This document contains a summary of our robustness checks:
- MTurk label regressions
- Non-linearity checks for
p_hat_cnn
- Skin-tone regressions
- Further skin-tone sanity checks and graphs
\(\color{red}{\text{MTurk Label regressions}}\)
We now regress the individual, and combined, MTurk label on the release outcome. These are;
- Attractiveness
- Competence
- Dominance
- Trustworthiness
We split these regressions by: gender and race.
Combined Male-Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
attractiveness
|
0.005
|
|
|
|
0.003
|
|
|
(-0.001, 0.012)
|
|
|
|
(-0.006, 0.013)
|
|
|
|
|
|
|
|
|
competence
|
|
0.005
|
|
|
0.003
|
|
|
|
(-0.002, 0.013)
|
|
|
(-0.009, 0.015)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
-0.002
|
|
-0.006
|
|
|
|
|
(-0.009, 0.006)
|
|
(-0.014, 0.003)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
|
0.006
|
0.003
|
|
|
|
|
|
(-0.001, 0.012)
|
(-0.008, 0.013)
|
|
|
|
|
|
|
|
|
Constant
|
0.737***
|
0.735***
|
0.770***
|
0.735***
|
0.745***
|
|
|
(0.706, 0.769)
|
(0.697, 0.773)
|
(0.732, 0.808)
|
(0.702, 0.768)
|
(0.700, 0.790)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
8,479
|
8,479
|
8,479
|
8,479
|
8,479
|
|
Adjusted R2
|
0.0001
|
0.00004
|
-0.0001
|
0.0001
|
-0.0001
|
|
F Statistic
|
1.654 (df = 1; 8477)
|
1.351 (df = 1; 8477)
|
0.141 (df = 1; 8477)
|
1.893 (df = 1; 8477)
|
0.838 (df = 4; 8474)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Subsample Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
|
|
|
attractiveness
|
0.019***
|
|
|
|
0.016
|
0.013*
|
|
|
(0.007, 0.030)
|
|
|
|
(-0.001, 0.033)
|
(0.0005, 0.026)
|
|
|
|
|
|
|
|
|
|
competence
|
|
0.014*
|
|
|
-0.010
|
|
|
|
|
(0.001, 0.027)
|
|
|
(-0.032, 0.011)
|
|
|
|
|
|
|
|
|
|
|
dominance
|
|
|
0.021***
|
|
0.016*
|
0.014
|
|
|
|
|
(0.008, 0.034)
|
|
(0.001, 0.032)
|
(-0.0004, 0.028)
|
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
|
0.015**
|
0.004
|
|
|
|
|
|
|
(0.003, 0.027)
|
(-0.016, 0.023)
|
|
|
|
|
|
|
|
|
|
|
Constant
|
0.753***
|
0.772***
|
0.741***
|
0.770***
|
0.720***
|
0.710***
|
|
|
(0.696, 0.809)
|
(0.704, 0.839)
|
(0.676, 0.806)
|
(0.710, 0.831)
|
(0.643, 0.796)
|
(0.639, 0.782)
|
|
|
|
|
|
|
|
|
|
|
|
Observations
|
1,833
|
1,833
|
1,833
|
1,833
|
1,833
|
1,833
|
|
Adjusted R2
|
0.003
|
0.001
|
0.003
|
0.002
|
0.004
|
0.004
|
|
F Statistic
|
7.370*** (df = 1; 1831)
|
3.162* (df = 1; 1831)
|
7.024*** (df = 1; 1831)
|
4.116** (df = 1; 1831)
|
2.639** (df = 4; 1828)
|
4.969*** (df = 2; 1830)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Subsample Male
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
attractiveness
|
-0.001
|
|
|
|
-0.004
|
|
|
(-0.009, 0.007)
|
|
|
|
(-0.015, 0.007)
|
|
|
|
|
|
|
|
|
competence
|
|
0.002
|
|
|
0.005
|
|
|
|
(-0.007, 0.011)
|
|
|
(-0.008, 0.019)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
-0.001
|
|
-0.001
|
|
|
|
|
(-0.009, 0.008)
|
|
(-0.011, 0.008)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
|
0.001
|
0.0003
|
|
|
|
|
|
(-0.007, 0.008)
|
(-0.012, 0.013)
|
|
|
