REMINDERS:
emotion_1 = Anger (1 = not at all; 7 = extremely)
emotion_6 = Hope (1 = not at all; 7 = extremely)
Vote Influence:
govtPolEff.c: mean-centered - How much influence do you believe you have over national government decisions? (1 = not at all; 7 = a great deal)
electPolEff.c: mean-centered - How much do you think you vote matters in national elections? (1 = not at all; 7 = a great deal)
Vote Count:
ownVote.c: mean-centered - How confident are you that your vote in the general election was counted as you intended? (1 = not at all confident; 5 = very confident)
overallvote.c: mean-centered - How confidence are you that votes nationwide in the general election was counted as voters intended? (1 = not at all confident; 5 = very confident)
ElectionWin [biden, trump]:
electPredictTB: Who do you think will/would win the election? (1 = Definitely Trump; 6 = unsure, toss-up; 9 = Definitely Biden)
Anger for Democrats decreases moving from pre, during, and post-election, while Republican anger increases from pre, during, to post-election. Independents’ anger remains stagnant across time.
As confidence in national vote and own vote being counted, anger decreases
The magnitude of the negative slope for anger and confidence of national/own vote being counted is greatest for Republicans, then for Democrats, then for Independents.
Democrats feel A LOT more hope post-election compared to pre/during. Republicans decrease feeling of hope step-wise from pre, during, to post-election. Independent hope remains stagnant.
Across party identity, as confidence in own vote, national vote counted along, general election efficacy, and general government efficacy, hope increases.
Across party identity, exposure to fox news is slightly pyramidal with the highest exposure during the election.
Republicans have MUCH more exposure to Fox than both independents or Democrats across the election, while Democrats have more exposure to other media sources.
Across party, pre-election people thought Trump slightly more likely to win (M ~ 4.9), then this changes to slightly more likely Biden would win during election (M ~ 5.3) and much more post-election (M ~ 5.9).
Democrats much more likely across the election to believe Biden would win (M ~ 7.1), while Republicans believed Trump would win (M~3). Independents thought slightly more that trump would win pre/during (M~4.8), but this flips to much more for Biden post-election (M~5.8).
# continuous party
d$partyCont <- NA
d$partyCont[d$demStrength == 1] <- -3
d$partyCont[d$demStrength == 2] <- -2
d$partyCont[d$partyClose == 1] <- -1
d$partyCont[d$partyClose == 3] <- 0
d$partyCont[d$repStrength == 1] <- 3
d$partyCont[d$repStrength == 2] <- 2
d$partyCont[d$partyClose == 2] <- 1
#### policy conditions
#table(d$FL_71_DO)
#table(d$FL_110_DO)
# policy group proposer
d$Policy_Group <- NA
d$Policy_Group[d$FL_71_DO == 'proportional_dem' | d$FL_71_DO == 'US1st_dem'] <- "Democratic"
d$Policy_Group[d$FL_71_DO == 'proportional_rep' | d$FL_71_DO == 'US1st_rep'] <- "Republican"
d$Policy_Group[d$FL_71_DO == 'proportional_bipart' | d$FL_71_DO == 'US1st_bipart'] <- "Bipartisan"
d$Policy_Group[d$FL_71_DO == 'proportional_expert' | d$FL_71_DO == 'US1st_expert'] <- "Expert"
d$Policy_Group <- factor(d$Policy_Group, levels = c('Democratic', 'Republican', 'Bipartisan','Expert'))
# policy frame
d$Policy_Frame <- NA
d$Policy_Frame[d$FL_71_DO == 'proportional_dem' | d$FL_71_DO == 'proportional_rep' | d$FL_71_DO == 'proportional_bipart' | d$FL_71_DO == 'proportional_expert'] <- "Proportional"
d$Policy_Frame[d$FL_71_DO == 'US1st_dem' | d$FL_71_DO == 'US1st_rep' | d$FL_71_DO == 'US1st_bipart' | d$FL_71_DO == 'US1st_expert'] <- "US1st"
# party factor
d$party_factor <- NA
d$party_factor[d$partyCont < 0] <- 'Democrat'
d$party_factor[d$partyCont == 0] <- 'Independent'
d$party_factor[d$partyCont > 0] <- 'Republican'
## Order of timing var
d$election_timing <- factor(d$election_timing, levels = c('Pre-election', 'During-election','Post-election'))
d$party_factor <- factor(d$party_factor, levels = c('Democrat', 'Republican','Independent'))
### Partisan framing codes
# Code 1: Left vs. Right
d$fDem_Rep <- NA
d$fDem_Rep[d$Policy_Group == 'Democratic'] <- -.5
d$fDem_Rep[d$Policy_Group == 'Republican'] <- .5
d$fDem_Rep[d$Policy_Group == 'Bipartisan' | d$Policy_Group == 'Expert'] <- 0
# Code 2: Bi vs. Exp
d$fBi_Exp <- NA
d$fBi_Exp[d$Policy_Group == 'Democratic' | d$Policy_Group == 'Republican'] <- 0
d$fBi_Exp[d$Policy_Group == 'Bipartisan'] <- -.5
d$fBi_Exp[d$Policy_Group == 'Expert'] <- .5
# Code 3 = Dem and Rep vs. Exp and Bi
d$fParties_BiExp <- NA
d$fParties_BiExp[d$Policy_Group == 'Democratic' | d$Policy_Group == 'Republican'] <- -.5
d$fParties_BiExp[d$Policy_Group == 'Bipartisan' | d$Policy_Group == 'Expert'] <- .5
### Policy framing codes
# contrasts
d$fProp_US <- NA
d$fProp_US[d$Policy_Frame == 'Proportional'] <- -.5
d$fProp_US[d$Policy_Frame == 'US1st'] <- .5
#dummies
d$fProportional <- NA
d$fProportional[d$Policy_Frame == 'Proportional'] <- 0
d$fProportional[d$Policy_Frame == 'US1st'] <- 1
d$fUS <- NA
d$fUS[d$Policy_Frame == 'Proportional'] <- 1
d$fUS[d$Policy_Frame == 'US1st'] <- 0
### Timing codes
## Contrast
d$tPre_Post <- NA
d$tPre_Post[d$election_timing == 'Pre-election'] <- -.5
d$tPre_Post[d$election_timing == 'During-election'] <- 0
d$tPre_Post[d$election_timing == 'Post-election'] <- .5
d$tDuring_Not <- NA
d$tDuring_Not[d$election_timing == 'Pre-election'] <- .33
d$tDuring_Not[d$election_timing == 'During-election'] <- -.67
d$tDuring_Not[d$election_timing == 'Post-election'] <- .33
# Dummy
# Post!
d$tPostP <- NA
d$tPostP[d$election_timing == 'Pre-election'] <- 1
d$tPostP[d$election_timing == 'During-election'] <- 0
d$tPostP[d$election_timing == 'Post-election'] <- 0
d$tPostD <- NA
d$tPostD[d$election_timing == 'Pre-election'] <- 0
d$tPostD[d$election_timing == 'During-election'] <- 1
d$tPostD[d$election_timing == 'Post-election'] <- 0
# During!
d$tDurPre <- NA
d$tDurPre[d$election_timing == 'Pre-election'] <- 1
d$tDurPre[d$election_timing == 'During-election'] <- 0
d$tDurPre[d$election_timing == 'Post-election'] <- 0
d$tDurPost <- NA
d$tDurPost[d$election_timing == 'Pre-election'] <- 0
d$tDurPost[d$election_timing == 'During-election'] <- 0
d$tDurPost[d$election_timing == 'Post-election'] <- 1
### Party Factor
d$pDem_Rep <- NA
d$pDem_Rep[d$party_factor == 'Democrat'] <- -.5
d$pDem_Rep[d$party_factor == 'Independent'] <- 0
d$pDem_Rep[d$party_factor == 'Republican'] <- .5
d$pInd_Not <- NA
d$pInd_Not[d$party_factor == 'Democrat'] <- .33
d$pInd_Not[d$party_factor == 'Independent'] <- -.67
d$pInd_Not[d$party_factor == 'Republican'] <- .33
### centering
d$vaxxAtt.c <- d$vaxxAttitudes - mean(d$vaxxAttitudes, na.rm = T)
d$ownvote.c <- d$ownvote_conf - mean(d$ownvote_conf, na.rm = T)
d$overallvote.c <- d$overallvote_conf - mean(d$overallvote_conf, na.rm = T)
d$govtPolEff.c <- d$polEfficacy_1 - mean(d$polEfficacy_1, na.rm = T)
d$electPolEff.c <- d$polEfficacy_2 - mean(d$polEfficacy_2, na.rm = T)
d$mediaExposure <- (d$mediaExposure_1 +
d$mediaExposure_2 +
d$mediaExposure_3 +
d$mediaExposure_4 +
d$mediaExposure_6 +
d$mediaExposure_7 +
d$mediaExposure_8 +
d$mediaExposure_9 +
d$mediaExposure_10 +
d$mediaExposure_11 +
d$mediaExposure_12 +
d$mediaExposure_13 +
d$mediaExposure_14 +
d$mediaExposure_15)/14
d$mediaTrust <- (d$mediaTrust_1 +
d$mediaTrust_2 +
d$mediaTrust_3 +
d$mediaTrust_4 +
d$mediaTrust_6 +
d$mediaTrust_7 +
d$mediaTrust_8 +
d$mediaTrust_9 +
d$mediaTrust_10 +
d$mediaTrust_11 +
d$mediaTrust_12 +
d$mediaTrust_13 +
d$mediaTrust_14 +
d$mediaTrust_15)/14
#### Indices
Proportional <- d$Policy_Frame == 'Proportional'
US1st <- d$Policy_Frame == 'US1st'
Pre <- d$election_timing == 'Pre-election'
During <- d$election_timing == 'During-election'
Post <- d$election_timing == 'Post-election'
#contrast codes for party ID
d$pDemR[d$party_factor == 'Democrat'] <- 0
d$pDemR[d$party_factor == 'Republican'] <- 1
d$pDemR[d$party_factor == 'Independent'] <- 0
d$pDemI[d$party_factor == 'Democrat'] <- 0
d$pDemI[d$party_factor == 'Republican'] <- 0
d$pDemI[d$party_factor == 'Independent'] <- 1
d$pRepD[d$party_factor == 'Democrat'] <- 1
d$pRepD[d$party_factor == 'Republican'] <- 0
d$pRepD[d$party_factor == 'Independent'] <- 0
d$pRepI[d$party_factor == 'Democrat'] <- 0
d$pRepI[d$party_factor == 'Republican'] <- 0
d$pRepI[d$party_factor == 'Independent'] <- 1
# mean center fox exposure
d$foxExposure.c <- d$mediaExposure_5 - mean(d$mediaExposure_5, na.rm = T)
# mean center other media exposure
d$otherMediaExposure.c <- d$mediaExposure - mean(d$mediaExposure, na.rm = T)
#create difference score
d$diffFoxOther <- d$mediaExposure_5 - d$mediaExposure
## Warning: Removed 61 rows containing non-finite values (stat_summary).
## Warning: Removed 61 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 20 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 19 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 20 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 16 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 16 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 16 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 16 rows containing non-finite values (stat_smooth).
## Warning: Removed 61 rows containing non-finite values (stat_summary).
## Warning: Removed 61 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 20 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 20 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 21 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 17 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 17 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 17 rows containing non-finite values (stat_smooth).
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 17 rows containing non-finite values (stat_smooth).
## Warning: Use of `d$mediaExposure_5` is discouraged. Use `mediaExposure_5`
## instead.
## Warning: Use of `d$mediaExposure_5` is discouraged. Use `mediaExposure_5`
## instead.
## Warning: Removed 60 rows containing non-finite values (stat_summary).
## Warning: Removed 60 rows containing non-finite values (stat_summary).
## Warning: Removed 22 rows containing non-finite values (stat_summary).
## Warning: Removed 22 rows containing non-finite values (stat_summary).
## Warning: Use of `d$mediaExposure` is discouraged. Use `mediaExposure` instead.
## Warning: Use of `d$mediaExposure` is discouraged. Use `mediaExposure` instead.
## Warning: Removed 66 rows containing non-finite values (stat_summary).
## Warning: Removed 66 rows containing non-finite values (stat_summary).
## Warning: Removed 28 rows containing non-finite values (stat_summary).
## Warning: Removed 28 rows containing non-finite values (stat_summary).
## Warning: Use of `d$electPredictTB` is discouraged. Use `electPredictTB` instead.
## Warning: Use of `d$electPredictTB` is discouraged. Use `electPredictTB` instead.
## Warning: Removed 800 rows containing non-finite values (stat_summary).
## Warning: Removed 800 rows containing non-finite values (stat_summary).
## Warning: Removed 759 rows containing non-finite values (stat_summary).
## Warning: Removed 759 rows containing non-finite values (stat_summary).
## Warning: Removed 800 rows containing non-finite values (stat_summary).
## Warning: Removed 800 rows containing non-finite values (stat_summary).
## Warning: Removed 61 rows containing non-finite values (stat_summary).
## Warning: Removed 61 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 70 rows containing non-finite values (stat_summary).
## Warning: Removed 70 rows containing non-finite values (stat_summary).
## Warning: Removed 31 rows containing non-finite values (stat_summary).
## Warning: Removed 31 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_ydensity).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 23 rows containing non-finite values (stat_summary).
