.df$cmm_Long_score, cmm.short.df$cmm_Short_score, var.equal = FALSE) #variance of two groups is not equal
#p=.15 so we cannot reject the null, meaning there is not a sig diff in means between groups
#could create a new variablelike inst.length = Long or Short as a categorical variable with two levels but can just use the scores of the two group means like above
cmm.ttest
##
## Welch Two Sample t-test
##
## data: cmm.long.df$cmm_Long_score and cmm.short.df$cmm_Short_score
## t = 1.4585, df = 41.998, p-value = 0.1521
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1480311 0.9196978
## sample estimates:
## mean of x mean of y
## 2.990000 2.604167
#subset just the CMM item variables
cmm.long.scale.df <- cmm.long.df %>% select(cmm_L_1, cmm_L_2, cmm_L_3, cmm_L_4)
#subset the short scale
cmm.short.scale.df <- cmm.short.df %>% select(cmm_s_1, cmm_s_2, cmm_s_3, cmm_s_4)
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
#check alpha and reliability analysis
alpha(cmm.long.scale.df) #long scale has higher alpha and reliability .92 > .82
##
## Reliability analysis
## Call: alpha(x = cmm.long.scale.df)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.93 0.93 0.93 0.76 13 0.025 3 1.1 0.78
##
## lower alpha upper 95% confidence boundaries
## 0.88 0.93 0.98
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## cmm_L_1 0.88 0.88 0.87 0.71 7.4 0.042 0.02315 0.67
## cmm_L_2 0.96 0.96 0.95 0.90 27.5 0.013 0.00073 0.89
## cmm_L_3 0.88 0.88 0.87 0.72 7.6 0.042 0.02477 0.67
## cmm_L_4 0.88 0.88 0.87 0.70 7.1 0.047 0.03978 0.59
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## cmm_L_1 25 0.94 0.94 0.95 0.90 3.0 1.2
## cmm_L_2 25 0.78 0.79 0.66 0.64 2.6 1.2
## cmm_L_3 25 0.94 0.94 0.94 0.89 3.2 1.2
## cmm_L_4 25 0.95 0.95 0.94 0.91 3.2 1.3
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## cmm_L_1 0.08 0.36 0.16 0.32 0.08 0.00 0
## cmm_L_2 0.20 0.28 0.24 0.24 0.04 0.00 0
## cmm_L_3 0.08 0.28 0.08 0.48 0.08 0.00 0
## cmm_L_4 0.04 0.40 0.08 0.36 0.08 0.04 0
alpha(cmm.short.scale.df)
##
## Reliability analysis
## Call: alpha(x = cmm.short.scale.df)
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.82 0.84 0.85 0.56 5.1 0.061 2.6 0.73 0.61
##
## lower alpha upper 95% confidence boundaries
## 0.7 0.82 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## cmm_s_1 0.67 0.69 0.65 0.43 2.3 0.122 0.038 0.37
## cmm_s_2 0.88 0.88 0.84 0.72 7.6 0.040 0.004 0.73
## cmm_s_3 0.76 0.77 0.78 0.53 3.4 0.089 0.053 0.58
## cmm_s_4 0.79 0.80 0.79 0.57 4.0 0.078 0.042 0.58
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## cmm_s_1 24 0.94 0.94 0.95 0.87 2.3 0.91
## cmm_s_2 24 0.72 0.68 0.53 0.46 2.5 1.06
## cmm_s_3 24 0.83 0.85 0.80 0.70 2.7 0.81
## cmm_s_4 24 0.78 0.81 0.74 0.63 3.0 0.81
##
## Non missing response frequency for each item
## 1 2 3 4 miss
## cmm_s_1 0.17 0.50 0.21 0.12 0
## cmm_s_2 0.21 0.33 0.25 0.21 0
## cmm_s_3 0.08 0.25 0.54 0.12 0
## cmm_s_4 0.04 0.21 0.50 0.25 0
#suggest more stable using long measure? higher response scores as well