|
|
|
|
|
|
Constant
|
0.745***
|
0.729***
|
0.743***
|
0.737***
|
0.737***
|
|
|
(0.708, 0.782)
|
(0.684, 0.774)
|
(0.697, 0.789)
|
(0.698, 0.775)
|
(0.683, 0.791)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
6,646
|
6,646
|
6,646
|
6,646
|
6,646
|
|
Adjusted R2
|
-0.0001
|
-0.0001
|
-0.0001
|
-0.0001
|
-0.001
|
|
F Statistic
|
0.072 (df = 1; 6644)
|
0.138 (df = 1; 6644)
|
0.019 (df = 1; 6644)
|
0.013 (df = 1; 6644)
|
0.162 (df = 4; 6641)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Subsample Black
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
attractiveness
|
0.001
|
|
|
|
0.001
|
|
|
(-0.008, 0.010)
|
|
|
|
(-0.012, 0.015)
|
|
|
|
|
|
|
|
|
competence
|
|
0.003
|
|
|
0.007
|
|
|
|
(-0.007, 0.013)
|
|
|
(-0.008, 0.023)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
-0.004
|
|
-0.007
|
|
|
|
|
(-0.014, 0.006)
|
|
(-0.018, 0.004)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
|
0.001
|
-0.003
|
|
|
|
|
|
(-0.008, 0.010)
|
(-0.017, 0.011)
|
|
|
|
|
|
|
|
|
Constant
|
0.755***
|
0.746***
|
0.781***
|
0.756***
|
0.767***
|
|
|
(0.712, 0.797)
|
(0.695, 0.797)
|
(0.729, 0.833)
|
(0.712, 0.799)
|
(0.705, 0.828)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
4,768
|
4,768
|
4,768
|
4,768
|
4,768
|
|
Adjusted R2
|
-0.0002
|
-0.0002
|
-0.0001
|
-0.0002
|
-0.001
|
|
F Statistic
|
0.044 (df = 1; 4766)
|
0.222 (df = 1; 4766)
|
0.450 (df = 1; 4766)
|
0.025 (df = 1; 4766)
|
0.327 (df = 4; 4763)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Subsample Not-Black
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
|
|
|
attractiveness
|
0.010
|
|
|
|
0.006
|
|
|
(-0.0002, 0.019)
|
|
|
|
(-0.009, 0.021)
|
|
|
|
|
|
|
|
|
competence
|
|
0.008
|
|
|
-0.002
|
|
|
|
(-0.003, 0.019)
|
|
|
(-0.020, 0.016)
|
|
|
|
|
|
|
|
|
dominance
|
|
|
0.001
|
|
-0.005
|
|
|
|
|
(-0.009, 0.012)
|
|
(-0.017, 0.008)
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
|
|
0.011*
|
0.010
|
|
|
|
|
|
(0.001, 0.022)
|
(-0.006, 0.026)
|
|
|
|
|
|
|
|
|
Constant
|
0.716***
|
0.723***
|
0.756***
|
0.708***
|
0.719***
|
|
|
(0.667, 0.766)
|
(0.666, 0.781)
|
(0.700, 0.813)
|
(0.657, 0.759)
|
(0.653, 0.786)
|
|
|
|
|
|
|
|
|
|
|
Observations
|
3,711
|
3,711
|
3,711
|
3,711
|
3,711
|
|
Adjusted R2
|
0.0004
|
0.0001
|
-0.0003
|
0.001
|
0.00004
|
|
F Statistic
|
2.602 (df = 1; 3709)
|
1.377 (df = 1; 3709)
|
0.046 (df = 1; 3709)
|
3.398* (df = 1; 3709)
|
1.033 (df = 4; 3706)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
\(\color{red}{\text{Non-linearity in `p_hat_cnn`}}\)
Decile Plots
Here I provide two types of plots for each of p_hat_cnn , p_hat_covariate, and risk_pred_prob:
- Decile Plot A - The max value in a decile vs. the mean arrest outcome in that decile
- Decile Plot B - The mean arrest outcome at each decile index
Decile Plot 1 - p_hat_cnn


Decile Plot 2 - p_hat_covariate


Decile Plot 3 - risk_pred_prob


Average decile value for p_hat_cnn
Here I fixed the average decile values for p_hat_cnn and we now see the regression coefficient becoming significant.
