Determinar predicciones de datos bajo el modelo de regresión lineal simple
De un conjunto de datos con dos variables (bivariable) en donde una de ellas es X variable independiente y otra de ellas Y variable dependiente, predecir el valor de Y conforme la historia de X.
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Warning: package 'mosaic' was built under R version 3.6.3
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
## Warning: package 'readr' was built under R version 3.6.3
library(ggplot2)
library(knitr)
## Warning: package 'knitr' was built under R version 3.6.3
De un conjunto de datos para una empresa que invierte dinero en comerciales se tienen un historial de ventas de doce semanas.
semanas <- c(1:12)
comerciales <- c(2,5,1,3,4,1,5,3,4,2,3,2)
ventas <- c(50,57,41,54,54,38,63,48,59,46, 45, 48 )
datos <- data.frame(semanas,comerciales,ventas)
kable(datos, caption = "Ventas en función de inversión en comerciales")
| semanas | comerciales | ventas |
|---|---|---|
| 1 | 2 | 50 |
| 2 | 5 | 57 |
| 3 | 1 | 41 |
| 4 | 3 | 54 |
| 5 | 4 | 54 |
| 6 | 1 | 38 |
| 7 | 5 | 63 |
| 8 | 3 | 48 |
| 9 | 4 | 59 |
| 10 | 2 | 46 |
| 11 | 3 | 45 |
| 12 | 2 | 48 |
r <- cor(datos$comerciales, datos$ventas)
r
## [1] 0.9006177
ggplot(data = datos, aes(x = comerciales, y = ventas)) +
geom_point(colour = 'blue')
modelo <- lm(data = datos, formula = ventas~comerciales)
modelo
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Coefficients:
## (Intercept) comerciales
## 36.131 4.841
summary(modelo)
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6534 -2.7331 0.1076 2.8357 4.1873
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.1315 2.3650 15.278 2.93e-08 ***
## comerciales 4.8406 0.7387 6.553 6.45e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.378 on 10 degrees of freedom
## Multiple R-squared: 0.8111, Adjusted R-squared: 0.7922
## F-statistic: 42.94 on 1 and 10 DF, p-value: 6.449e-05
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: ", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: 0.811112191696598"
El coeficiente de determinación r2 con valor de 0.8111 significa que el valor de solido representa el 81.11 % del oxígeno.
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 36.13147
## comerciales
## 4.840637
ggplot() +
geom_point(data = datos, aes(x = comerciales, y = ventas), colour='blue') +
geom_line(aes( x = datos$comerciales, y = predict(modelo, datos)), color = "red") +
xlab("Comerciales") +
ylab("Ventas") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
x <- c(4,3.5,2,0,1)
prediccion <- predict(object = modelo, newdata = data.frame(comerciales = x))
prediccion
## 1 2 3 4 5
## 55.49402 53.07371 45.81275 36.13147 40.97211
y = a + b * x
y
## [1] 55.49402 53.07371 45.81275 36.13147 40.97211
Uno de los problemas más desafiantes que se enfrentan en el área del control de la contaminación del agua lo representa la industria de la peletería (dedicada a la elaboración de indumentaria, cuero y piel animal).
Los desechos de ésta tienen una complejidad química. Se caracterizan por valores elevados de demanda de oxígeno bioquímico, sólidos volátiles y otras medidas de la contaminación. (Walpole et al., 2007)
seq <- c(1:33)
solido <- c(3,7,11,15,18,27,29,30,30,31,31,32,33,33,34,36,36,36,37,38,39,39,39,40,41,42,42,43,44,45,46,47,50)
oxigeno <- c(5,11,21,16,16,28,27,25,35,30,40,32,34,32,34,37,38,34,36,38,37,36,45,39,41,40,44,37,44,46,46,49,51 )
datos <- data.frame(seq,solido,oxigeno)
kable(datos, caption = "Contaminante oxígeno en función de reducción de sólidos")
| seq | solido | oxigeno |
|---|---|---|
| 1 | 3 | 5 |
| 2 | 7 | 11 |
| 3 | 11 | 21 |
| 4 | 15 | 16 |
| 5 | 18 | 16 |
| 6 | 27 | 28 |
| 7 | 29 | 27 |
| 8 | 30 | 25 |
| 9 | 30 | 35 |
| 10 | 31 | 30 |
| 11 | 31 | 40 |
| 12 | 32 | 32 |
| 13 | 33 | 34 |
| 14 | 33 | 32 |
| 15 | 34 | 34 |
| 16 | 36 | 37 |
| 17 | 36 | 38 |
| 18 | 36 | 34 |
| 19 | 37 | 36 |
| 20 | 38 | 38 |
| 21 | 39 | 37 |
| 22 | 39 | 36 |
| 23 | 39 | 45 |
| 24 | 40 | 39 |
| 25 | 41 | 41 |
| 26 | 42 | 40 |
| 27 | 42 | 44 |
| 28 | 43 | 37 |
| 29 | 44 | 44 |
| 30 | 45 | 46 |
| 31 | 46 | 46 |
| 32 | 47 | 49 |
| 33 | 50 | 51 |
r <- cor(datos$solido, datos$oxigeno)
r
## [1] 0.9554794
ggplot(data = datos, aes(x = solido, y = oxigeno)) +
geom_point(colour = 'blue')
modelo <- lm(data = datos, formula = oxigeno~solido)
modelo
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Coefficients:
## (Intercept) solido
## 3.8296 0.9036
summary(modelo)
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.939 -1.783 -0.228 1.506 8.157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.82963 1.76845 2.166 0.0382 *
## solido 0.90364 0.05012 18.030 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.23 on 31 degrees of freedom
## Multiple R-squared: 0.9129, Adjusted R-squared: 0.9101
## F-statistic: 325.1 on 1 and 31 DF, p-value: < 2.2e-16
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.912940801014387"
El coeficiente de determinación r2 con valor de 0.9129 significa que el valor de solido representa el 91.29 % del oxígeno.