## Warning: Removed 22 rows containing non-finite values (stat_ydensity).
## Warning: Removed 22 rows containing non-finite values (stat_summary).
## Warning: Removed 22 rows containing non-finite values (stat_summary).
## Warning: Removed 28 rows containing non-finite values (stat_ydensity).
## Warning: Removed 28 rows containing non-finite values (stat_summary).
## Warning: Removed 28 rows containing non-finite values (stat_summary).
## Warning: Removed 31 rows containing non-finite values (stat_ydensity).
## Warning: Removed 31 rows containing non-finite values (stat_summary).
## Warning: Removed 31 rows containing non-finite values (stat_summary).
anger2 <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost), data = d)
summary(anger2)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7807 -1.7308 -0.1571 1.3705 4.4138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.20523 0.09326 34.369 < 2e-16 ***
## pDem_Rep -0.23873 0.18112 -1.318 0.1876
## pInd_Not 0.92391 0.23294 3.966 7.52e-05 ***
## tDurPre 0.10083 0.11255 0.896 0.3704
## tDurPost -0.14125 0.12782 -1.105 0.2693
## pDem_Rep:tDurPre -0.38486 0.22163 -1.737 0.0826 .
## pDem_Rep:tDurPost 1.25156 0.25200 4.966 7.30e-07 ***
## pInd_Not:tDurPre -0.43053 0.27926 -1.542 0.1233
## pInd_Not:tDurPost -0.42658 0.31697 -1.346 0.1785
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 2400 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.04068, Adjusted R-squared: 0.03749
## F-statistic: 12.72 on 8 and 2400 DF, p-value: < 2.2e-16
anger2.D <- lm(emotion_1 ~ (pDemR + pDemI) * (tDurPre + tDurPost), data = d)
summary(anger2.D)
##
## Call:
## lm(formula = emotion_1 ~ (pDemR + pDemI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7807 -1.7308 -0.1571 1.3705 4.4138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.6295 0.1264 28.724 < 2e-16 ***
## pDemR -0.2387 0.1811 -1.318 0.18761
## pDemI -1.0433 0.2491 -4.189 2.90e-05 ***
## tDurPre 0.1512 0.1530 0.988 0.32323
## tDurPost -0.9078 0.1701 -5.337 1.03e-07 ***
## pDemR:tDurPre -0.3849 0.2216 -1.737 0.08260 .
## pDemR:tDurPost 1.2516 0.2520 4.966 7.30e-07 ***
## pDemI:tDurPre 0.2381 0.2985 0.798 0.42520
## pDemI:tDurPost 1.0524 0.3369 3.123 0.00181 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 2400 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.04068, Adjusted R-squared: 0.03749
## F-statistic: 12.72 on 8 and 2400 DF, p-value: < 2.2e-16
anger2.R <- lm(emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost), data = d)
summary(anger2.R)
##
## Call:
## lm(formula = emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7807 -1.7308 -0.1571 1.3705 4.4138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3908 0.1298 26.131 < 2e-16 ***
## pRepD 0.2387 0.1811 1.318 0.18761
## pRepI -0.8045 0.2508 -3.208 0.00135 **
## tDurPre -0.2337 0.1603 -1.458 0.14510
## tDurPost 0.3438 0.1859 1.849 0.06460 .
## pRepD:tDurPre 0.3849 0.2216 1.737 0.08260 .
## pRepD:tDurPost -1.2516 0.2520 -4.966 7.3e-07 ***
## pRepI:tDurPre 0.6230 0.3023 2.060 0.03946 *
## pRepI:tDurPost -0.1992 0.3452 -0.577 0.56397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 2400 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.04068, Adjusted R-squared: 0.03749
## F-statistic: 12.72 on 8 and 2400 DF, p-value: < 2.2e-16
#Vote Confidence do not have entries for "pre election"
anger1 <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * ownvote.c * overallvote.c, data = d)
summary(anger1)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## ownvote.c * overallvote.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2382 -1.6069 -0.5532 1.3931 4.8022
##
## Coefficients: (12 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.20621 0.12367 25.926 < 2e-16
## pDem_Rep -0.99732 0.24443 -4.080 4.8e-05
## pInd_Not 0.90467 0.30627 2.954 0.00320
## tDurPre NA NA NA NA
## tDurPost -0.34543 0.18121 -1.906 0.05686
## ownvote.c 0.16948 0.14028 1.208 0.22724
## overallvote.c -0.24523 0.13658 -1.796 0.07282
## pDem_Rep:tDurPre NA NA NA NA
## pDem_Rep:tDurPost 0.72169 0.39222 1.840 0.06602
## pInd_Not:tDurPre NA NA NA NA
## pInd_Not:tDurPost -1.11200 0.42598 -2.610 0.00916
## pDem_Rep:ownvote.c -0.24590 0.25617 -0.960 0.33729
## pInd_Not:ownvote.c 0.22896 0.35983 0.636 0.52470
## tDurPre:ownvote.c NA NA NA NA
## tDurPost:ownvote.c 0.12426 0.18708 0.664 0.50671
## pDem_Rep:overallvote.c 0.21640 0.22747 0.951 0.34164
## pInd_Not:overallvote.c -0.74213 0.36180 -2.051 0.04047
## tDurPre:overallvote.c NA NA NA NA
## tDurPost:overallvote.c -0.32549 0.17716 -1.837 0.06641
## ownvote.c:overallvote.c -0.01202 0.06315 -0.190 0.84913
## pDem_Rep:tDurPre:ownvote.c NA NA NA NA
## pDem_Rep:tDurPost:ownvote.c 0.65961 0.40608 1.624 0.10457
## pInd_Not:tDurPre:ownvote.c NA NA NA NA
## pInd_Not:tDurPost:ownvote.c -0.11145 0.43895 -0.254 0.79962
## pDem_Rep:tDurPre:overallvote.c NA NA NA NA
## pDem_Rep:tDurPost:overallvote.c -0.51919 0.35335 -1.469 0.14201
## pInd_Not:tDurPre:overallvote.c NA NA NA NA
## pInd_Not:tDurPost:overallvote.c 0.57148 0.43674 1.309 0.19096
## pDem_Rep:ownvote.c:overallvote.c 0.35371 0.13598 2.601 0.00941
## pInd_Not:ownvote.c:overallvote.c -0.09243 0.14896 -0.621 0.53504
## tDurPre:ownvote.c:overallvote.c NA NA NA NA
## tDurPost:ownvote.c:overallvote.c 0.13588 0.08481 1.602 0.10940
## pDem_Rep:tDurPre:ownvote.c:overallvote.c NA NA NA NA
## pDem_Rep:tDurPost:ownvote.c:overallvote.c -0.13365 0.19712 -0.678 0.49790
## pInd_Not:tDurPre:ownvote.c:overallvote.c NA NA NA NA
## pInd_Not:tDurPost:ownvote.c:overallvote.c 0.48354 0.18900 2.558 0.01064
##
## (Intercept) ***
## pDem_Rep ***
## pInd_Not **
## tDurPre
## tDurPost .
## ownvote.c
## overallvote.c .
## pDem_Rep:tDurPre
## pDem_Rep:tDurPost .
## pInd_Not:tDurPre
## pInd_Not:tDurPost **
## pDem_Rep:ownvote.c
## pInd_Not:ownvote.c
## tDurPre:ownvote.c
## tDurPost:ownvote.c
## pDem_Rep:overallvote.c
## pInd_Not:overallvote.c *
## tDurPre:overallvote.c
## tDurPost:overallvote.c .
## ownvote.c:overallvote.c
## pDem_Rep:tDurPre:ownvote.c
## pDem_Rep:tDurPost:ownvote.c
## pInd_Not:tDurPre:ownvote.c
## pInd_Not:tDurPost:ownvote.c
## pDem_Rep:tDurPre:overallvote.c
## pDem_Rep:tDurPost:overallvote.c
## pInd_Not:tDurPre:overallvote.c
## pInd_Not:tDurPost:overallvote.c
## pDem_Rep:ownvote.c:overallvote.c **
## pInd_Not:ownvote.c:overallvote.c
## tDurPre:ownvote.c:overallvote.c
## tDurPost:ownvote.c:overallvote.c
## pDem_Rep:tDurPre:ownvote.c:overallvote.c
## pDem_Rep:tDurPost:ownvote.c:overallvote.c
## pInd_Not:tDurPre:ownvote.c:overallvote.c
## pInd_Not:tDurPost:ownvote.c:overallvote.c *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.956 on 1184 degrees of freedom
## (1268 observations deleted due to missingness)
## Multiple R-squared: 0.1293, Adjusted R-squared: 0.1124
## F-statistic: 7.644 on 23 and 1184 DF, p-value: < 2.2e-16
anger.mx <- lmer(emotion_1 ~ (pDem_Rep + pInd_Not) * ownvote.c * overallvote.c + (1 | election_timing), data = d)
summary(anger.mx)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: emotion_1 ~ (pDem_Rep + pInd_Not) * ownvote.c * overallvote.c +
## (1 | election_timing)
## Data: d
##
## REML criterion at convergence: 5090.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0156 -0.8457 -0.2837 0.7090 2.4112
##
## Random effects:
## Groups Name Variance Std.Dev.
## election_timing (Intercept) 0.01094 0.1046
## Residual 3.88206 1.9703
## Number of obs: 1208, groups: election_timing, 2
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 3.09428 0.11534 2.22079 26.827
## pDem_Rep -0.75939 0.18747 1195.06964 -4.051
## pInd_Not 0.36621 0.21050 1195.09434 1.740
## ownvote.c 0.30343 0.08602 1195.00816 3.527
## overallvote.c -0.52577 0.08077 1195.70924 -6.509
## pDem_Rep:ownvote.c -0.07649 0.19536 1181.75644 -0.392
## pInd_Not:ownvote.c 0.17247 0.19585 1195.22172 0.881
## pDem_Rep:overallvote.c 0.11850 0.16894 1014.08619 0.701
## pInd_Not:overallvote.c -0.40479 0.19492 1195.58138 -2.077
## ownvote.c:overallvote.c 0.03386 0.04091 1183.99628 0.828
## pDem_Rep:ownvote.c:overallvote.c 0.33070 0.09638 1195.29342 3.431
## pInd_Not:ownvote.c:overallvote.c 0.16308 0.08962 1195.58836 1.820
## Pr(>|t|)
## (Intercept) 0.000780 ***
## pDem_Rep 5.44e-05 ***
## pInd_Not 0.082165 .
## ownvote.c 0.000436 ***
## overallvote.c 1.11e-10 ***
## pDem_Rep:ownvote.c 0.695459
## pInd_Not:ownvote.c 0.378714
## pDem_Rep:overallvote.c 0.483215
## pInd_Not:overallvote.c 0.038041 *
## ownvote.c:overallvote.c 0.408048
## pDem_Rep:ownvote.c:overallvote.c 0.000621 ***
## pInd_Not:ownvote.c:overallvote.c 0.069042 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pDm_Rp pInd_N ownvt. ovrll. pDm_Rp:w. pInd_Nt:w. pDm_Rp:v.
## pDem_Rep 0.036
## pInd_Not -0.236 0.029
## ownvote.c -0.057 -0.212 -0.176
## overallvt.c -0.041 0.256 0.192 -0.710
## pDm_Rp:wnv. -0.156 -0.263 -0.128 -0.020 0.139
## pInd_Nt:wn. -0.140 -0.139 0.057 -0.188 0.179 -0.014
## pDm_Rp:vrl. 0.206 0.136 0.170 0.147 -0.224 -0.735 0.098
## pInd_Nt:vr. 0.146 0.158 -0.164 0.169 -0.351 0.085 -0.699 -0.138
## ownvt.c:vr. -0.430 -0.011 0.076 0.360 -0.061 0.266 0.015 -0.030
## pDm_Rp:w.:. -0.007 -0.589 -0.006 0.250 -0.017 0.414 0.164 -0.284
## pInd_Nt:.:. 0.065 -0.007 -0.539 0.016 -0.237 0.179 0.316 -0.016
## pInd_Nt:v. own.:. pD_R:.:
## pDem_Rep
## pInd_Not
## ownvote.c
## overallvt.c
## pDm_Rp:wnv.
## pInd_Nt:wn.
## pDm_Rp:vrl.
## pInd_Nt:vr.
## ownvt.c:vr. -0.214
## pDm_Rp:w.:. -0.011 -0.060
## pInd_Nt:.:. 0.097 -0.088 -0.040
cor.test(d$emotion_1, d$ownvote_conf)
##
## Pearson's product-moment correlation
##
## data: d$emotion_1 and d$ownvote_conf
## t = -4.3894, df = 1208, p-value = 1.236e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.18037732 -0.06943082
## sample estimates:
## cor
## -0.1252958
cor.test(d$emotion_1, d$overallvote_conf)
##
## Pearson's product-moment correlation
##
## data: d$emotion_1 and d$overallvote_conf
## t = -8.0568, df = 1207, p-value = 1.867e-15
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2787367 -0.1717168
## sample estimates:
## cor
## -0.2259083
#Vote Confidence do not have entries for "pre election"
anger1 <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * govtPolEff.c * electPolEff.c, data = d)
summary(anger1)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## govtPolEff.c * electPolEff.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4547 -1.7800 -0.2683 1.5629 5.0092