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.105***
|
-1.106***
|
-0.778***
|
-0.716***
|
|
|
(-1.211, -0.998)
|
(-1.214, -0.999)
|
(-0.883, -0.673)
|
(-0.821, -0.611)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.002
|
-0.027
|
-0.041**
|
|
|
|
(-0.033, 0.038)
|
(-0.061, 0.007)
|
(-0.075, -0.007)
|
|
|
|
|
|
|
|
age
|
|
-0.0003
|
0.0003
|
0.001
|
|
|
|
(-0.001, 0.001)
|
(-0.001, 0.001)
|
(-0.00003, 0.002)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.002
|
0.001
|
0.002
|
|
|
|
(-0.012, 0.008)
|
(-0.009, 0.010)
|
(-0.008, 0.011)
|
|
|
|
|
|
|
|
competence
|
|
0.003
|
-0.001
|
-0.003
|
|
|
|
(-0.009, 0.015)
|
(-0.013, 0.010)
|
(-0.014, 0.008)
|
|
|
|
|
|
|
|
dominance
|
|
0.001
|
0.005
|
0.006
|
|
|
|
(-0.008, 0.009)
|
(-0.003, 0.012)
|
(-0.001, 0.014)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.001
|
0.001
|
-0.002
|
|
|
|
(-0.010, 0.011)
|
(-0.009, 0.011)
|
(-0.012, 0.009)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.083***
|
1.007***
|
|
|
|
|
(1.018, 1.148)
|
(0.941, 1.073)
|
|
|
|
|
|
|
|
p_hat_cnn_decile_avr
|
|
|
|
0.398***
|
|
|
|
|
|
(0.329, 0.466)
|
|
|
|
|
|
|
|
Constant
|
1.102***
|
1.088***
|
0.114**
|
-0.155**
|
|
|
(1.069, 1.136)
|
(1.017, 1.158)
|
(0.024, 0.203)
|
(-0.256, -0.055)
|
|
|
|
|
|
|
|
|
|
Observations
|
8,479
|
8,479
|
8,479
|
8,479
|
|
Adjusted R2
|
0.033
|
0.033
|
0.112
|
0.122
|
|
F Statistic
|
291.841*** (df = 1; 8477)
|
13.490*** (df = 23; 8455)
|
45.641*** (df = 24; 8454)
|
47.945*** (df = 25; 8453)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Direct coding of deciles
Here I include integers 1-10 for the corresponding decile that the observation is in.
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
|
|
|
risk_pred_prob
|
-1.105***
|
-1.106***
|
-0.778***
|
-0.718***
|
|
|
(-1.211, -0.998)
|
(-1.214, -0.999)
|
(-0.883, -0.673)
|
(-0.823, -0.613)
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.002
|
-0.027
|
-0.041**
|
|
|
|
(-0.033, 0.038)
|
(-0.061, 0.007)
|
(-0.075, -0.007)
|
|
|
|
|
|
|
|
age
|
|
-0.0003
|
0.0003
|
0.001
|
|
|
|
(-0.001, 0.001)
|
(-0.001, 0.001)
|
(-0.0001, 0.002)
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.002
|
0.001
|
0.002
|
|
|
|
(-0.012, 0.008)
|
(-0.009, 0.010)
|
(-0.008, 0.011)
|
|
|
|
|
|
|
|
competence
|
|
0.003
|
-0.001
|
-0.003
|
|
|
|
(-0.009, 0.015)
|
(-0.013, 0.010)
|
(-0.014, 0.009)
|
|
|
|
|
|
|
|
dominance
|
|
0.001
|
0.005
|
0.007
|
|
|
|
(-0.008, 0.009)
|
(-0.003, 0.012)
|
(-0.001, 0.015)
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.001
|
0.001
|
-0.002
|
|
|
|
(-0.010, 0.011)
|
(-0.009, 0.011)
|
(-0.012, 0.008)
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.083***
|
1.005***
|
|
|
|
|
(1.018, 1.148)
|
(0.939, 1.071)
|
|
|
|
|
|
|
|
p_hat_cnn_decile
|
|
|
|
0.015***
|
|
|
|
|
|
(0.013, 0.018)
|
|
|
|
|
|
|
|
Constant
|
1.102***
|
1.088***
|
0.114**
|
0.061
|
|
|
(1.069, 1.136)
|
(1.017, 1.158)
|
(0.024, 0.203)
|
(-0.028, 0.150)
|
|
|
|
|
|
|
|
|
|
Observations
|
8,479
|
8,479
|
8,479
|
8,479
|
|
Adjusted R2
|
0.033
|
0.033
|
0.112
|
0.122
|
|
F Statistic
|
291.841*** (df = 1; 8477)
|
13.490*** (df = 23; 8455)
|
45.641*** (df = 24; 8454)
|
47.910*** (df = 25; 8453)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Higher order
We now include two higher order terms of p_hat_cnn, none of which become significant.