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 3.829633
## solido
## 0.9036432
ggplot() +
geom_point(data = datos, aes(x = solido, y = oxigeno), colour='blue') +
geom_line(aes( x = datos$solido, y = predict(modelo, datos)), color = "red") +
xlab("Reducción de sólido") +
ylab("% Oxígeno") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
x <- c(15,20,35,40,50)
prediccion <- predict(object = modelo, newdata = data.frame(solido = x))
prediccion
## 1 2 3 4 5
## 17.38428 21.90250 35.45715 39.97536 49.01179
y = a + b * x
y
## [1] 17.38428 21.90250 35.45715 39.97536 49.01179
Mediciones del cuerpo humano en donde se buscar identificar el coefieicente de correlación r, el coeficiente de determinació r2 y el modelo de regresión lineal para predecir alturas en relación a el peso de una persona.
datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/body.dat.txt", quote="\"", comment.char="")
datos <- as.data.frame(datos)
colnames(datos)[23:25] <- c("peso", "estatura", "genero")
# Solo nos interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)
kable(head(datos, 10), caption = "Datos de pesos y etaturas de personas")
| estatura | peso | genero |
|---|---|---|
| 174.0 | 65.6 | 1 |
| 175.3 | 71.8 | 1 |
| 193.5 | 80.7 | 1 |
| 186.5 | 72.6 | 1 |
| 187.2 | 78.8 | 1 |
| 181.5 | 74.8 | 1 |
| 184.0 | 86.4 | 1 |
| 184.5 | 78.4 | 1 |
| 175.0 | 62.0 | 1 |
| 184.0 | 81.6 | 1 |
Se determina la correlación de Pearson con la función cor(x,y) que establece el grado de relación entre dos variables; ‘x’ son los vlores de sólido y ‘y’ el porcentaje de oxígeno.
r <- cor(datos$estatura, datos$peso)
r
## [1] 0.7173011
El coefiente de correlación con valor de 0.7173011 significa el grado de relación entre las variables y su valor se interpreta siendo $ r ≥ 0.75 = $ correlación positiva considerable (Hernández Sampieri et al., 2014).
ggplot(data = datos, aes(x = estatura, y = peso)) +
geom_point(colour = 'blue')
4.4. Generar el modelo regresión lineal Y=a+bx * Determinar los coeficientes a y b por medio de la función lineal lm() * El caracter ‘~’ en la fórmula de la función lm() de regresión se interpreta como que la variable ‘y’ está en función de la variable ‘x’.
modelo <- lm(data = datos, formula = peso~estatura)
modelo
##
## Call:
## lm(formula = peso ~ estatura, data = datos)
##
## Coefficients:
## (Intercept) estatura
## -105.011 1.018
Encontrar el coeficiente de determinación r2
summary(modelo)
##
## Call:
## lm(formula = peso ~ estatura, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.743 -6.402 -1.231 5.059 41.103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
## estatura 1.01762 0.04399 23.14 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.308 on 505 degrees of freedom
## Multiple R-squared: 0.5145, Adjusted R-squared: 0.5136
## F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.514520837538849"
El coeficiente de determinación r2 con valor de 0.5145 significa que el valor de la estatura de una persona representa el 51.45 % del peso de la misma.
Determinar los valores de a y b
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## -105.0113
## estatura
## 1.017617
ggplot() +
geom_point(data = datos, aes(x = estatura, y = peso), colour='blue') +
geom_line(aes( x = datos$estatura, y = predict(modelo, datos)), color = "red") +
xlab("Estarura") +
ylab("Peso") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
x <- c(150, 160, 170, 175, 185, 190)
prediccion <- predict(object = modelo, newdata = data.frame(estatura = x))
prediccion
## 1 2 3 4 5 6
## 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593
y = a + b * x
y
## [1] 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593
En este caso trabajamos con 3 ejercicios en los cuales pudimos determinar Coeficiente de Correlación r, el cual es, El coeficiente de correlación r es un valor sin unidades entre -1 y 1, y la Regresión lineal simple, la cual, consiste en generar un modelo de regresión (ecuación de una recta) que permita explicar la relación lineal que existe entre dos variables. A la variable dependiente o respuesta se le identifica como Y y a la variable predictora o independiente como X. Estos usando diferentes formulas como la “Fórmula para correlación de Pearson” y la “Fórmula de mínimo cuadrados para regresión lineal”.