#EFA and CFA long
EFA.model.CMM.long <- fa(cmm.long.scale.df)
EFA.model.CMM.long$loadings
##
## Loadings:
## MR1
## cmm_L_1 0.952
## cmm_L_2 0.647
## cmm_L_3 0.941
## cmm_L_4 0.955
##
## MR1
## SS loadings 3.124
## Proportion Var 0.781
#factor loadings
fa.diagram(EFA.model.CMM.long)
#this function shows individuals scores on factor
EFA.model.CMM.long$scores
## MR1
## [1,] 1.92995775
## [2,] -0.91797359
## [3,] -0.90054464
## [4,] 1.19694616
## [5,] -0.93540253
## [6,] 0.08811625
## [7,] 0.50690888
## [8,] 0.74211976
## [9,] 0.75954870
## [10,] -0.90054464
## [11,] 0.75954870
## [12,] -1.40765788
## [13,] 0.75954870
## [14,] 0.75954870
## [15,] -0.71578700
## [16,] 0.72469081
## [17,] -0.69835806
## [18,] 0.10554519
## [19,] -0.91797359
## [20,] 0.74211976
## [21,] -0.93540253
## [22,] -1.75673473
## [23,] -0.91797359
## [24,] 1.10862555
## [25,] 0.82112784
summary(EFA.model.CMM.long$scores)
## MR1
## Min. :-1.7567
## 1st Qu.:-0.9180
## Median : 0.1055
## Mean : 0.0000
## 3rd Qu.: 0.7595
## Max. : 1.9300
#feel for distribution of factor scores
summary(cmm.long.df)
## cmm_L_1 cmm_L_2 cmm_L_3 cmm_L_4 qq_1
## Min. :1.00 Min. :1.00 Min. :1.0 Min. :1.00 Length:25
## 1st Qu.:2.00 1st Qu.:2.00 1st Qu.:2.0 1st Qu.:2.00 Class :character
## Median :3.00 Median :3.00 Median :4.0 Median :3.00 Mode :character
## Mean :2.96 Mean :2.64 Mean :3.2 Mean :3.16
## 3rd Qu.:4.00 3rd Qu.:4.00 3rd Qu.:4.0 3rd Qu.:4.00
## Max. :5.00 Max. :5.00 Max. :5.0 Max. :6.00
## qq_2 qq_3 qq_4 qq_5
## Length:25 Length:25 Length:25 Length:25
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## qq_6 dem_age dem_race dem_race_6_TEXT
## Length:25 Length:25 Length:25 Length:25
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## dem_gender dem_gender_5_TEXT dem_inc dem_ed
## Length:25 Length:25 Length:25 Length:25
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## dem_emp debrief_else id cmm_Long_score
## Length:25 Length:25 Min. : 2.00 Min. :1.00
## Class :character Class :character 1st Qu.:13.00 1st Qu.:2.00
## Mode :character Mode :character Median :23.00 Median :3.00
## Mean :23.56 Mean :2.99
## 3rd Qu.:35.00 3rd Qu.:4.00
## Max. :46.00 Max. :5.00
plot(density(EFA.model.CMM.long$scores))
describe(cmm.long.df$cmm_Long_score)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 25 2.99 1.09 3 3.01 1.48 1 5 4 -0.11 -1.33 0.22
#we see 1 factor also suggest the long scale explains more variance need to check the scale reliability parameters
#also more distributed between scores but more evenly with the short
#EFA and CFA short
EFA.model.CMM.short <- fa(cmm.short.scale.df)
## Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs, :