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 3.2178083 0.1122075 28.677
## pDem_Rep -0.3136483 0.2167360 -1.447
## pInd_Not 0.5434420 0.2809810 1.934
## tDurPre 0.0051296 0.1368476 0.037
## tDurPost -0.2092929 0.1604777 -1.304
## govtPolEff.c -0.0815020 0.0791269 -1.030
## electPolEff.c 0.0087221 0.0685136 0.127
## pDem_Rep:tDurPre -0.1947035 0.2639945 -0.738
## pDem_Rep:tDurPost 1.0949350 0.2960158 3.699
## pInd_Not:tDurPre 0.0386467 0.3428845 0.113
## pInd_Not:tDurPost 0.0268777 0.4099869 0.066
## pDem_Rep:govtPolEff.c -0.0561258 0.1479764 -0.379
## pInd_Not:govtPolEff.c -0.0829687 0.2010033 -0.413
## tDurPre:govtPolEff.c 0.0043502 0.0960842 0.045
## tDurPost:govtPolEff.c 0.1180011 0.1122329 1.051
## pDem_Rep:electPolEff.c 0.1494365 0.1214831 1.230
## pInd_Not:electPolEff.c -0.1794157 0.1777233 -1.010
## tDurPre:electPolEff.c 0.0270811 0.0807504 0.335
## tDurPost:electPolEff.c -0.0895978 0.0938186 -0.955
## govtPolEff.c:electPolEff.c 0.0142000 0.0399754 0.355
## pDem_Rep:tDurPre:govtPolEff.c 0.2878974 0.1811197 1.590
## pDem_Rep:tDurPost:govtPolEff.c 0.1283934 0.2021957 0.635
## pInd_Not:tDurPre:govtPolEff.c 0.1338926 0.2432524 0.550
## pInd_Not:tDurPost:govtPolEff.c 0.0203494 0.2894084 0.070
## pDem_Rep:tDurPre:electPolEff.c -0.3634666 0.1468466 -2.475
## pDem_Rep:tDurPost:electPolEff.c -0.2077838 0.1611892 -1.289
## pInd_Not:tDurPre:electPolEff.c 0.0773658 0.2074749 0.373
## pInd_Not:tDurPost:electPolEff.c 0.2390855 0.2460609 0.972
## pDem_Rep:govtPolEff.c:electPolEff.c 0.0003659 0.0599301 0.006
## pInd_Not:govtPolEff.c:electPolEff.c 0.1550936 0.1089538 1.423
## tDurPre:govtPolEff.c:electPolEff.c 0.0336137 0.0460028 0.731
## tDurPost:govtPolEff.c:electPolEff.c -0.0040786 0.0522056 -0.078
## pDem_Rep:tDurPre:govtPolEff.c:electPolEff.c -0.0582259 0.0758973 -0.767
## pDem_Rep:tDurPost:govtPolEff.c:electPolEff.c 0.0938298 0.0827527 1.134
## pInd_Not:tDurPre:govtPolEff.c:electPolEff.c -0.1911858 0.1222165 -1.564
## pInd_Not:tDurPost:govtPolEff.c:electPolEff.c -0.1325477 0.1402919 -0.945
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## pDem_Rep 0.147989
## pInd_Not 0.053221 .
## tDurPre 0.970102
## tDurPost 0.192296
## govtPolEff.c 0.303107
## electPolEff.c 0.898710
## pDem_Rep:tDurPre 0.460874
## pDem_Rep:tDurPost 0.000221 ***
## pInd_Not:tDurPre 0.910270
## pInd_Not:tDurPost 0.947736
## pDem_Rep:govtPolEff.c 0.704507
## pInd_Not:govtPolEff.c 0.679810
## tDurPre:govtPolEff.c 0.963892
## tDurPost:govtPolEff.c 0.293185
## pDem_Rep:electPolEff.c 0.218781
## pInd_Not:electPolEff.c 0.312827
## tDurPre:electPolEff.c 0.737377
## tDurPost:electPolEff.c 0.339669
## govtPolEff.c:electPolEff.c 0.722458
## pDem_Rep:tDurPre:govtPolEff.c 0.112072
## pDem_Rep:tDurPost:govtPolEff.c 0.525493
## pInd_Not:tDurPre:govtPolEff.c 0.582079
## pInd_Not:tDurPost:govtPolEff.c 0.943950
## pDem_Rep:tDurPre:electPolEff.c 0.013388 *
## pDem_Rep:tDurPost:electPolEff.c 0.197500
## pInd_Not:tDurPre:electPolEff.c 0.709262
## pInd_Not:tDurPost:electPolEff.c 0.331323
## pDem_Rep:govtPolEff.c:electPolEff.c 0.995129
## pInd_Not:govtPolEff.c:electPolEff.c 0.154729
## tDurPre:govtPolEff.c:electPolEff.c 0.465041
## tDurPost:govtPolEff.c:electPolEff.c 0.937734
## pDem_Rep:tDurPre:govtPolEff.c:electPolEff.c 0.443059
## pDem_Rep:tDurPost:govtPolEff.c:electPolEff.c 0.256969
## pInd_Not:tDurPre:govtPolEff.c:electPolEff.c 0.117876
## pInd_Not:tDurPost:govtPolEff.c:electPolEff.c 0.344858
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.998 on 2368 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.05624, Adjusted R-squared: 0.04229
## F-statistic: 4.032 on 35 and 2368 DF, p-value: 3.579e-14
anger.mx <- lmer(emotion_1 ~ (pDem_Rep + pInd_Not) * govtPolEff.c * electPolEff.c + (1 | election_timing), data = d)
summary(anger.mx)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: emotion_1 ~ (pDem_Rep + pInd_Not) * govtPolEff.c * electPolEff.c +
## (1 | election_timing)
## Data: d
##
## REML criterion at convergence: 10248.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4489 -0.9021 -0.1736 0.7695 2.2133
##
## Random effects:
## Groups Name Variance Std.Dev.
## election_timing (Intercept) 0.02815 0.1678
## Residual 4.08308 2.0207
## Number of obs: 2404, groups: election_timing, 3
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 3.140e+00 1.128e-01 2.552e+00 27.842
## pDem_Rep -1.511e-01 1.057e-01 2.390e+03 -1.430
## pInd_Not 5.570e-01 1.426e-01 2.390e+03 3.907
## govtPolEff.c -5.065e-02 3.892e-02 2.390e+03 -1.301
## electPolEff.c -9.389e-03 3.132e-02 2.392e+03 -0.300
## pDem_Rep:govtPolEff.c 1.277e-01 7.208e-02 2.390e+03 1.772
## pInd_Not:govtPolEff.c -1.519e-02 9.927e-02 2.390e+03 -0.153
## pDem_Rep:electPolEff.c -9.530e-02 5.739e-02 2.392e+03 -1.660
## pInd_Not:electPolEff.c -1.117e-01 8.015e-02 2.390e+03 -1.394
## govtPolEff.c:electPolEff.c 3.470e-02 1.657e-02 2.390e+03 2.095
## pDem_Rep:govtPolEff.c:electPolEff.c 1.904e-03 3.082e-02 2.391e+03 0.062
## pInd_Not:govtPolEff.c:electPolEff.c 9.229e-03 4.222e-02 2.391e+03 0.219
## Pr(>|t|)
## (Intercept) 0.000308 ***
## pDem_Rep 0.152911
## pInd_Not 9.62e-05 ***
## govtPolEff.c 0.193278
## electPolEff.c 0.764397
## pDem_Rep:govtPolEff.c 0.076598 .
## pInd_Not:govtPolEff.c 0.878369
## pDem_Rep:electPolEff.c 0.096966 .
## pInd_Not:electPolEff.c 0.163409
## govtPolEff.c:electPolEff.c 0.036295 *
## pDem_Rep:govtPolEff.c:electPolEff.c 0.950735
## pInd_Not:govtPolEff.c:electPolEff.c 0.827001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pDm_Rp pInd_N gvtPE. elcPE. pDm_Rp:gPE. pInd_Nt:gPE.
## pDem_Rep 0.038
## pInd_Not -0.244 0.043
## govtPlEff.c 0.116 0.028 -0.114
## elctPlEff.c -0.053 0.009 -0.014 -0.604
## pDm_Rp:gPE. 0.013 0.238 0.017 0.047 -0.066
## pInd_Nt:gPE. -0.058 0.016 0.233 -0.505 0.327 0.027
## pDm_Rp:lPE. 0.007 -0.224 0.004 -0.066 0.074 -0.578 -0.040
## pInd_Nt:lPE. -0.007 0.005 -0.074 0.326 -0.517 -0.038 -0.615
## gvtPlE.:PE. -0.243 -0.054 0.239 -0.346 0.460 0.004 0.064
## pD_R:PE.:PE -0.030 -0.493 -0.032 0.005 0.064 -0.506 0.002
## pI_N:PE.:PE 0.115 -0.032 -0.486 0.064 -0.321 0.003 -0.279
## pDm_Rp:lPE. pInd_Nt:lPE. gPE.:P pD_R:PE.:
## pDem_Rep
## pInd_Not
## govtPlEff.c
## elctPlEff.c
## pDm_Rp:gPE.
## pInd_Nt:gPE.
## pDm_Rp:lPE.
## pInd_Nt:lPE. 0.042
## gvtPlE.:PE. 0.066 -0.318
## pD_R:PE.:PE 0.336 0.038 0.044
## pI_N:PE.:PE 0.039 0.511 -0.501 0.027
cor.test(d$emotion_1, d$govtPolEff.c)
##
## Pearson's product-moment correlation
##
## data: d$emotion_1 and d$govtPolEff.c
## t = -0.83766, df = 2409, p-value = 0.4023
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.05694534 0.02287116
## sample estimates:
## cor
## -0.01706428
cor.test(d$emotion_1, d$electPolEff.c)
##
## Pearson's product-moment correlation
##
## data: d$emotion_1 and d$electPolEff.c
## t = -1.0233, df = 2408, p-value = 0.3062
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.06072717 0.01909445
## sample estimates:
## cor
## -0.02084959
anger_fox <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * foxExposure.c, data = d)
summary(anger_fox)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.525 -1.743 -0.207 1.541 4.541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.16495 0.09832 32.191 < 2e-16 ***
## pDem_Rep -0.27756 0.19549 -1.420 0.15579
## pInd_Not 0.79270 0.24276 3.265 0.00111 **
## tDurPre 0.12326 0.11864 1.039 0.29894
## tDurPost -0.14018 0.13450 -1.042 0.29740
## foxExposure.c 0.03137 0.07709 0.407 0.68408
## pDem_Rep:tDurPre -0.30000 0.23746 -1.263 0.20657
## pDem_Rep:tDurPost 1.09242 0.26821 4.073 4.79e-05 ***
## pInd_Not:tDurPre -0.35221 0.29197 -1.206 0.22780
## pInd_Not:tDurPost -0.36765 0.33161 -1.109 0.26768
## pDem_Rep:foxExposure.c 0.31481 0.13485 2.334 0.01965 *
## pInd_Not:foxExposure.c -0.17654 0.20096 -0.879 0.37976
## tDurPre:foxExposure.c -0.05899 0.09270 -0.636 0.52459
## tDurPost:foxExposure.c 0.13320 0.10660 1.250 0.21156
## pDem_Rep:tDurPre:foxExposure.c -0.14332 0.16425 -0.873 0.38298
## pDem_Rep:tDurPost:foxExposure.c -0.07303 0.18894 -0.387 0.69915
## pInd_Not:tDurPre:foxExposure.c 0.06702 0.24054 0.279 0.78057
## pInd_Not:tDurPost:foxExposure.c 0.33120 0.27655 1.198 0.23119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.995 on 2390 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05115, Adjusted R-squared: 0.0444
## F-statistic: 7.578 on 17 and 2390 DF, p-value: < 2.2e-16
angerFox2.D <- lm(emotion_1 ~ (pDemR + pDemI) * (tDurPre + tDurPost) * foxExposure.c, data = d)
summary(angerFox2.D)
##
## Call:
## lm(formula = emotion_1 ~ (pDemR + pDemI) * (tDurPre + tDurPost) *
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.525 -1.743 -0.207 1.541 4.541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.56532 0.13127 27.160 < 2e-16 ***
## pDemR -0.27756 0.19549 -1.420 0.155793
## pDemI -0.93148 0.25809 -3.609 0.000314 ***
## tDurPre 0.15703 0.15928 0.986 0.324300
## tDurPost -0.80772 0.17740 -4.553 5.55e-06 ***
## foxExposure.c -0.18429 0.10650 -1.730 0.083673 .
## pDemR:tDurPre -0.30000 0.23746 -1.263 0.206573
## pDemR:tDurPost 1.09242 0.26821 4.073 4.79e-05 ***
## pDemI:tDurPre 0.20221 0.31068 0.651 0.515183
## pDemI:tDurPost 0.91386 0.35136 2.601 0.009354 **
## pDemR:foxExposure.c 0.31481 0.13485 2.334 0.019653 *
## pDemI:foxExposure.c 0.33395 0.21721 1.537 0.124314
## tDurPre:foxExposure.c 0.03478 0.12734 0.273 0.784767
## tDurPost:foxExposure.c 0.27901 0.14418 1.935 0.053088 .
## pDemR:tDurPre:foxExposure.c -0.14332 0.16425 -0.873 0.382976
## pDemR:tDurPost:foxExposure.c -0.07303 0.18894 -0.387 0.699152
## pDemI:tDurPre:foxExposure.c -0.13868 0.25948 -0.534 0.593087
## pDemI:tDurPost:foxExposure.c -0.36771 0.29722 -1.237 0.216152
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.995 on 2390 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05115, Adjusted R-squared: 0.0444
## F-statistic: 7.578 on 17 and 2390 DF, p-value: < 2.2e-16
angerFox2.R <- lm(emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost) * foxExposure.c, data = d)
summary(angerFox2.R)
##
## Call:
## lm(formula = emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost) *
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.525 -1.743 -0.207 1.541 4.541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.287762 0.144860 22.696 < 2e-16 ***
## pRepD 0.277558 0.195489 1.420 0.1558
## pRepI -0.653919 0.265261 -2.465 0.0138 *
## tDurPre -0.142969 0.176110 -0.812 0.4170
## tDurPost 0.284701 0.201162 1.415 0.1571
## foxExposure.c 0.130520 0.082726 1.578 0.1148
## pRepD:tDurPre 0.300000 0.237457 1.263 0.2066
## pRepD:tDurPost -1.092416 0.268211 -4.073 4.79e-05 ***
## pRepI:tDurPre 0.502215 0.319630 1.571 0.1163
## pRepI:tDurPost -0.178557 0.363932 -0.491 0.6237
## pRepD:foxExposure.c -0.314810 0.134852 -2.334 0.0197 *
## pRepI:foxExposure.c 0.019139 0.206595 0.093 0.9262
## tDurPre:foxExposure.c -0.108540 0.103744 -1.046 0.2956
## tDurPost:foxExposure.c 0.205985 0.122108 1.687 0.0918 .
## pRepD:tDurPre:foxExposure.c 0.143322 0.164249 0.873 0.3830
## pRepD:tDurPost:foxExposure.c 0.073028 0.188940 0.387 0.6992
## pRepI:tDurPre:foxExposure.c 0.004644 0.248755 0.019 0.9851
## pRepI:tDurPost:foxExposure.c -0.294682 0.287165 -1.026 0.3049
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.995 on 2390 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.05115, Adjusted R-squared: 0.0444
## F-statistic: 7.578 on 17 and 2390 DF, p-value: < 2.2e-16
cor.test(d$emotion_6, d$mediaExposure_5)
##
## Pearson's product-moment correlation
##
## data: d$emotion_6 and d$mediaExposure_5
## t = 5.0335, df = 2412, p-value = 5.171e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.06231474 0.14127670
## sample estimates:
## cor
## 0.1019563
anger_media <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * otherMediaExposure.c, data = d)
summary(anger_media)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## otherMediaExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6122 -1.7110 -0.2634 1.5409 4.8116
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.175393 0.094943 33.445 < 2e-16
