1. Cargar librerías

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
library(stringr)
## Warning: package 'stringr' was built under R version 3.6.3
library(stringi)
library(gtools)
## Warning: package 'gtools' was built under R version 3.6.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(knitr)
## Warning: package 'knitr' was built under R version 3.6.3
library(gtools)

options(scipen = 999)

2. Ejercicios

2.1 Ejercicio 1

Se venden 5000 billetes para una rifa a 1 euro cada uno. Existe un único premio de cierta cantidad, calcular los valores de las variables aleatorias y sus probabilidades para 0 para no gana y 1 para si gana cuando un comprador adquiere tres billetes. (Hero, n.d.)

Tabla de probabilidad

discretas <- c(0,1)   # 0 Que no gane, 1 que gane
n <- 5000 # sum(casos)
casos <- c(4950,50)
probabilidades <- casos / n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 4950 0.99 0.99 0.00
1 50 0.01 1.00 0.01

Valor esperado

VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 0.01

Varianza

tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4950 0.99 0.99 0.00 0.01 0.000099
1 50 0.01 1.00 0.01 0.01 0.009801

varianza = varianza de la distribución

varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 0.0099

Desviación estándard de una distribución discreta

desv.std <- sqrt(varianza)
desv.std
## [1] 0.09949874

La tabla con las sumatorias

tabla.sumatorias <- rbind(tabla, apply(tabla, 2, sum))
tabla.sumatorias[nrow(tabla), c(1,4,6)] <- '****'

kable(tabla.sumatorias, caption = "Tabla de probabilidad con sumatorias")
Tabla de probabilidad con sumatorias
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4950 0.99 0.99 0.00 0.01 0.000099
**** 50 0.01 **** 0.01 **** 0.009801
1 5000 1.00 1.99 0.01 0.02 0.009900

Gráfica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x, fill=x)) +
  geom_bar(stat="identity") 

Gráfica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

2.2. Ejercicio 2

Un vendedor llamado John Rasgdale vende la mayor cantidad de automóviles el sábado, así que desarrolló la siguiente distribución de probabilidades, en la cual se muestra la cantidad de automóviles que espera vender un sábado determinado.

La variable discreta venta de aumóviles: 0,1,2,3,4 el sábado. Los valores de la probabilida son : 0.1,0.2,0.3,0.3,0.1, previamente definidos.

Ya se dan las probabilidades de tal forma que la cantidad de casos no se dispone en este ejercicio.

  • ¿De qué tipo de distribución se trata?
  • ¿Cuántos automóviles espera vender John un sábado normal?
  • ¿Cuál es la varianza de la distribución? (Lind et al., 2015).

Tabla de probabilidad

discretas <- 0:4   

# casos <- c(4950,50)
# n <- sum(casos)

# probabilidades <- casos / n
casos <- rep('?', 5)
probabilidades <- c(0.1, 0.2, 0.3, 0.3, 0.1)

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 ? 0.1 0.1 0.0
1 ? 0.2 0.3 0.2
2 ? 0.3 0.6 0.6
3 ? 0.3 0.9 0.9
4 ? 0.1 1.0 0.4

Valor esperado

VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 2.1

Varianza

tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 ? 0.1 0.1 0.0 2.1 0.441
1 ? 0.2 0.3 0.2 2.1 0.242
2 ? 0.3 0.6 0.6 2.1 0.003
3 ? 0.3 0.9 0.9 2.1 0.243
4 ? 0.1 1.0 0.4 2.1 0.361

varianza = varianza de la distribución

varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 1.29

Desviación estándard de una distribución discreta

desv.std <- sqrt(varianza)
desv.std
## [1] 1.135782

Gráfica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x, fill=x)) +
  geom_bar(stat="identity") 

Gráfica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

Interpretación del caso

En este caso pudimos observar la Media, varianza y deviación de distribución de variables discretas, de igual manera se generaron gráficas de barras de los valores de las variables y la gráfica lineal de las tendencias.

Ejecicio 1 En este ejercicio pudimos identificar que el valor esperado es del 0.1% lo cual nos una posibilidad muy baja de que sea ganador en el sorteo

Ejercicio 2 Con respecto a este ejercicio, el valor esperedo es de 2.1% con una varianza de 1.29. Respondiendo a las preguntas esto nos dice que, cuenta con una distribución de probabilidad discreta de la variable aleatoria, que john espera vender 2 carros un sabado y bueno como se menciono anteriormente se cuenta con una varianza del 1.29 que significa lo que puede variar con respecto al valor esperado. La desviación estándard es de 1.135782.