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
(4)
|
(5)
|
(6)
|
|
|
|
risk_pred_prob
|
-1.105***
|
-1.106***
|
-0.778***
|
-0.713***
|
-0.712***
|
-0.712***
|
|
|
(-1.211, -0.998)
|
(-1.214, -0.999)
|
(-0.883, -0.673)
|
(-0.818, -0.608)
|
(-0.817, -0.607)
|
(-0.817, -0.607)
|
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
|
0.002
|
-0.027
|
-0.041**
|
-0.040*
|
-0.040*
|
|
|
|
(-0.033, 0.038)
|
(-0.061, 0.007)
|
(-0.075, -0.007)
|
(-0.074, -0.006)
|
(-0.074, -0.006)
|
|
|
|
|
|
|
|
|
|
age
|
|
-0.0003
|
0.0003
|
0.001*
|
0.001*
|
0.001*
|
|
|
|
(-0.001, 0.001)
|
(-0.001, 0.001)
|
(0.00004, 0.002)
|
(0.00002, 0.002)
|
(0.00004, 0.002)
|
|
|
|
|
|
|
|
|
|
attractiveness
|
|
-0.002
|
0.001
|
0.002
|
0.002
|
0.002
|
|
|
|
(-0.012, 0.008)
|
(-0.009, 0.010)
|
(-0.008, 0.012)
|
(-0.008, 0.011)
|
(-0.008, 0.011)
|
|
|
|
|
|
|
|
|
|
competence
|
|
0.003
|
-0.001
|
-0.003
|
-0.003
|
-0.003
|
|
|
|
(-0.009, 0.015)
|
(-0.013, 0.010)
|
(-0.014, 0.008)
|
(-0.014, 0.008)
|
(-0.014, 0.008)
|
|
|
|
|
|
|
|
|
|
dominance
|
|
0.001
|
0.005
|
0.006
|
0.007
|
0.007
|
|
|
|
(-0.008, 0.009)
|
(-0.003, 0.012)
|
(-0.001, 0.014)
|
(-0.001, 0.015)
|
(-0.001, 0.015)
|
|
|
|
|
|
|
|
|
|
trustworthiness
|
|
0.001
|
0.001
|
-0.002
|
-0.002
|
-0.002
|
|
|
|
(-0.010, 0.011)
|
(-0.009, 0.011)
|
(-0.012, 0.008)
|
(-0.012, 0.008)
|
(-0.012, 0.008)
|
|
|
|
|
|
|
|
|
|
p_hat_covariates
|
|
|
1.083***
|
1.005***
|
1.002***
|
1.002***
|
|
|
|
|
(1.018, 1.148)
|
(0.939, 1.071)
|
(0.936, 1.068)
|
(0.936, 1.068)
|
|
|
|
|
|
|
|
|
|
p_hat_cnn
|
|
|
|
0.403***
|
0.019
|
1.417
|
|
|
|
|
|
(0.336, 0.470)
|
(-0.642, 0.681)
|
(-2.771, 5.605)
|
|
|
|
|
|
|
|
|
|
I(p_hat_cnn2)
|
|
|
|
|
0.265
|
-1.758
|
|
|
|
|
|
|
(-0.190, 0.720)
|
(-7.762, 4.245)
|
|
|
|
|
|
|
|
|
|
I(p_hat_cnn3)
|
|
|
|
|
|
0.954
|
|
|
|
|
|
|
|
(-1.869, 3.778)
|
|
|
|
|
|
|
|
|
|
Constant
|
1.102***
|
1.088***
|
0.114**
|
-0.161***
|
-0.023
|
-0.338
|
|
|
(1.069, 1.136)
|
(1.017, 1.158)
|
(0.024, 0.203)
|
(-0.261, -0.061)
|
(-0.280, 0.233)
|
(-1.303, 0.627)
|
|
|
|
|
|
|
|
|
|
|
|
Observations
|
8,479
|
8,479
|
8,479
|
8,479
|
8,479
|
8,479
|
|
Adjusted R2
|
0.033
|
0.033
|
0.112
|
0.122
|
0.122
|
0.122
|
|
F Statistic
|
291.841*** (df = 1; 8477)
|
13.490*** (df = 23; 8455)
|
45.641*** (df = 24; 8454)
|
48.180*** (df = 25; 8453)
|
46.362*** (df = 26; 8452)
|
44.652*** (df = 27; 8451)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
\(\color{red}{\text{Bivariate MTurk Skin-tone Regressions}}\)
We now consider a set of regression of skin-tone and it’s categories on our release outcome. These regression include:
- All skin-tone labels
- Three categories based on skin-tone into dark, medium, and light skin tones