## pDem_Rep -0.134138 0.189717 -0.707 0.47961
## pInd_Not 0.846612 0.233841 3.620 0.00030
## tDurPre 0.172369 0.116320 1.482 0.13851
## tDurPost -0.176304 0.132505 -1.331 0.18346
## otherMediaExposure.c 0.275500 0.101948 2.702 0.00693
## pDem_Rep:tDurPre -0.326216 0.235832 -1.383 0.16672
## pDem_Rep:tDurPost 1.110882 0.267780 4.148 3.46e-05
## pInd_Not:tDurPre -0.434812 0.284313 -1.529 0.12631
## pInd_Not:tDurPost -0.466651 0.324432 -1.438 0.15046
## pDem_Rep:otherMediaExposure.c -0.418264 0.212837 -1.965 0.04951
## pInd_Not:otherMediaExposure.c -0.355670 0.245117 -1.451 0.14691
## tDurPre:otherMediaExposure.c 0.005253 0.130601 0.040 0.96792
## tDurPost:otherMediaExposure.c -0.262931 0.144843 -1.815 0.06961
## pDem_Rep:tDurPre:otherMediaExposure.c 0.541095 0.266390 2.031 0.04234
## pDem_Rep:tDurPost:otherMediaExposure.c -0.187451 0.299093 -0.627 0.53090
## pInd_Not:tDurPre:otherMediaExposure.c 0.191187 0.318177 0.601 0.54797
## pInd_Not:tDurPost:otherMediaExposure.c 0.216404 0.350466 0.617 0.53698
##
## (Intercept) ***
## pDem_Rep
## pInd_Not ***
## tDurPre
## tDurPost
## otherMediaExposure.c **
## pDem_Rep:tDurPre
## pDem_Rep:tDurPost ***
## pInd_Not:tDurPre
## pInd_Not:tDurPost
## pDem_Rep:otherMediaExposure.c *
## pInd_Not:otherMediaExposure.c
## tDurPre:otherMediaExposure.c
## tDurPost:otherMediaExposure.c .
## pDem_Rep:tDurPre:otherMediaExposure.c *
## pDem_Rep:tDurPost:otherMediaExposure.c
## pInd_Not:tDurPre:otherMediaExposure.c
## pInd_Not:tDurPost:otherMediaExposure.c
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.992 on 2384 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.05364, Adjusted R-squared: 0.04689
## F-statistic: 7.949 on 17 and 2384 DF, p-value: < 2.2e-16
anger2.D <- lm(emotion_1 ~ (pDemR + pDemI) * (tDurPre + tDurPost) * otherMediaExposure.c, data = d)
summary(anger2.D)
##
## Call:
## lm(formula = emotion_1 ~ (pDemR + pDemI) * (tDurPre + tDurPost) *
## otherMediaExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6122 -1.7110 -0.2634 1.5409 4.8116
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.52184 0.13314 26.452 < 2e-16 ***
## pDemR -0.13414 0.18972 -0.707 0.479609
## pDemI -0.91368 0.25181 -3.628 0.000291 ***
## tDurPre 0.19199 0.16228 1.183 0.236896
## tDurPost -0.88574 0.17916 -4.944 8.19e-07 ***
## otherMediaExposure.c 0.36726 0.14922 2.461 0.013915 *
## pDemR:tDurPre -0.32622 0.23583 -1.383 0.166715
## pDemR:tDurPost 1.11088 0.26778 4.148 3.46e-05 ***
## pDemI:tDurPre 0.27170 0.30539 0.890 0.373722
## pDemI:tDurPost 1.02209 0.34558 2.958 0.003131 **
## pDemR:otherMediaExposure.c -0.41826 0.21284 -1.965 0.049509 *
## pDemI:otherMediaExposure.c 0.14654 0.26650 0.550 0.582470
## tDurPre:otherMediaExposure.c -0.20220 0.17677 -1.144 0.252802
## tDurPost:otherMediaExposure.c -0.09779 0.19354 -0.505 0.613411
## pDemR:tDurPre:otherMediaExposure.c 0.54110 0.26639 2.031 0.042344 *
## pDemR:tDurPost:otherMediaExposure.c -0.18745 0.29909 -0.627 0.530896
## pDemI:tDurPre:otherMediaExposure.c 0.07936 0.33874 0.234 0.814787
## pDemI:tDurPost:otherMediaExposure.c -0.31013 0.37138 -0.835 0.403755
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.992 on 2384 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.05364, Adjusted R-squared: 0.04689
## F-statistic: 7.949 on 17 and 2384 DF, p-value: < 2.2e-16
anger2.R <- lm(emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost) * otherMediaExposure.c, data = d)
summary(anger2.R)
##
## Call:
## lm(formula = emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost) *
## otherMediaExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6122 -1.7110 -0.2634 1.5409 4.8116
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.38771 0.13515 25.066 < 2e-16 ***
## pRepD 0.13414 0.18972 0.707 0.47961
## pRepI -0.77954 0.25288 -3.083 0.00208 **
## tDurPre -0.13423 0.17112 -0.784 0.43288
## tDurPost 0.22514 0.19902 1.131 0.25807
## otherMediaExposure.c -0.05100 0.15177 -0.336 0.73686
## pRepD:tDurPre 0.32622 0.23583 1.383 0.16672
## pRepD:tDurPost -1.11088 0.26778 -4.148 3.46e-05 ***
## pRepI:tDurPre 0.59792 0.31018 1.928 0.05402 .
## pRepI:tDurPost -0.08879 0.35629 -0.249 0.80322
## pRepD:otherMediaExposure.c 0.41826 0.21284 1.965 0.04951 *
## pRepI:otherMediaExposure.c 0.56480 0.26794 2.108 0.03514 *
## tDurPre:otherMediaExposure.c 0.33889 0.19928 1.701 0.08916 .
## tDurPost:otherMediaExposure.c -0.28524 0.22803 -1.251 0.21110
## pRepD:tDurPre:otherMediaExposure.c -0.54110 0.26639 -2.031 0.04234 *
## pRepD:tDurPost:otherMediaExposure.c 0.18745 0.29909 0.627 0.53090
## pRepI:tDurPre:otherMediaExposure.c -0.46173 0.35101 -1.315 0.18849
## pRepI:tDurPost:otherMediaExposure.c -0.12268 0.39046 -0.314 0.75340
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.992 on 2384 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.05364, Adjusted R-squared: 0.04689
## F-statistic: 7.949 on 17 and 2384 DF, p-value: < 2.2e-16
cor.test(d$emotion_6, d$mediaExposure)
##
## Pearson's product-moment correlation
##
## data: d$emotion_6 and d$mediaExposure
## t = 13.396, df = 2406, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2258910 0.3002435
## sample estimates:
## cor
## 0.2634585
anger_diff <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * diffFoxOther, data = d)
summary(anger_diff)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## diffFoxOther, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0196 -1.7224 -0.2146 1.5514 4.7227
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.08030 0.10016 30.754 < 2e-16 ***
## pDem_Rep -0.23311 0.21309 -1.094 0.27408
## pInd_Not 0.76281 0.23807 3.204 0.00137 **
## tDurPre 0.20060 0.12113 1.656 0.09784 .
## tDurPost -0.18399 0.13727 -1.340 0.18026
## diffFoxOther -0.17370 0.08067 -2.153 0.03140 *
## pDem_Rep:tDurPre -0.20375 0.26064 -0.782 0.43444
## pDem_Rep:tDurPost 0.81728 0.29385 2.781 0.00546 **
## pInd_Not:tDurPre -0.33365 0.28585 -1.167 0.24323
## pInd_Not:tDurPost -0.49838 0.32502 -1.533 0.12532
## pDem_Rep:diffFoxOther 0.56214 0.13897 4.045 5.4e-05 ***
## pInd_Not:diffFoxOther 0.12202 0.21138 0.577 0.56380
## tDurPre:diffFoxOther 0.02182 0.09766 0.223 0.82319
## tDurPost:diffFoxOther 0.29678 0.12021 2.469 0.01362 *
## pDem_Rep:tDurPre:diffFoxOther -0.36703 0.16791 -2.186 0.02893 *
## pDem_Rep:tDurPost:diffFoxOther -0.06424 0.18808 -0.342 0.73272
## pInd_Not:tDurPre:diffFoxOther -0.10543 0.25608 -0.412 0.68060
## pInd_Not:tDurPost:diffFoxOther 0.07179 0.32416 0.221 0.82474
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.982 on 2384 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.06284, Adjusted R-squared: 0.05616
## F-statistic: 9.403 on 17 and 2384 DF, p-value: < 2.2e-16
cor.test(d$emotion_6, d$diffFoxOther)
##
## Pearson's product-moment correlation
##
## data: d$emotion_6 and d$diffFoxOther
## t = -3.1235, df = 2406, p-value = 0.001808
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.10323285 -0.02366553
## sample estimates:
## cor
## -0.06355018
foxMediator2 <- lm(emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost), data = d)
summary(foxMediator2)
##
## Call:
## lm(formula = emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7807 -1.7308 -0.1571 1.3705 4.4138
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3908 0.1298 26.131 < 2e-16 ***
## pRepD 0.2387 0.1811 1.318 0.18761
## pRepI -0.8045 0.2508 -3.208 0.00135 **
## tDurPre -0.2337 0.1603 -1.458 0.14510
## tDurPost 0.3438 0.1859 1.849 0.06460 .
## pRepD:tDurPre 0.3849 0.2216 1.737 0.08260 .
## pRepD:tDurPost -1.2516 0.2520 -4.966 7.3e-07 ***
## pRepI:tDurPre 0.6230 0.3023 2.060 0.03946 *
## pRepI:tDurPost -0.1992 0.3452 -0.577 0.56397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 2400 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.04068, Adjusted R-squared: 0.03749
## F-statistic: 12.72 on 8 and 2400 DF, p-value: < 2.2e-16
foxMediator1 <- lm(foxExposure.c ~ (pRepD + pRepI) * (tDurPre + tDurPost), data = d)
summary(foxMediator1)
##
## Call:
## lm(formula = foxExposure.c ~ (pRepD + pRepI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9580 -0.7896 -0.7843 1.1793 3.2157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.78911 0.08563 9.216 < 2e-16 ***
## pRepD -1.13727 0.11952 -9.515 < 2e-16 ***
## pRepI -1.10741 0.16550 -6.691 2.74e-11 ***
## tDurPre -0.23392 0.10576 -2.212 0.0271 *
## tDurPost -0.30754 0.12269 -2.507 0.0123 *
## pRepD:tDurPre 0.19799 0.14620 1.354 0.1758
## pRepD:tDurPost 0.27647 0.16629 1.663 0.0965 .
## pRepI:tDurPre 0.16766 0.19949 0.840 0.4007
## pRepI:tDurPost 0.27250 0.22815 1.194 0.2324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.321 on 2401 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1154, Adjusted R-squared: 0.1124
## F-statistic: 39.14 on 8 and 2401 DF, p-value: < 2.2e-16
foxMediator3 <- lm(emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost) + foxExposure.c, data = d)
summary(foxMediator3)
##
## Call:
## lm(formula = emotion_1 ~ (pRepD + pRepI) * (tDurPre + tDurPost) +
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8991 -1.7294 -0.2406 1.4007 4.4451
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.36174 0.13205 25.458 < 2e-16 ***
## pRepD 0.28055 0.18452 1.520 0.12854
## pRepI -0.76383 0.25314 -3.017 0.00258 **
## tDurPre -0.22521 0.16049 -1.403 0.16065
## tDurPost 0.35507 0.18618 1.907 0.05663 .
## foxExposure.c 0.03677 0.03098 1.187 0.23530
## pRepD:tDurPre 0.37794 0.22171 1.705 0.08839 .
## pRepD:tDurPost -1.26172 0.25216 -5.004 6.03e-07 ***
## pRepI:tDurPre 0.61693 0.30239 2.040 0.04144 *
## pRepI:tDurPost -0.22154 0.34586 -0.641 0.52188
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.002 on 2398 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.04136, Adjusted R-squared: 0.03777
## F-statistic: 11.5 on 9 and 2398 DF, p-value: < 2.2e-16
###. i. hope ~ (pDvR + pIvDR) * (tDurPre + pDurPost)
hope2 <- lm(emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost), data = d)
summary(hope2)
##
## Call:
## lm(formula = emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.110 -1.683 -0.110 1.748 4.317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.63077 0.08907 40.763 < 2e-16 ***
## pDem_Rep -0.33518 0.17298 -1.938 0.0528 .
## pInd_Not 1.13016 0.22248 5.080 4.07e-07 ***
## tDurPre 0.07879 0.10749 0.733 0.4636
## tDurPost 0.01307 0.12212 0.107 0.9148
## pDem_Rep:tDurPre 0.15145 0.21164 0.716 0.4743
## pDem_Rep:tDurPost -1.65041 0.24083 -6.853 9.16e-12 ***
## pInd_Not:tDurPre 0.23617 0.26671 0.886 0.3760
## pInd_Not:tDurPost 0.30438 0.30276 1.005 0.3148
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.912 on 2400 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.1185, Adjusted R-squared: 0.1156
## F-statistic: 40.34 on 8 and 2400 DF, p-value: < 2.2e-16
hope2.D <- lm(emotion_6 ~ (pDemR + pDemI) * (tDurPre + tDurPost), data = d)
summary(hope2.D)
##
## Call:
## lm(formula = emotion_6 ~ (pDemR + pDemI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.110 -1.683 -0.110 1.748 4.317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1713 0.1207 34.565 < 2e-16 ***
## pDemR -0.3352 0.1730 -1.938 0.052781 .
## pDemI -1.2977 0.2379 -5.456 5.37e-08 ***
## tDurPre 0.0810 0.1461 0.554 0.579328
## tDurPost 0.9387 0.1625 5.778 8.53e-09 ***
## pDemR:tDurPre 0.1515 0.2116 0.716 0.474322
## pDemR:tDurPost -1.6504 0.2408 -6.853 9.16e-12 ***
## pDemI:tDurPre -0.1605 0.2851 -0.563 0.573631
## pDemI:tDurPost -1.1296 0.3218 -3.510 0.000456 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.912 on 2400 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.1185, Adjusted R-squared: 0.1156
## F-statistic: 40.34 on 8 and 2400 DF, p-value: < 2.2e-16
hope2.R <- lm(emotion_6 ~ (pRepD + pRepI) * (tDurPre + tDurPost), data = d)
summary(hope2.R)
##
## Call:
## lm(formula = emotion_6 ~ (pRepD + pRepI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.110 -1.683 -0.110 1.748 4.317
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.8361 0.1239 30.954 < 2e-16 ***