## The estimated weights for the factor scores are probably incorrect. Try a
## different factor score estimation method.
## Warning in fac(r = r, nfactors = nfactors, n.obs = n.obs, rotate = rotate, : An
## ultra-Heywood case was detected. Examine the results carefully
EFA.model.CMM.short$loadings
##
## Loadings:
## MR1
## cmm_s_1 1.003
## cmm_s_2 0.491
## cmm_s_3 0.802
## cmm_s_4 0.734
##
## MR1
## SS loadings 2.431
## Proportion Var 0.608
#factor loadings
fa.diagram(EFA.model.CMM.short)
#this function shows individuals scores on factor
EFA.model.CMM.short$scores
## MR1
## [1,] 0.6040182
## [2,] -1.5183861
## [3,] 2.1031875
## [4,] -0.1475880
## [5,] -1.2811563
## [6,] 1.8485461
## [7,] 0.7873439
## [8,] 0.7873439
## [9,] -0.5295501
## [10,] 1.8485461
## [11,] -0.2749087
## [12,] -0.2738582
## [13,] 0.7873439
## [14,] -0.2749087
## [15,] -0.5284996
## [16,] -0.4022294
## [17,] -1.4470704
## [18,] 0.7313389
## [19,] -0.4571839
## [20,] -0.2749087
## [21,] -1.4074265
## [22,] -0.2025425
## [23,] -0.2035930
## [24,] -0.2738582
summary(EFA.model.CMM.short$scores)
## MR1
## Min. :-1.5184
## 1st Qu.:-0.4750
## Median :-0.2739
## Mean : 0.0000
## 3rd Qu.: 0.7453
## Max. : 2.1032
#feel for distribution of factor scores
summary(cmm.short.df)
## cmm_s_1 cmm_s_2 cmm_s_3 cmm_s_4
## Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000
## 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.000 1st Qu.:2.750
## Median :2.000 Median :2.000 Median :3.000 Median :3.000
## Mean :2.292 Mean :2.458 Mean :2.708 Mean :2.958
## 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.000 3rd Qu.:3.250
## Max. :4.000 Max. :4.000 Max. :4.000 Max. :4.000
## qq_1 qq_2 qq_3 qq_4
## Length:24 Length:24 Length:24 Length:24
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## qq_5 qq_6 dem_age dem_race
## Length:24 Length:24 Length:24 Length:24
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## dem_race_6_TEXT dem_gender dem_gender_5_TEXT dem_inc
## Length:24 Length:24 Length:24 Length:24
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
## dem_ed dem_emp debrief_else id
## Length:24 Length:24 Length:24 Min. : 1.00
## Class :character Class :character Class :character 1st Qu.:14.25
## Mode :character Mode :character Mode :character Median :26.50
## Mean :26.50
## 3rd Qu.:41.50
## Max. :49.00
## cmm_Short_score
## Min. :1.500
## 1st Qu.:2.000
## Median :2.500
## Mean :2.604
## 3rd Qu.:3.000
## Max. :4.000
plot(density(EFA.model.CMM.short$scores))
describe(cmm.short.df$cmm_Short_score)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 24 2.6 0.73 2.5 2.58 0.74 1.5 4 2.5 0.22 -0.86 0.15
#we see 1 factor
#check out the open ended responses, text mining bag of words?
view(xcl.long.df)
xcl.long.df
## # A tibble: 24 x 8
## id cmm_Short_score qq_1 qq_2 qq_3 qq_4 qq_5 qq_6
## <int> <dbl> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 3.5 It is th… I though… "Going … "At wor… My mind… "Fixed,…
## 2 6 1.5 The way … Mindset … "When a… "I chan… I would… "I am n…
## 3 7 3.5 your tho… mind set… "mindse… "I can'… changin… "genera…
## 4 8 2.25 Mindset … mindsets… "workin… "I foug… I would… "Mindse…
## 5 11 1.75 A mindse… Abortion… "On the… "The to… Not hav… "Having…
## 6 12 4 It is ba… stance o… "I do n… "My min… There i… "honest…
## 7 15 3 The set … Depresse… "Having… "I was … I would… "Happy/…
## 8 16 3 Your tho… Circumst… "I have… "I had … Think r… "I can’…
## 9 19 3 Someones… Changing… "When I… "I was … Stubbor… "selfis…
## 10 20 4 Your att… Motivati… "I felt… "I need… Again i… "A posi…
## # … with 14 more rows
view(xcl.short.df)