- The race label with categories (Asian, Black, White, Indian, Unsure, Other)
We find that:
- On the combined sample nothing is significant in all three regressions
- The male subsample is also without any significant effect
- Controlling for females we see that
skin_tone_cat_light is highly significant with -0.058
- Suggests that for females
light-skinned individuals have a worse predicted outcome than dark_skinned individuals
Combined Male-Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
skin_tonenumber_623a17
|
-0.002
|
|
|
|
|
(-0.036, 0.031)
|
|
|
|
|
|
|
|
|
skin_tonenumber_76441f
|
0.027
|
|
|
|
|
(-0.015, 0.068)
|
|
|
|
|
|
|
|
|
skin_tonenumber_80492a
|
0.034
|
|
|
|
|
(-0.004, 0.071)
|
|
|
|
|
|
|
|
|
skin_tonenumber_885633
|
-0.007
|
|
|
|
|
(-0.051, 0.038)
|
|
|
|
|
|
|
|
|
skin_tonenumber_94623d
|
0.061**
|
|
|
|
|
(0.018, 0.103)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ab8b64
|
0.028
|
|
|
|
|
(-0.012, 0.067)
|
|
|
|
|
|
|
|
|
skin_tonenumber_b26949
|
0.041
|
|
|
|
|
(-0.011, 0.092)
|
|
|
|
|
|
|
|
|
skin_tonenumber_cb9662
|
0.061**
|
|
|
|
|
(0.018, 0.104)
|
|
|
|
|
|
|
|
|
skin_tonenumber_d09e7d
|
0.004
|
|
|
|
|
(-0.048, 0.056)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e7bc91
|
0.012
|
|
|
|
|
(-0.053, 0.077)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e9cba7
|
0.041
|
|
|
|
|
(-0.017, 0.099)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ecc083
|
0.053*
|
|
|
|
|
(0.007, 0.098)
|
|
|
|
|
|
|
|
|
skin_tonenumber_eed0b8
|
0.039*
|
|
|
|
|
(0.00003, 0.078)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc088
|
0.035
|
|
|
|
|
(-0.035, 0.105)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc794
|
0.010
|
|
|
|
|
(-0.040, 0.061)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f6e1aa
|
0.044*
|
|
|
|
|
(0.005, 0.083)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
0.023
|
|
|
|
|
(-0.013, 0.059)
|
|
|
|
|
|
|
|
|
skin_tone_cat_light_skin
|
|
0.004
|
|
|
|
|
(-0.013, 0.021)
|
|
|
|
|
|
|
|
skin_tone_cat_medium_skin
|
|
0.021
|
|
|
|
|
(-0.0003, 0.042)
|
|
|
|
|
|
|
|
race_mturkblack
|
|
|
0.011
|
|
|
|
|
(-0.020, 0.041)
|
|
|
|
|
|
|
race_mturkcaucasian
|
|
|
0.019
|
|
|
|
|
(-0.013, 0.051)
|
|
|
|
|
|
|
race_mturkhispanic
|
|
|
0.028
|
|
|
|
|
(-0.012, 0.068)
|
|
|
|
|
|
|
race_mturkindian
|
|
|
-0.025
|
|
|
|
|
(-0.096, 0.046)
|
|
|
|
|
|
|
race_mturkother
|
|
|
-0.016
|
|
|
|
|
(-0.124, 0.093)
|
|
|
|
|
|
|
race_mturkunsure
|
|
|
-0.028
|
|
|
|
|
(-0.112, 0.056)
|
|
|
|
|
|
|
Constant
|
0.736***
|
0.756***
|
0.749***
|
|
|
(0.710, 0.763)
|
(0.745, 0.767)
|
(0.720, 0.778)
|
|
|
|
|
|
|
|
|
Observations
|
8,479
|
8,479
|
8,479
|
|
Adjusted R2
|
0.0005
|
0.0001
|
-0.0003
|
|
F Statistic