## pRepD 0.3352 0.1730 1.938 0.0528 .
## pRepI -0.9626 0.2395 -4.019 6.04e-05 ***
## tDurPre 0.2324 0.1531 1.518 0.1291
## tDurPost -0.7117 0.1778 -4.003 6.44e-05 ***
## pRepD:tDurPre -0.1514 0.2116 -0.716 0.4743
## pRepD:tDurPost 1.6504 0.2408 6.853 9.16e-12 ***
## pRepI:tDurPre -0.3119 0.2888 -1.080 0.2802
## pRepI:tDurPost 0.5208 0.3298 1.579 0.1144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.912 on 2400 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.1185, Adjusted R-squared: 0.1156
## F-statistic: 40.34 on 8 and 2400 DF, p-value: < 2.2e-16
#Vote Conf do not have entries for "pre election"
hope1 <- lm(emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * ownvote.c * overallvote.c, data = d)
summary(hope1)
##
## Call:
## lm(formula = emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## ownvote.c * overallvote.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.5057 -1.5057 -0.0905 1.4943 4.4456
##
## Coefficients: (12 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.71793 0.11459 32.446 < 2e-16
## pDem_Rep -0.16222 0.22648 -0.716 0.47397
## pInd_Not 0.66076 0.28379 2.328 0.02006
## tDurPre NA NA NA NA
## tDurPost -0.20540 0.16800 -1.223 0.22173
## ownvote.c 0.04092 0.12998 0.315 0.75297
## overallvote.c 0.40565 0.12655 3.205 0.00138
## pDem_Rep:tDurPre NA NA NA NA
## pDem_Rep:tDurPost -1.10085 0.36382 -3.026 0.00253
## pInd_Not:tDurPre NA NA NA NA
## pInd_Not:tDurPost 0.46054 0.39480 1.167 0.24364
## pDem_Rep:ownvote.c 0.05073 0.23736 0.214 0.83080
## pInd_Not:ownvote.c 0.36499 0.33341 1.095 0.27387
## tDurPre:ownvote.c NA NA NA NA
## tDurPost:ownvote.c 0.15560 0.17346 0.897 0.36988
## pDem_Rep:overallvote.c -0.51292 0.21077 -2.434 0.01510
## pInd_Not:overallvote.c -0.33286 0.33524 -0.993 0.32096
## tDurPre:overallvote.c NA NA NA NA
## tDurPost:overallvote.c 0.04215 0.16417 0.257 0.79743
## ownvote.c:overallvote.c -0.09267 0.05852 -1.584 0.11353
## pDem_Rep:tDurPre:ownvote.c NA NA NA NA
## pDem_Rep:tDurPost:ownvote.c 0.38762 0.37674 1.029 0.30374
## pInd_Not:tDurPre:ownvote.c NA NA NA NA
## pInd_Not:tDurPost:ownvote.c -0.10375 0.40684 -0.255 0.79876
## pDem_Rep:tDurPre:overallvote.c NA NA NA NA
## pDem_Rep:tDurPost:overallvote.c 0.24830 0.32748 0.758 0.44847
## pInd_Not:tDurPre:overallvote.c NA NA NA NA
## pInd_Not:tDurPost:overallvote.c 0.20974 0.40469 0.518 0.60437
## pDem_Rep:ownvote.c:overallvote.c 0.21532 0.12600 1.709 0.08772
## pInd_Not:ownvote.c:overallvote.c 0.14567 0.13803 1.055 0.29145
## tDurPre:ownvote.c:overallvote.c NA NA NA NA
## tDurPost:ownvote.c:overallvote.c 0.18362 0.07862 2.336 0.01968
## pDem_Rep:tDurPre:ownvote.c:overallvote.c NA NA NA NA
## pDem_Rep:tDurPost:ownvote.c:overallvote.c 0.01971 0.18278 0.108 0.91413
## pInd_Not:tDurPre:ownvote.c:overallvote.c NA NA NA NA
## pInd_Not:tDurPost:ownvote.c:overallvote.c -0.07736 0.17516 -0.442 0.65883
##
## (Intercept) ***
## pDem_Rep
## pInd_Not *
## tDurPre
## tDurPost
## ownvote.c
## overallvote.c **
## pDem_Rep:tDurPre
## pDem_Rep:tDurPost **
## pInd_Not:tDurPre
## pInd_Not:tDurPost
## pDem_Rep:ownvote.c
## pInd_Not:ownvote.c
## tDurPre:ownvote.c
## tDurPost:ownvote.c
## pDem_Rep:overallvote.c *
## pInd_Not:overallvote.c
## tDurPre:overallvote.c
## tDurPost:overallvote.c
## ownvote.c:overallvote.c
## pDem_Rep:tDurPre:ownvote.c
## pDem_Rep:tDurPost:ownvote.c
## pInd_Not:tDurPre:ownvote.c
## pInd_Not:tDurPost:ownvote.c
## pDem_Rep:tDurPre:overallvote.c
## pDem_Rep:tDurPost:overallvote.c
## pInd_Not:tDurPre:overallvote.c
## pInd_Not:tDurPost:overallvote.c
## pDem_Rep:ownvote.c:overallvote.c .
## pInd_Not:ownvote.c:overallvote.c
## tDurPre:ownvote.c:overallvote.c
## tDurPost:ownvote.c:overallvote.c *
## pDem_Rep:tDurPre:ownvote.c:overallvote.c
## pDem_Rep:tDurPost:ownvote.c:overallvote.c
## pInd_Not:tDurPre:ownvote.c:overallvote.c
## pInd_Not:tDurPost:ownvote.c:overallvote.c
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.813 on 1183 degrees of freedom
## (1269 observations deleted due to missingness)
## Multiple R-squared: 0.2574, Adjusted R-squared: 0.2429
## F-statistic: 17.82 on 23 and 1183 DF, p-value: < 2.2e-16
anger.mx <- lmer(emotion_6 ~ (pDem_Rep + pInd_Not) * ownvote.c * overallvote.c + (1 | election_timing), data = d)
## boundary (singular) fit: see ?isSingular
summary(anger.mx)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: emotion_6 ~ (pDem_Rep + pInd_Not) * ownvote.c * overallvote.c +
## (1 | election_timing)
## Data: d
##
## REML criterion at convergence: 4919.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.33863 -0.71131 -0.08114 0.91879 2.38038
##
## Random effects:
## Groups Name Variance Std.Dev.
## election_timing (Intercept) 0.000 0.000
## Residual 3.378 1.838
## Number of obs: 1207, groups: election_timing, 2
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 3.619e+00 8.241e-02 1.195e+03 43.915
## pDem_Rep -5.765e-01 1.750e-01 1.195e+03 -3.295
## pInd_Not 9.324e-01 1.961e-01 1.195e+03 4.754
## ownvote.c 9.060e-02 8.028e-02 1.195e+03 1.129
## overallvote.c 4.770e-01 7.527e-02 1.195e+03 6.337
## pDem_Rep:ownvote.c 1.545e-01 1.818e-01 1.195e+03 0.850
## pInd_Not:ownvote.c 1.764e-01 1.827e-01 1.195e+03 0.966
## pDem_Rep:overallvote.c -3.992e-01 1.560e-01 1.195e+03 -2.560
## pInd_Not:overallvote.c -1.103e-01 1.818e-01 1.195e+03 -0.607
## ownvote.c:overallvote.c 2.956e-03 3.805e-02 1.195e+03 0.078
## pDem_Rep:ownvote.c:overallvote.c 1.498e-01 8.992e-02 1.195e+03 1.666
## pInd_Not:ownvote.c:overallvote.c 6.166e-02 8.358e-02 1.195e+03 0.738
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## pDem_Rep 0.00101 **
## pInd_Not 2.24e-06 ***
## ownvote.c 0.25929
## overallvote.c 3.30e-10 ***
## pDem_Rep:ownvote.c 0.39556
## pInd_Not:ownvote.c 0.33442
## pDem_Rep:overallvote.c 0.01059 *
## pInd_Not:overallvote.c 0.54404
## ownvote.c:overallvote.c 0.93810
## pDem_Rep:ownvote.c:overallvote.c 0.09599 .
## pInd_Not:ownvote.c:overallvote.c 0.46085
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pDm_Rp pInd_N ownvt. ovrll. pDm_Rp:w. pInd_Nt:w. pDm_Rp:v.
## pDem_Rep 0.048
## pInd_Not -0.312 0.030
## ownvote.c -0.075 -0.213 -0.176
## overallvt.c -0.050 0.256 0.194 -0.711
## pDm_Rp:wnv. -0.199 -0.265 -0.125 -0.019 0.135
## pInd_Nt:wn. -0.184 -0.140 0.056 -0.188 0.180 -0.013
## pDm_Rp:vrl. 0.262 0.139 0.164 0.148 -0.220 -0.733 0.097
## pInd_Nt:vr. 0.192 0.158 -0.163 0.169 -0.353 0.083 -0.699 -0.136
## ownvt.c:vr. -0.558 -0.012 0.080 0.362 -0.065 0.262 0.016 -0.019
## pDm_Rp:w.:. -0.011 -0.590 -0.007 0.251 -0.017 0.417 0.164 -0.290
## pInd_Nt:.:. 0.086 -0.008 -0.539 0.017 -0.238 0.178 0.316 -0.013
## pInd_Nt:v. own.:. pD_R:.:
## pDem_Rep
## pInd_Not
## ownvote.c
## overallvt.c
## pDm_Rp:wnv.
## pInd_Nt:wn.
## pDm_Rp:vrl.
## pInd_Nt:vr.
## ownvt.c:vr. -0.216
## pDm_Rp:w.:. -0.010 -0.058
## pInd_Nt:.:. 0.096 -0.089 -0.040
## convergence code: 0
## boundary (singular) fit: see ?isSingular
cor.test(d$emotion_6, d$ownvote_conf)
##
## Pearson's product-moment correlation
##
## data: d$emotion_6 and d$ownvote_conf
## t = 13.146, df = 1207, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3035752 0.4022495
## sample estimates:
## cor
## 0.3538967
cor.test(d$emotion_6, d$overallvote_conf)
##
## Pearson's product-moment correlation
##
## data: d$emotion_6 and d$overallvote_conf
## t = 15.847, df = 1206, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3673472 0.4607607
## sample estimates:
## cor
## 0.4151476
anger1 <- lm(emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * govtPolEff.c * electPolEff.c, data = d)
summary(anger1)
##
## Call:
## lm(formula = emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## govtPolEff.c * electPolEff.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7898 -1.2510 -0.0491 1.2292 5.1099
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 3.698312 0.100010 36.980
## pDem_Rep -0.366334 0.193175 -1.896
## pInd_Not 0.599070 0.250436 2.392
## tDurPre 0.014582 0.121969 0.120
## tDurPost 0.124607 0.143045 0.871
## govtPolEff.c 0.150178 0.070525 2.129
## electPolEff.c 0.277845 0.061066 4.550
## pDem_Rep:tDurPre 0.325924 0.235287 1.385
## pDem_Rep:tDurPost -1.268866 0.263900 -4.808
## pInd_Not:tDurPre 0.408043 0.305608 1.335
## pInd_Not:tDurPost 0.168188 0.365429 0.460
## pDem_Rep:govtPolEff.c -0.034386 0.131890 -0.261
## pInd_Not:govtPolEff.c -0.088906 0.179153 -0.496
## tDurPre:govtPolEff.c -0.013573 0.085639 -0.158
## tDurPost:govtPolEff.c -0.117183 0.100079 -1.171
## pDem_Rep:electPolEff.c -0.045917 0.108277 -0.424
## pInd_Not:electPolEff.c 0.067173 0.158403 0.424
## tDurPre:electPolEff.c 0.014718 0.071969 0.204
## tDurPost:electPolEff.c 0.067406 0.083621 0.806
## govtPolEff.c:electPolEff.c 0.016018 0.035630 0.450
## pDem_Rep:tDurPre:govtPolEff.c 0.003525 0.161429 0.022
## pDem_Rep:tDurPost:govtPolEff.c 0.019745 0.180445 0.109
## pInd_Not:tDurPre:govtPolEff.c -0.054296 0.216808 -0.250
## pInd_Not:tDurPost:govtPolEff.c 0.043752 0.257987 0.170
## pDem_Rep:tDurPre:electPolEff.c 0.135229 0.130870 1.033
## pDem_Rep:tDurPost:electPolEff.c 0.049010 0.143675 0.341
## pInd_Not:tDurPre:electPolEff.c 0.027763 0.184918 0.150
## pInd_Not:tDurPost:electPolEff.c -0.109500 0.219313 -0.499
## pDem_Rep:govtPolEff.c:electPolEff.c 0.041365 0.053415 0.774
## pInd_Not:govtPolEff.c:electPolEff.c 0.104745 0.097110 1.079
## tDurPre:govtPolEff.c:electPolEff.c -0.001553 0.040992 -0.038
## tDurPost:govtPolEff.c:electPolEff.c -0.017830 0.046539 -0.383
## pDem_Rep:tDurPre:govtPolEff.c:electPolEff.c -0.050628 0.067596 -0.749
## pDem_Rep:tDurPost:govtPolEff.c:electPolEff.c -0.038612 0.073804 -0.523
## pInd_Not:tDurPre:govtPolEff.c:electPolEff.c -0.129437 0.108923 -1.188
## pInd_Not:tDurPost:govtPolEff.c:electPolEff.c -0.076320 0.125048 -0.610
## Pr(>|t|)
## (Intercept) < 2e-16 ***
## pDem_Rep 0.0580 .
## pInd_Not 0.0168 *
## tDurPre 0.9048
## tDurPost 0.3838
## govtPolEff.c 0.0333 *
## electPolEff.c 5.64e-06 ***
## pDem_Rep:tDurPre 0.1661
## pDem_Rep:tDurPost 1.62e-06 ***
## pInd_Not:tDurPre 0.1819
## pInd_Not:tDurPost 0.6454
## pDem_Rep:govtPolEff.c 0.7943
## pInd_Not:govtPolEff.c 0.6198
## tDurPre:govtPolEff.c 0.8741
## tDurPost:govtPolEff.c 0.2418
## pDem_Rep:electPolEff.c 0.6716
## pInd_Not:electPolEff.c 0.6716
## tDurPre:electPolEff.c 0.8380
## tDurPost:electPolEff.c 0.4203
## govtPolEff.c:electPolEff.c 0.6531
## pDem_Rep:tDurPre:govtPolEff.c 0.9826
## pDem_Rep:tDurPost:govtPolEff.c 0.9129
## pInd_Not:tDurPre:govtPolEff.c 0.8023
## pInd_Not:tDurPost:govtPolEff.c 0.8653
## pDem_Rep:tDurPre:electPolEff.c 0.3016
## pDem_Rep:tDurPost:electPolEff.c 0.7330
## pInd_Not:tDurPre:electPolEff.c 0.8807
## pInd_Not:tDurPost:electPolEff.c 0.6176
## pDem_Rep:govtPolEff.c:electPolEff.c 0.4388
## pInd_Not:govtPolEff.c:electPolEff.c 0.2809
## tDurPre:govtPolEff.c:electPolEff.c 0.9698
## tDurPost:govtPolEff.c:electPolEff.c 0.7017
## pDem_Rep:tDurPre:govtPolEff.c:electPolEff.c 0.4539
## pDem_Rep:tDurPost:govtPolEff.c:electPolEff.c 0.6009
## pInd_Not:tDurPre:govtPolEff.c:electPolEff.c 0.2348
## pInd_Not:tDurPost:govtPolEff.c:electPolEff.c 0.5417
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.781 on 2368 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.2446, Adjusted R-squared: 0.2334
## F-statistic: 21.9 on 35 and 2368 DF, p-value: < 2.2e-16
anger.mx <- lmer(emotion_6 ~ (pDem_Rep + pInd_Not) * govtPolEff.c * electPolEff.c + (1 | election_timing), data = d)
summary(anger.mx)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: emotion_6 ~ (pDem_Rep + pInd_Not) * govtPolEff.c * electPolEff.c +
## (1 | election_timing)
## Data: d
##
## REML criterion at convergence: 9698.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.60570 -0.75891 -0.03874 0.74877 2.77988
##
## Random effects:
## Groups Name Variance Std.Dev.
## election_timing (Intercept) 0.001549 0.03935
## Residual 3.248497 1.80236
## Number of obs: 2404, groups: election_timing, 3
##
## Fixed effects:
## Estimate Std. Error df t value
## (Intercept) 3.74641 0.05550 4.02359 67.497
## pDem_Rep -0.52451 0.09428 2391.32306 -5.564
## pInd_Not 0.87478 0.12716 2391.07755 6.879
## govtPolEff.c 0.11515 0.03472 2390.49285 3.317
## electPolEff.c 0.31423 0.02792 2384.53506 11.257
## pDem_Rep:govtPolEff.c -0.03877 0.06432 2390.47743 -0.603
## pInd_Not:govtPolEff.c -0.13075 0.08854 2390.95946 -1.477
## pDem_Rep:electPolEff.c 0.05203 0.05114 2383.75674 1.017
## pInd_Not:electPolEff.c 0.07668 0.07149 2390.55494 1.073
## govtPolEff.c:electPolEff.c 0.01460 0.01477 2389.97928 0.988
## pDem_Rep:govtPolEff.c:electPolEff.c 0.01400 0.02746 2391.91457 0.510
## pInd_Not:govtPolEff.c:electPolEff.c 0.01277 0.03763 2390.91835 0.339
## Pr(>|t|)
## (Intercept) 2.68e-07 ***
## pDem_Rep 2.94e-08 ***
## pInd_Not 7.65e-12 ***
## govtPolEff.c 0.000925 ***
## electPolEff.c < 2e-16 ***
## pDem_Rep:govtPolEff.c 0.546771
## pInd_Not:govtPolEff.c 0.139901
## pDem_Rep:electPolEff.c 0.309041
## pInd_Not:electPolEff.c 0.283544
## govtPolEff.c:electPolEff.c 0.323229
## pDem_Rep:govtPolEff.c:electPolEff.c 0.610041
## pInd_Not:govtPolEff.c:electPolEff.c 0.734441
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pDm_Rp pInd_N gvtPE. elcPE. pDm_Rp:gPE. pInd_Nt:gPE.