|
1.226 (df = 17; 8461)
|
1.334 (df = 2; 8476)
|
0.614 (df = 6; 8472)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Coefficient Plot - Regression 1 - Combined

Coefficient Plot - Regression 2 - Combined

Coefficient Plot - Regression 3 - Combined

Subsample Female
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
skin_tonenumber_623a17
|
-0.029
|
|
|
|
|
(-0.110, 0.052)
|
|
|
|
|
|
|
|
|
skin_tonenumber_76441f
|
-0.043
|
|
|
|
|
(-0.137, 0.050)
|
|
|
|
|
|
|
|
|
skin_tonenumber_80492a
|
-0.029
|
|
|
|
|
(-0.113, 0.055)
|
|
|
|
|
|
|
|
|
skin_tonenumber_885633
|
-0.081
|
|
|
|
|
(-0.176, 0.014)
|
|
|
|
|
|
|
|
|
skin_tonenumber_94623d
|
0.013
|
|
|
|
|
(-0.077, 0.102)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ab8b64
|
0.019
|
|
|
|
|
(-0.066, 0.104)
|
|
|
|
|
|
|
|
|
skin_tonenumber_b26949
|
-0.032
|
|
|
|
|
(-0.137, 0.073)
|
|
|
|
|
|
|
|
|
skin_tonenumber_cb9662
|
0.031
|
|
|
|
|
(-0.056, 0.117)
|
|
|
|
|
|
|
|
|
skin_tonenumber_d09e7d
|
-0.042
|
|
|
|
|
(-0.142, 0.058)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e7bc91
|
0.008
|
|
|
|
|
(-0.124, 0.140)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e9cba7
|
-0.081
|
|
|
|
|
(-0.191, 0.029)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ecc083
|
0.021
|
|
|
|
|
(-0.069, 0.111)
|
|
|
|
|
|
|
|
|
skin_tonenumber_eed0b8
|
-0.075
|
|
|
|
|
(-0.157, 0.007)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc088
|
-0.010
|
|
|
|
|
(-0.136, 0.116)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc794
|
-0.033
|
|
|
|
|
(-0.135, 0.068)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f6e1aa
|
-0.092*
|
|
|
|
|
(-0.170, -0.013)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
-0.080*
|
|
|
|
|
(-0.154, -0.006)
|
|
|
|
|
|
|
|
|
skin_tone_cat_light_skin
|
|
-0.045**
|
|
|
|
|
(-0.077, -0.014)
|
|
|
|
|
|
|
|
skin_tone_cat_medium_skin
|
|
0.016
|
|
|
|
|
(-0.022, 0.054)
|
|
|
|
|
|
|
|
race_mturkblack
|
|
|
0.009
|
|
|
|
|
(-0.044, 0.063)
|
|
|
|
|
|
|
race_mturkcaucasian
|
|
|
-0.073**
|
|
|
|
|
(-0.128, -0.019)
|
|
|
|
|
|
|
race_mturkhispanic
|
|
|
-0.029
|
|
|
|
|
(-0.098, 0.040)
|
|
|
|
|
|
|
race_mturkindian
|
|
|
-0.119
|
|
|
|
|
(-0.276, 0.038)
|
|
|
|
|
|
|
race_mturkother
|
|
|
0.031
|
|
|
|
|
(-0.164, 0.226)
|
|
|
|
|
|
|
race_mturkunsure
|
|
|
-0.069
|
|
|
|
|
(-0.211, 0.073)
|
|
|
|
|
|
|
Constant
|
0.881***
|
0.859***
|
0.869***
|
|
|
(0.816, 0.946)
|
(0.835, 0.882)
|
(0.819, 0.918)
|
|
|
|
|
|
|
|
|
Observations
|
1,833
|
1,833
|
1,833
|
|
Adjusted R2
|
0.004
|
0.004
|
0.008
|
|
F Statistic
|
1.419 (df = 17; 1815)
|
4.713*** (df = 2; 1830)
|
3.562*** (df = 6; 1826)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Coefficient Plot - Regression 1 - Female