## pDem_Rep 0.067
## pInd_Not -0.442 0.043
## govtPlEff.c 0.212 0.028 -0.114
## elctPlEff.c -0.103 0.008 -0.013 -0.605
## pDm_Rp:gPE. 0.025 0.239 0.017 0.047 -0.066
## pInd_Nt:gPE. -0.103 0.017 0.233 -0.505 0.328 0.028
## pDm_Rp:lPE. 0.009 -0.224 0.005 -0.066 0.074 -0.578 -0.039
## pInd_Nt:lPE. -0.012 0.005 -0.075 0.326 -0.518 -0.038 -0.615
## gvtPlE.:PE. -0.441 -0.054 0.239 -0.346 0.460 0.005 0.064
## pD_R:PE.:PE -0.051 -0.493 -0.032 0.005 0.065 -0.506 0.003
## pI_N:PE.:PE 0.213 -0.032 -0.486 0.064 -0.321 0.003 -0.279
## pDm_Rp:lPE. pInd_Nt:lPE. gPE.:P pD_R:PE.:
## pDem_Rep
## pInd_Not
## govtPlEff.c
## elctPlEff.c
## pDm_Rp:gPE.
## pInd_Nt:gPE.
## pDm_Rp:lPE.
## pInd_Nt:lPE. 0.043
## gvtPlE.:PE. 0.066 -0.318
## pD_R:PE.:PE 0.335 0.038 0.045
## pI_N:PE.:PE 0.039 0.511 -0.501 0.027
cor.test(d$emotion_6, d$govtPolEff.c)
##
## Pearson's product-moment correlation
##
## data: d$emotion_6 and d$govtPolEff.c
## t = 15.244, df = 2409, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.2597666 0.3325924
## sample estimates:
## cor
## 0.2966106
cor.test(d$emotion_6, d$electPolEff.c)
##
## Pearson's product-moment correlation
##
## data: d$emotion_6 and d$electPolEff.c
## t = 22.399, df = 2408, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3816481 0.4477528
## sample estimates:
## cor
## 0.4152485
hope_fox <- lm(emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * foxExposure.c, data = d)
summary(hope_fox)
##
## Call:
## lm(formula = emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.136 -1.555 -0.136 1.528 4.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.57632 0.09325 38.351 < 2e-16 ***
## pDem_Rep -0.64629 0.18542 -3.485 0.00050 ***
## pInd_Not 1.00030 0.23026 4.344 1.46e-05 ***
## tDurPre 0.11763 0.11251 1.045 0.29592
## tDurPost 0.05357 0.12759 0.420 0.67460
## foxExposure.c 0.19714 0.07312 2.696 0.00707 **
## pDem_Rep:tDurPre 0.22828 0.22514 1.014 0.31070
## pDem_Rep:tDurPost -1.39258 0.25447 -5.473 4.90e-08 ***
## pInd_Not:tDurPre 0.23048 0.27691 0.832 0.40531
## pInd_Not:tDurPost 0.35801 0.31454 1.138 0.25516
## pDem_Rep:foxExposure.c 0.15314 0.12791 1.197 0.23130
## pInd_Not:foxExposure.c 0.14161 0.19061 0.743 0.45759
## tDurPre:foxExposure.c 0.02328 0.08790 0.265 0.79110
## tDurPost:foxExposure.c -0.11522 0.10112 -1.139 0.25466
## pDem_Rep:tDurPre:foxExposure.c 0.01652 0.15561 0.106 0.91546
## pDem_Rep:tDurPost:foxExposure.c 0.01797 0.17929 0.100 0.92018
## pInd_Not:tDurPre:foxExposure.c -0.10448 0.22812 -0.458 0.64699
## pInd_Not:tDurPost:foxExposure.c -0.23019 0.26232 -0.878 0.38029
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.892 on 2390 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.1402, Adjusted R-squared: 0.134
## F-statistic: 22.92 on 17 and 2390 DF, p-value: < 2.2e-16
hopeFox2.D <- lm(emotion_6 ~ (pDemR + pDemI) * (tDurPre + tDurPost) * foxExposure.c, data = d)
summary(hopeFox2.D)
##
## Call:
## lm(formula = emotion_6 ~ (pDemR + pDemI) * (tDurPre + tDurPost) *
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.136 -1.555 -0.136 1.528 4.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.22956 0.12451 33.970 < 2e-16 ***
## pDemR -0.64629 0.18542 -3.485 0.00050 ***
## pDemI -1.32345 0.24480 -5.406 7.07e-08 ***
## tDurPre 0.07954 0.15095 0.527 0.59827
## tDurPost 0.86801 0.16826 5.159 2.69e-07 ***
## foxExposure.c 0.16729 0.10101 1.656 0.09781 .
## pDemR:tDurPre 0.22828 0.22514 1.014 0.31070
## pDemR:tDurPost -1.39258 0.25447 -5.473 4.90e-08 ***
## pDemI:tDurPre -0.11634 0.29461 -0.395 0.69296
## pDemI:tDurPost -1.05430 0.33326 -3.164 0.00158 **
## pDemR:foxExposure.c 0.15314 0.12791 1.197 0.23130
## pDemI:foxExposure.c -0.06504 0.20602 -0.316 0.75227
## tDurPre:foxExposure.c -0.01945 0.12055 -0.161 0.87181
## tDurPost:foxExposure.c -0.20016 0.13676 -1.464 0.14342
## pDemR:tDurPre:foxExposure.c 0.01652 0.15561 0.106 0.91546
## pDemR:tDurPost:foxExposure.c 0.01797 0.17929 0.100 0.92018
## pDemI:tDurPre:foxExposure.c 0.11274 0.24601 0.458 0.64679
## pDemI:tDurPost:foxExposure.c 0.23917 0.28192 0.848 0.39631
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.892 on 2390 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.1402, Adjusted R-squared: 0.134
## F-statistic: 22.92 on 17 and 2390 DF, p-value: < 2.2e-16
hopeFox2.R <- lm(emotion_6 ~ (pRepD + pRepI) * (tDurPre + tDurPost) * foxExposure.c, data = d)
summary(hopeFox2.R)
##
## Call:
## lm(formula = emotion_6 ~ (pRepD + pRepI) * (tDurPre + tDurPost) *
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.136 -1.555 -0.136 1.528 4.445
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.583272 0.137400 26.079 < 2e-16 ***
## pRepD 0.646287 0.185422 3.485 0.00050 ***
## pRepI -0.677161 0.251600 -2.691 0.00716 **
## tDurPre 0.307825 0.167040 1.843 0.06548 .
## tDurPost -0.524574 0.190894 -2.748 0.00604 **
## foxExposure.c 0.320440 0.078465 4.084 4.58e-05 ***
## pRepD:tDurPre -0.228282 0.225137 -1.014 0.31070
## pRepD:tDurPost 1.392582 0.254466 5.473 4.90e-08 ***
## pRepI:tDurPre -0.344621 0.303169 -1.137 0.25577
## pRepI:tDurPost 0.338280 0.345240 0.980 0.32726
## pRepD:foxExposure.c -0.153145 0.127907 -1.197 0.23130
## pRepI:foxExposure.c -0.218184 0.195956 -1.113 0.26563
## tDurPre:foxExposure.c -0.002934 0.098401 -0.030 0.97621
## tDurPost:foxExposure.c -0.182194 0.115936 -1.571 0.11620
## pRepD:tDurPre:foxExposure.c -0.016520 0.155614 -0.106 0.91546
## pRepD:tDurPost:foxExposure.c -0.017968 0.179285 -0.100 0.92018
## pRepI:tDurPre:foxExposure.c 0.096222 0.235944 0.408 0.68344
## pRepI:tDurPost:foxExposure.c 0.221203 0.272425 0.812 0.41689
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.892 on 2390 degrees of freedom
## (68 observations deleted due to missingness)
## Multiple R-squared: 0.1402, Adjusted R-squared: 0.134
## F-statistic: 22.92 on 17 and 2390 DF, p-value: < 2.2e-16
hopeMedia1 <- lm(emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) * otherMediaExposure.c, data = d)
summary(hopeMedia1)
##
## Call:
## lm(formula = emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) *
## otherMediaExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8547 -1.4705 -0.0583 1.4969 4.7757
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.62318 0.08877 40.817 < 2e-16 ***
## pDem_Rep -0.15753 0.17737 -0.888 0.375
## pInd_Not 1.07598 0.21863 4.922 9.17e-07 ***
## tDurPre 0.07660 0.10875 0.704 0.481
## tDurPost 0.10488 0.12407 0.845 0.398
## otherMediaExposure.c 0.44754 0.09532 4.695 2.81e-06 ***
## pDem_Rep:tDurPre 0.20801 0.22049 0.943 0.346
## pDem_Rep:tDurPost -1.40742 0.25117 -5.604 2.34e-08 ***
## pInd_Not:tDurPre -0.02136 0.26582 -0.080 0.936
## pInd_Not:tDurPost 0.27389 0.30349 0.902 0.367
## pDem_Rep:otherMediaExposure.c -0.17686 0.19899 -0.889 0.374
## pInd_Not:otherMediaExposure.c -0.33480 0.22917 -1.461 0.144
## tDurPre:otherMediaExposure.c 0.04762 0.12206 0.390 0.696
## tDurPost:otherMediaExposure.c 0.16097 0.13585 1.185 0.236
## pDem_Rep:tDurPre:otherMediaExposure.c -0.39601 0.24888 -1.591 0.112
## pDem_Rep:tDurPost:otherMediaExposure.c 0.40810 0.28151 1.450 0.147
## pInd_Not:tDurPre:otherMediaExposure.c -0.20745 0.29744 -0.697 0.486
## pInd_Not:tDurPost:otherMediaExposure.c 0.31105 0.32806 0.948 0.343
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 2384 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.1672, Adjusted R-squared: 0.1613
## F-statistic: 28.15 on 17 and 2384 DF, p-value: < 2.2e-16
hopeMedia2.D <- lm(emotion_6 ~ (pDemR + pDemI) * (tDurPre + tDurPost) * otherMediaExposure.c, data = d)
summary(hopeMedia2.D)
##
## Call:
## lm(formula = emotion_6 ~ (pDemR + pDemI) * (tDurPre + tDurPost) *
## otherMediaExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8547 -1.4705 -0.0583 1.4969 4.7757
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.057016 0.124481 32.592 < 2e-16 ***
## pDemR -0.157533 0.177374 -0.888 0.37455
## pDemI -1.154743 0.235431 -4.905 9.98e-07 ***
## tDurPre -0.034454 0.151721 -0.227 0.82037
## tDurPost 0.898975 0.167499 5.367 8.78e-08 ***
## otherMediaExposure.c 0.425480 0.139508 3.050 0.00231 **
## pDemR:tDurPre 0.208015 0.220488 0.943 0.34556
## pDemR:tDurPost -1.407419 0.251168 -5.604 2.34e-08 ***
## pDemI:tDurPre 0.125371 0.285523 0.439 0.66063
## pDemI:tDurPost -0.977603 0.323097 -3.026 0.00251 **
## pDemR:otherMediaExposure.c -0.176856 0.198990 -0.889 0.37422
## pDemI:otherMediaExposure.c 0.246375 0.249163 0.989 0.32286
## tDurPre:otherMediaExposure.c 0.177169 0.165006 1.074 0.28306
## tDurPost:otherMediaExposure.c 0.059563 0.180950 0.329 0.74206
## pDemR:tDurPre:otherMediaExposure.c -0.396006 0.248881 -1.591 0.11171
## pDemR:tDurPost:otherMediaExposure.c 0.408100 0.281506 1.450 0.14727
## pDemI:tDurPre:otherMediaExposure.c 0.009445 0.316562 0.030 0.97620
## pDemI:tDurPost:otherMediaExposure.c -0.106998 0.347214 -0.308 0.75799
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 2384 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.1672, Adjusted R-squared: 0.1613
## F-statistic: 28.15 on 17 and 2384 DF, p-value: < 2.2e-16
hopeMedia2.R <- lm(emotion_6 ~ (pRepD + pRepI) * (tDurPre + tDurPost) * otherMediaExposure.c, data = d)
summary(hopeMedia2.R)
##
## Call:
## lm(formula = emotion_6 ~ (pRepD + pRepI) * (tDurPre + tDurPost) *
## otherMediaExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.8547 -1.4705 -0.0583 1.4969 4.7757
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.89948 0.12636 30.861 < 2e-16 ***
## pRepD 0.15753 0.17737 0.888 0.37455
## pRepI -0.99721 0.23643 -4.218 2.56e-05 ***
## tDurPre 0.17356 0.15999 1.085 0.27810
## tDurPost -0.50844 0.18716 -2.717 0.00664 **
## otherMediaExposure.c 0.24862 0.14190 1.752 0.07988 .
## pRepD:tDurPre -0.20801 0.22049 -0.943 0.34556
## pRepD:tDurPost 1.40742 0.25117 5.604 2.34e-08 ***
## pRepI:tDurPre -0.08264 0.29000 -0.285 0.77569
## pRepI:tDurPost 0.42982 0.33371 1.288 0.19788
## pRepD:otherMediaExposure.c 0.17686 0.19899 0.889 0.37422
## pRepI:otherMediaExposure.c 0.42323 0.25051 1.689 0.09126 .
## tDurPre:otherMediaExposure.c -0.21884 0.18632 -1.175 0.24030
## tDurPost:otherMediaExposure.c 0.46766 0.21564 2.169 0.03021 *
## pRepD:tDurPre:otherMediaExposure.c 0.39601 0.24888 1.591 0.11171
## pRepD:tDurPost:otherMediaExposure.c -0.40810 0.28151 -1.450 0.14727
## pRepI:tDurPre:otherMediaExposure.c 0.40545 0.32818 1.235 0.21678
## pRepI:tDurPost:otherMediaExposure.c -0.51510 0.36649 -1.405 0.16001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.862 on 2384 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.1672, Adjusted R-squared: 0.1613
## F-statistic: 28.15 on 17 and 2384 DF, p-value: < 2.2e-16
hope_fox <- lm(emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) + diffFoxOther, data = d)
summary(hope_fox)
##
## Call:
## lm(formula = emotion_6 ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) +
## diffFoxOther, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.120 -1.678 -0.110 1.755 4.334
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.632872 0.089512 40.585 < 2e-16 ***
## pDem_Rep -0.348396 0.180697 -1.928 0.054 .
## pInd_Not 1.133072 0.223105 5.079 4.09e-07 ***
## tDurPre 0.075281 0.107675 0.699 0.485
## tDurPost 0.006235 0.122378 0.051 0.959
## diffFoxOther 0.002274 0.030088 0.076 0.940
## pDem_Rep:tDurPre 0.159594 0.212134 0.752 0.452
## pDem_Rep:tDurPost -1.640704 0.241224 -6.802 1.30e-11 ***
## pInd_Not:tDurPre 0.218140 0.267160 0.817 0.414
## pInd_Not:tDurPost 0.313849 0.303632 1.034 0.301
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.913 on 2392 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.1183, Adjusted R-squared: 0.115
## F-statistic: 35.67 on 9 and 2392 DF, p-value: < 2.2e-16
foxMediator1 <- lm(emotion_5 ~ (pRepD + pRepI) * (tDurPre + tDurPost), data = d)
summary(foxMediator1)
##
## Call:
## lm(formula = emotion_5 ~ (pRepD + pRepI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5049 -1.5049 -0.5049 1.4951 4.7931
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.89916 0.12377 23.424 < 2e-16 ***
## pRepD 0.06498 0.17276 0.376 0.70683
## pRepI -0.69226 0.23922 -2.894 0.00384 **
## tDurPre 0.10305 0.15292 0.674 0.50045
## tDurPost -0.43456 0.17735 -2.450 0.01434 *
## pRepD:tDurPre -0.13213 0.21136 -0.625 0.53194
## pRepD:tDurPost 1.97527 0.24037 8.218 3.35e-16 ***
## pRepI:tDurPre -0.04524 0.28838 -0.157 0.87535
## pRepI:tDurPost 0.45843 0.32927 1.392 0.16397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.909 on 2401 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1021, Adjusted R-squared: 0.09916
## F-statistic: 34.14 on 8 and 2401 DF, p-value: < 2.2e-16
foxMediator2 <- lm(foxExposure.c ~ (pRepD + pRepI) * (tDurPre + tDurPost), data = d)
summary(foxMediator2)
##
## Call:
## lm(formula = foxExposure.c ~ (pRepD + pRepI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9580 -0.7896 -0.7843 1.1793 3.2157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.78911 0.08563 9.216 < 2e-16 ***
## pRepD -1.13727 0.11952 -9.515 < 2e-16 ***
## pRepI -1.10741 0.16550 -6.691 2.74e-11 ***
## tDurPre -0.23392 0.10576 -2.212 0.0271 *
## tDurPost -0.30754 0.12269 -2.507 0.0123 *
## pRepD:tDurPre 0.19799 0.14620 1.354 0.1758
## pRepD:tDurPost 0.27647 0.16629 1.663 0.0965 .
## pRepI:tDurPre 0.16766 0.19949 0.840 0.4007
## pRepI:tDurPost 0.27250 0.22815 1.194 0.2324
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.321 on 2401 degrees of freedom
## (66 observations deleted due to missingness)
## Multiple R-squared: 0.1154, Adjusted R-squared: 0.1124
## F-statistic: 39.14 on 8 and 2401 DF, p-value: < 2.2e-16
foxMediator3 <- lm(emotion_5 ~ (pRepD + pRepI) * (tDurPre + tDurPost) + foxExposure.c, data = d)
summary(foxMediator3)
##
## Call:
## lm(formula = emotion_5 ~ (pRepD + pRepI) * (tDurPre + tDurPost) +
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3184 -1.5643 -0.5582 1.3436 5.0087
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.69918 0.12402 21.764 < 2e-16 ***
## pRepD 0.35319 0.17330 2.038 0.0417 *
## pRepI -0.41162 0.23776 -1.731 0.0835 .
## tDurPre 0.16137 0.15074 1.071 0.2845
## tDurPost -0.35662 0.17487 -2.039 0.0415 *
## foxExposure.c 0.25342 0.02906 8.721 < 2e-16 ***
## pRepD:tDurPre -0.18134 0.20822 -0.871 0.3839
## pRepD:tDurPost 1.90521 0.23684 8.044 1.35e-15 ***
## pRepI:tDurPre -0.08677 0.28402 -0.305 0.7600
## pRepI:tDurPost 0.37220 0.32485 1.146 0.2520
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.88 on 2399 degrees of freedom
## (67 observations deleted due to missingness)
## Multiple R-squared: 0.13, Adjusted R-squared: 0.1267
## F-statistic: 39.82 on 9 and 2399 DF, p-value: < 2.2e-16
predict1 <- lm(electPredictTB ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost), data = d)
summary(predict1)
##
## Call:
## lm(formula = electPredictTB ~ (pDem_Rep + pInd_Not) * (tDurPre +
## tDurPost), data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.581 -1.661 0.339 1.419 6.339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.2235 0.1169 44.669 < 2e-16 ***
## pDem_Rep -3.5288 0.2308 -15.292 < 2e-16 ***
## pInd_Not 0.5228 0.2898 1.804 0.07146 .
## tDurPre -0.4770 0.1548 -3.082 0.00209 **
## tDurPost 0.4235 0.1527 2.774 0.00560 **
## pDem_Rep:tDurPre -0.5875 0.3068 -1.915 0.05568 .
## pDem_Rep:tDurPost -0.4196 0.3029 -1.385 0.16620
## pInd_Not:tDurPre -0.6057 0.3828 -1.582 0.11375
## pInd_Not:tDurPost -0.6440 0.3773 -1.707 0.08805 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.24 on 1664 degrees of freedom
## (803 observations deleted due to missingness)
## Multiple R-squared: 0.404, Adjusted R-squared: 0.4011
## F-statistic: 141 on 8 and 1664 DF, p-value: < 2.2e-16
predict2.D <- lm(electPredictTB ~ (pDemR + pDemI) * (tDurPre + tDurPost), data = d)
summary(predict2.D)
##
## Call:
## lm(formula = electPredictTB ~ (pDemR + pDemI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.581 -1.661 0.339 1.419 6.339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.1604 0.1638 43.707 < 2e-16 ***
## pDemR -3.5288 0.2308 -15.292 < 2e-16 ***
## pDemI -2.2872 0.3123 -7.324 3.74e-13 ***
## tDurPre -0.3831 0.2155 -1.778 0.0757 .
## tDurPost 0.4207 0.2077 2.026 0.0429 *
## pDemR:tDurPre -0.5875 0.3068 -1.915 0.0557 .
## pDemR:tDurPost -0.4196 0.3029 -1.385 0.1662
## pDemI:tDurPre 0.3119 0.4116 0.758 0.4487
## pDemI:tDurPost 0.4342 0.4032 1.077 0.2817
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.24 on 1664 degrees of freedom
## (803 observations deleted due to missingness)
## Multiple R-squared: 0.404, Adjusted R-squared: 0.4011
## F-statistic: 141 on 8 and 1664 DF, p-value: < 2.2e-16
predict2.R <- lm(electPredictTB ~ (pRepD + pRepI) * (tDurPre + tDurPost), data = d)
summary(predict2.R)
##
## Call:
## lm(formula = electPredictTB ~ (pRepD + pRepI) * (tDurPre + tDurPost),
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.581 -1.661 0.339 1.419 6.339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.631579 0.162529 22.344 < 2e-16 ***
## pRepD 3.528849 0.230771 15.292 < 2e-16 ***
## pRepI 1.241660 0.311617 3.985 7.05e-05 ***
## tDurPre -0.970562 0.218363 -4.445 9.38e-06 ***
## tDurPost 0.001164 0.220507 0.005 0.9958
## pRepD:tDurPre 0.587478 0.306802 1.915 0.0557 .
## pRepD:tDurPost 0.419577 0.302916 1.385 0.1662
## pRepI:tDurPre 0.899406 0.413102 2.177 0.0296 *
## pRepI:tDurPost 0.853751 0.409928 2.083 0.0374 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.24 on 1664 degrees of freedom
## (803 observations deleted due to missingness)
## Multiple R-squared: 0.404, Adjusted R-squared: 0.4011
## F-statistic: 141 on 8 and 1664 DF, p-value: < 2.2e-16
predict.mx <- lmer(electPredictTB ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) + (1 | election_timing), data = d)
summary(predict.mx)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: electPredictTB ~ (pDem_Rep + pInd_Not) * (tDurPre + tDurPost) +
## (1 | election_timing)
## Data: d
##
## REML criterion at convergence: 7452.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.9376 -0.7414 0.1513 0.6333 2.8295
##
## Random effects:
## Groups Name Variance Std.Dev.
## election_timing (Intercept) 0.4364 0.6606
## Residual 5.0190 2.2403
## Number of obs: 1673, groups: election_timing, 3
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 5.223e+00 6.709e-01 1.011e-08 7.786 1.0000
## pDem_Rep -3.529e+00 2.308e-01 1.664e+03 -15.292 <2e-16 ***
## pInd_Not 5.228e-01 2.898e-01 1.664e+03 1.804 0.0715 .
## tDurPre -4.770e-01 9.470e-01 1.004e-08 -0.504 1.0000
## tDurPost 4.235e-01 9.467e-01 1.002e-08 0.447 1.0000
## pDem_Rep:tDurPre -5.875e-01 3.068e-01 1.664e+03 -1.915 0.0557 .
## pDem_Rep:tDurPost -4.196e-01 3.029e-01 1.664e+03 -1.385 0.1662
## pInd_Not:tDurPre -6.057e-01 3.828e-01 1.664e+03 -1.582 0.1138
## pInd_Not:tDurPost -6.440e-01 3.773e-01 1.664e+03 -1.707 0.0881 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) pDm_Rp pInd_N tDurPr tDrPst pDm_Rp:tDrPr pDm_Rp:tDrPs
## pDem_Rep -0.001
## pInd_Not -0.074 -0.003
## tDurPre -0.708 0.001 0.052
## tDurPost -0.709 0.001 0.053 0.502
## pDm_Rp:tDrPr 0.001 -0.752 0.002 0.001 0.000
## pDm_Rp:tDrPs 0.001 -0.762 0.002 0.000 0.006 0.573
## pInd_Nt:tDrPr 0.056 0.002 -0.757 -0.068 -0.040 0.005 -0.002
## pInd_Nt:tDrPs 0.057 0.002 -0.768 -0.040 -0.067 -0.002 0.024
## pInd_Nt:tDrPr
## pDem_Rep
## pInd_Not
## tDurPre
## tDurPost
## pDm_Rp:tDrPr
## pDm_Rp:tDrPs
## pInd_Nt:tDrPr
## pInd_Nt:tDrPs 0.582
#Vote Confidence do not have entries for "pre election"
d$durPost <- NA
d$durPost[d$election_timing == 'During-election'] <- -.5
d$durPost[d$election_timing == 'Post-election'] <- .5
d$foxTrust.c <- d$mediaTrust_5 - mean(d$mediaTrust_5, na.rm = TRUE)
d$otherMediaTrust.c <- d$mediaTrust - mean(d$mediaTrust, na.rm = TRUE)
voteConf1 <- lm(overallvote.c ~ (pDem_Rep + pInd_Not) * durPost * foxExposure.c, data = d)
summary(voteConf1)
##
## Call:
## lm(formula = overallvote.c ~ (pDem_Rep + pInd_Not) * durPost *
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5222 -0.7916 0.0906 0.6821 2.6862
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.145529 0.040195 -3.621 0.000306 ***
## pDem_Rep -1.543509 0.080018 -19.290 < 2e-16 ***
## pInd_Not 0.358305 0.099190 3.612 0.000316 ***
## durPost 0.059230 0.080391 0.737 0.461407
## foxExposure.c -0.038285 0.031866 -1.201 0.229819
## pDem_Rep:durPost -0.808778 0.160036 -5.054 5.01e-07 ***
## pInd_Not:durPost 0.041973 0.198380 0.212 0.832470
## pDem_Rep:foxExposure.c 0.036878 0.056362 0.654 0.513040
## pInd_Not:foxExposure.c -0.008878 0.082735 -0.107 0.914561
## durPost:foxExposure.c -0.066373 0.063732 -1.041 0.297885
## pDem_Rep:durPost:foxExposure.c 0.319441 0.112723 2.834 0.004676 **
## pInd_Not:durPost:foxExposure.c -0.191306 0.165471 -1.156 0.247858
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.189 on 1196 degrees of freedom
## (1268 observations deleted due to missingness)
## Multiple R-squared: 0.3119, Adjusted R-squared: 0.3056
## F-statistic: 49.29 on 11 and 1196 DF, p-value: < 2.2e-16
voteConf3 <- lm(ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * foxExposure.c, data = d)
summary(voteConf3)
##
## Call:
## lm(formula = ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * foxExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5279 -1.0155 0.4721 0.8890 2.0190
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.195957 0.041818 -4.686 3.11e-06 ***