Coefficient Plot - Regression 2 - Female

Coefficient Plot - Regression 3 - Female

Subsample Male
Multihead(ResNet50)
|
|
|
|
Dependent variable:
|
|
|
|
|
|
Release Outcome
|
|
|
(1)
|
(2)
|
(3)
|
|
|
|
skin_tonenumber_623a17
|
-0.001
|
|
|
|
|
(-0.038, 0.036)
|
|
|
|
|
|
|
|
|
skin_tonenumber_76441f
|
0.032
|
|
|
|
|
(-0.014, 0.078)
|
|
|
|
|
|
|
|
|
skin_tonenumber_80492a
|
0.036
|
|
|
|
|
(-0.006, 0.077)
|
|
|
|
|
|
|
|
|
skin_tonenumber_885633
|
-0.004
|
|
|
|
|
(-0.055, 0.046)
|
|
|
|
|
|
|
|
|
skin_tonenumber_94623d
|
0.054*
|
|
|
|
|
(0.006, 0.103)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ab8b64
|
0.012
|
|
|
|
|
(-0.033, 0.056)
|
|
|
|
|
|
|
|
|
skin_tonenumber_b26949
|
0.041
|
|
|
|
|
(-0.018, 0.100)
|
|
|
|
|
|
|
|
|
skin_tonenumber_cb9662
|
0.039
|
|
|
|
|
(-0.011, 0.089)
|
|
|
|
|
|
|
|
|
skin_tonenumber_d09e7d
|
-0.009
|
|
|
|
|
(-0.069, 0.051)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e7bc91
|
-0.002
|
|
|
|
|
(-0.076, 0.072)
|
|
|
|
|
|
|
|
|
skin_tonenumber_e9cba7
|
0.053
|
|
|
|
|
(-0.014, 0.121)
|
|
|
|
|
|
|
|
|
skin_tonenumber_ecc083
|
0.033
|
|
|
|
|
(-0.021, 0.086)
|
|
|
|
|
|
|
|
|
skin_tonenumber_eed0b8
|
0.049*
|
|
|
|
|
(0.004, 0.094)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc088
|
0.019
|
|
|
|
|
(-0.063, 0.102)
|
|
|
|
|
|
|
|
|
skin_tonenumber_efc794
|
0.001
|
|
|
|
|
(-0.058, 0.059)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f6e1aa
|
0.060**
|
|
|
|
|
(0.014, 0.106)
|
|
|
|
|
|
|
|
|
skin_tonenumber_f7ddc4
|
0.021
|
|
|
|
|
(-0.021, 0.063)
|
|
|
|
|
|
|
|
|
skin_tone_cat_light_skin
|
|
0.008
|
|
|
|
|
(-0.012, 0.028)
|
|
|
|
|
|
|
|
skin_tone_cat_medium_skin
|
|
0.010
|
|
|
|
|
(-0.014, 0.035)
|
|
|
|
|
|
|
|
race_mturkblack
|
|
|
0.024
|
|
|
|
|
(-0.012, 0.060)
|
|
|
|
|
|
|
race_mturkcaucasian
|
|
|
0.046*
|
|
|
|
|
(0.007, 0.084)
|
|
|
|
|
|
|
race_mturkhispanic
|
|
|
0.045
|
|
|
|
|
(-0.002, 0.093)
|
|
|
|
|
|
|
race_mturkindian
|
|
|
0.009
|
|
|
|
|
(-0.071, 0.089)
|
|
|
|
|
|
|
race_mturkother
|
|
|
-0.025
|
|
|
|
|
(-0.152, 0.102)
|
|
|
|
|
|
|
race_mturkunsure
|
|
|
-0.016
|
|
|
|
|
(-0.116, 0.084)
|
|
|
|
|
|
|
Constant
|
0.716***
|
0.734***
|
0.711***
|
|
|
(0.687, 0.745)
|
(0.722, 0.747)
|
(0.677, 0.745)
|
|
|
|
|
|
|
|
|
Observations
|
6,646
|
6,646
|
6,646
|
|
Adjusted R2
|
-0.0001
|
-0.0002
|
0.0001
|
|
F Statistic
|
0.975 (df = 17; 6628)
|
0.337 (df = 2; 6643)
|
1.126 (df = 6; 6639)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Coefficient Plot - Regression 1 - Male

Coefficient Plot - Regression 2 - Male

Coefficient Plot - Regression 3 - Combined

\(\color{red}{\text{Skin-tone sanity checks}}\)
Skin-tone and race relation (sanity check)