## pDem_Rep -0.869549 0.083306 -10.438 < 2e-16 ***
## pInd_Not 0.758925 0.103159 7.357 3.49e-13 ***
## durPost 0.043767 0.083637 0.523 0.6009
## foxExposure.c -0.066991 0.033148 -2.021 0.0435 *
## pDem_Rep:durPost -0.380983 0.166612 -2.287 0.0224 *
## pInd_Not:durPost 0.002739 0.206318 0.013 0.9894
## pDem_Rep:foxExposure.c 0.118013 0.058677 2.011 0.0445 *
## pInd_Not:foxExposure.c 0.001476 0.086036 0.017 0.9863
## durPost:foxExposure.c 0.009840 0.066295 0.148 0.8820
## pDem_Rep:durPost:foxExposure.c 0.206511 0.117355 1.760 0.0787 .
## pInd_Not:durPost:foxExposure.c -0.188241 0.172073 -1.094 0.2742
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.238 on 1197 degrees of freedom
## (1267 observations deleted due to missingness)
## Multiple R-squared: 0.1646, Adjusted R-squared: 0.1569
## F-statistic: 21.44 on 11 and 1197 DF, p-value: < 2.2e-16
voteConf2 <- lm(overallvote.c ~ (pDem_Rep + pInd_Not) * durPost * otherMediaExposure.c, data = d)
summary(voteConf2)
##
## Call:
## lm(formula = overallvote.c ~ (pDem_Rep + pInd_Not) * durPost *
## otherMediaExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4580 -0.9113 0.1031 0.6958 3.0864
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08046 0.03838 -2.096 0.036259 *
## pDem_Rep -1.36685 0.07740 -17.660 < 2e-16 ***
## pInd_Not 0.33962 0.09409 3.610 0.000319 ***
## durPost 0.20494 0.07677 2.670 0.007694 **
## otherMediaExposure.c 0.38046 0.04196 9.068 < 2e-16 ***
## pDem_Rep:durPost -0.74428 0.15479 -4.808 1.72e-06 ***
## pInd_Not:durPost 0.12192 0.18818 0.648 0.517179
## pDem_Rep:otherMediaExposure.c 0.32446 0.08640 3.755 0.000181 ***
## pInd_Not:otherMediaExposure.c -0.10758 0.10168 -1.058 0.290271
## durPost:otherMediaExposure.c 0.13390 0.08392 1.596 0.110819
## pDem_Rep:durPost:otherMediaExposure.c 0.52344 0.17280 3.029 0.002505 **
## pInd_Not:durPost:otherMediaExposure.c -0.03354 0.20336 -0.165 0.869046
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.15 on 1194 degrees of freedom
## (1270 observations deleted due to missingness)
## Multiple R-squared: 0.3575, Adjusted R-squared: 0.3516
## F-statistic: 60.4 on 11 and 1194 DF, p-value: < 2.2e-16
voteConf4 <- lm(ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * otherMediaExposure.c, data = d)
summary(voteConf4)
##
## Call:
## lm(formula = ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * otherMediaExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3805 -0.9971 0.3384 0.7746 2.3384
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15017 0.04110 -3.654 0.00027 ***
## pDem_Rep -0.83646 0.08293 -10.086 < 2e-16 ***
## pInd_Not 0.70850 0.10071 7.035 3.35e-12 ***
## durPost 0.13667 0.08220 1.663 0.09664 .
## otherMediaExposure.c 0.19765 0.04492 4.400 1.18e-05 ***
## pDem_Rep:durPost -0.30484 0.16587 -1.838 0.06634 .
## pInd_Not:durPost 0.04358 0.20142 0.216 0.82874
## pDem_Rep:otherMediaExposure.c 0.04274 0.09258 0.462 0.64441
## pInd_Not:otherMediaExposure.c -0.16867 0.10880 -1.550 0.12133
## durPost:otherMediaExposure.c 0.17903 0.08984 1.993 0.04651 *
## pDem_Rep:durPost:otherMediaExposure.c 0.33307 0.18517 1.799 0.07231 .
## pInd_Not:durPost:otherMediaExposure.c -0.20724 0.21759 -0.952 0.34108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.232 on 1195 degrees of freedom
## (1269 observations deleted due to missingness)
## Multiple R-squared: 0.173, Adjusted R-squared: 0.1654
## F-statistic: 22.73 on 11 and 1195 DF, p-value: < 2.2e-16
cor.test(d$overallvote.c, d$mediaExposure_5)
##
## Pearson's product-moment correlation
##
## data: d$overallvote.c and d$mediaExposure_5
## t = -6.7218, df = 1207, p-value = 2.761e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2437243 -0.1350234
## sample estimates:
## cor
## -0.1899559
cor.test(d$ownvote.c, d$mediaExposure_5)
##
## Pearson's product-moment correlation
##
## data: d$ownvote.c and d$mediaExposure_5
## t = -4.7402, df = 1208, p-value = 2.389e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.19004052 -0.07938187
## sample estimates:
## cor
## -0.1351326
cor.test(d$overallvote.c, d$mediaExposure)
##
## Pearson's product-moment correlation
##
## data: d$overallvote.c and d$mediaExposure
## t = 13.331, df = 1205, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3083242 0.4067102
## sample estimates:
## cor
## 0.3585123
cor.test(d$ownvote.c, d$mediaExposure)
##
## Pearson's product-moment correlation
##
## data: d$ownvote.c and d$mediaExposure
## t = 7.5462, df = 1206, p-value = 8.796e-14
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1578317 0.2655645
## sample estimates:
## cor
## 0.2123432
voteConf5 <- lm(overallvote.c ~ (pDem_Rep + pInd_Not) * durPost * foxTrust.c, data = d)
summary(voteConf5)
##
## Call:
## lm(formula = overallvote.c ~ (pDem_Rep + pInd_Not) * durPost *
## foxTrust.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5337 -0.8244 0.1439 0.7767 2.7994
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15840 0.03950 -4.011 6.43e-05 ***
## pDem_Rep -1.58110 0.08035 -19.677 < 2e-16 ***
## pInd_Not 0.34824 0.09636 3.614 0.000314 ***
## durPost 0.05698 0.07899 0.721 0.470865
## foxTrust.c -0.05587 0.03311 -1.688 0.091719 .
## pDem_Rep:durPost -0.80499 0.16070 -5.009 6.29e-07 ***
## pInd_Not:durPost 0.05808 0.19271 0.301 0.763179
## pDem_Rep:foxTrust.c 0.07989 0.05933 1.347 0.178362
## pInd_Not:foxTrust.c 0.16640 0.08554 1.945 0.051965 .
## durPost:foxTrust.c -0.04850 0.06621 -0.733 0.463964
## pDem_Rep:durPost:foxTrust.c 0.27931 0.11866 2.354 0.018739 *
## pInd_Not:durPost:foxTrust.c -0.12242 0.17107 -0.716 0.474390
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.189 on 1196 degrees of freedom
## (1268 observations deleted due to missingness)
## Multiple R-squared: 0.3119, Adjusted R-squared: 0.3056
## F-statistic: 49.28 on 11 and 1196 DF, p-value: < 2.2e-16
voteConf6 <- lm(ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * foxTrust.c, data = d)
summary(voteConf6)
##
## Call:
## lm(formula = ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * foxTrust.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.5576 -1.0140 0.4424 0.8485 2.1393
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21103 0.04101 -5.146 3.10e-07 ***
## pDem_Rep -0.90087 0.08350 -10.788 < 2e-16 ***
## pInd_Not 0.73027 0.09999 7.303 5.11e-13 ***
## durPost 0.04230 0.08201 0.516 0.60607
## foxTrust.c -0.07157 0.03433 -2.085 0.03727 *
## pDem_Rep:durPost -0.38362 0.16701 -2.297 0.02179 *
## pInd_Not:durPost 0.02907 0.19998 0.145 0.88444
## pDem_Rep:foxTrust.c 0.18623 0.06166 3.020 0.00258 **
## pInd_Not:foxTrust.c 0.13610 0.08861 1.536 0.12481
## durPost:foxTrust.c 0.06228 0.06865 0.907 0.36446
## pDem_Rep:durPost:foxTrust.c 0.17417 0.12331 1.412 0.15810
## pInd_Not:durPost:foxTrust.c -0.23398 0.17722 -1.320 0.18700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 1197 degrees of freedom
## (1267 observations deleted due to missingness)
## Multiple R-squared: 0.1675, Adjusted R-squared: 0.1598
## F-statistic: 21.89 on 11 and 1197 DF, p-value: < 2.2e-16
voteConf7 <- lm(overallvote.c ~ (pDem_Rep + pInd_Not) * otherMediaTrust.c, data = d)
summary(voteConf7)
##
## Call:
## lm(formula = overallvote.c ~ (pDem_Rep + pInd_Not) * otherMediaTrust.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4266 -0.8139 0.0742 0.7964 3.2729
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.08774 0.03927 -2.234 0.0257 *
## pDem_Rep -0.95491 0.08555 -11.163 < 2e-16 ***
## pInd_Not 0.38261 0.09194 4.162 3.39e-05 ***
## otherMediaTrust.c 0.56338 0.04158 13.550 < 2e-16 ***
## pDem_Rep:otherMediaTrust.c 0.05556 0.08512 0.653 0.5141
## pInd_Not:otherMediaTrust.c -0.04641 0.10109 -0.459 0.6462
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.111 on 1198 degrees of freedom
## (1272 observations deleted due to missingness)
## Multiple R-squared: 0.3965, Adjusted R-squared: 0.394
## F-statistic: 157.4 on 5 and 1198 DF, p-value: < 2.2e-16
voteConf8 <- lm(ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * otherMediaTrust.c, data = d)
summary(voteConf8)
##
## Call:
## lm(formula = ownvote.c ~ (pDem_Rep + pInd_Not) * durPost * otherMediaTrust.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4213 -0.8067 0.1933 0.7956 2.9788
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.21522 0.04225 -5.094 4.07e-07 ***
## pDem_Rep -0.45452 0.09206 -4.937 9.04e-07 ***
## pInd_Not 0.65506 0.09887 6.625 5.23e-11 ***
## durPost 0.12514 0.08450 1.481 0.13885
## otherMediaTrust.c 0.40597 0.04534 8.954 < 2e-16 ***
## pDem_Rep:durPost -0.35017 0.18412 -1.902 0.05742 .
## pInd_Not:durPost 0.10554 0.19774 0.534 0.59364
## pDem_Rep:otherMediaTrust.c -0.32427 0.09216 -3.519 0.00045 ***
## pInd_Not:otherMediaTrust.c 0.02986 0.11066 0.270 0.78736
## durPost:otherMediaTrust.c 0.10931 0.09068 1.205 0.22826
## pDem_Rep:durPost:otherMediaTrust.c 0.36830 0.18431 1.998 0.04592 *
## pInd_Not:durPost:otherMediaTrust.c -0.25383 0.22133 -1.147 0.25168
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.192 on 1193 degrees of freedom
## (1271 observations deleted due to missingness)
## Multiple R-squared: 0.2241, Adjusted R-squared: 0.2169
## F-statistic: 31.32 on 11 and 1193 DF, p-value: < 2.2e-16
cor.test(d$overallvote.c, d$foxTrust.c)
##
## Pearson's product-moment correlation
##
## data: d$overallvote.c and d$foxTrust.c
## t = -6.8121, df = 1207, p-value = 1.514e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.2461214 -0.1375261
## sample estimates:
## cor
## -0.1924128
cor.test(d$ownvote.c, d$foxTrust.c)
##
## Pearson's product-moment correlation
##
## data: d$ownvote.c and d$foxTrust.c
## t = -5.0728, df = 1208, p-value = 4.535e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.19915668 -0.08878985
## sample estimates:
## cor
## -0.1444224
cor.test(d$overallvote.c, d$otherMediaTrust.c)
##
## Pearson's product-moment correlation
##
## data: d$overallvote.c and d$otherMediaTrust.c
## t = 23.814, df = 1203, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5263756 0.6032130
## sample estimates:
## cor
## 0.5660223
cor.test(d$ownvote.c, d$otherMediaTrust.c)
##
## Pearson's product-moment correlation
##
## data: d$ownvote.c and d$otherMediaTrust.c
## t = 14.125, df = 1204, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.3275564 0.4244487
## sample estimates:
## cor
## 0.3770336
No mediation
legit1 <- lm(overallvote.c ~ pDem_Rep + pInd_Not * otherMediaExposure.c, data = d)
summary(legit1)
##
## Call:
## lm(formula = overallvote.c ~ pDem_Rep + pInd_Not * otherMediaExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3709 -0.9744 0.0740 0.8934 2.7163
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.10819 0.03797 -2.849 0.00446 **
## pDem_Rep -1.42630 0.07865 -18.134 < 2e-16 ***
## pInd_Not 0.30553 0.09463 3.229 0.00128 **
## otherMediaExposure.c 0.35319 0.04227 8.356 < 2e-16 ***
## pInd_Not:otherMediaExposure.c -0.13571 0.10306 -1.317 0.18815
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.177 on 1201 degrees of freedom
## (1270 observations deleted due to missingness)
## Multiple R-squared: 0.3226, Adjusted R-squared: 0.3203
## F-statistic: 143 on 4 and 1201 DF, p-value: < 2.2e-16
legit2 <- lm(foxExposure.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c, data = d)
summary(legit2)
##
## Call:
## lm(formula = foxExposure.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0078 -0.8235 -0.3244 0.7113 3.8539
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.002599 0.029173 0.089 0.9290
## pDem_Rep 1.317180 0.059965 21.966 < 2e-16 ***
## pInd_Not 0.340356 0.070770 4.809 1.61e-06 ***
## otherMediaExposure.c 0.578605 0.033436 17.305 < 2e-16 ***
## pDem_Rep:otherMediaExposure.c 0.027023 0.067322 0.401 0.6882
## pInd_Not:otherMediaExposure.c -0.199843 0.082027 -2.436 0.0149 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.24 on 2398 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.2206, Adjusted R-squared: 0.219
## F-statistic: 135.8 on 5 and 2398 DF, p-value: < 2.2e-16
legit3 <- lm(overallvote.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c + foxExposure.c, data = d)
summary(legit3)
##
## Call:
## lm(formula = overallvote.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c +
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2639 -0.9542 0.0416 0.8719 3.1804
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.07216 0.03845 -1.877 0.060781 .
## pDem_Rep -1.23320 0.08536 -14.448 < 2e-16 ***
## pInd_Not 0.40454 0.09470 4.272 2.09e-05 ***
## otherMediaExposure.c 0.44745 0.04464 10.023 < 2e-16 ***
## foxExposure.c -0.13462 0.02712 -4.964 7.90e-07 ***
## pDem_Rep:otherMediaExposure.c 0.32953 0.08610 3.827 0.000136 ***
## pInd_Not:otherMediaExposure.c -0.13675 0.10196 -1.341 0.180087
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.16 on 1199 degrees of freedom
## (1270 observations deleted due to missingness)
## Multiple R-squared: 0.3436, Adjusted R-squared: 0.3403
## F-statistic: 104.6 on 6 and 1199 DF, p-value: < 2.2e-16
No mediation
legit1 <- lm(ownvote.c ~ pDem_Rep + pInd_Not * otherMediaExposure.c, data = d)
summary(legit1)
##
## Call:
## lm(formula = ownvote.c ~ pDem_Rep + pInd_Not * otherMediaExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3339 -1.1311 0.3506 0.8076 2.2466
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15672 0.03983 -3.935 8.79e-05 ***
## pDem_Rep -0.86369 0.08259 -10.457 < 2e-16 ***
## pInd_Not 0.72099 0.09920 7.268 6.56e-13 ***
## otherMediaExposure.c 0.18827 0.04434 4.246 2.34e-05 ***
## pInd_Not:otherMediaExposure.c -0.17040 0.10803 -1.577 0.115
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 1202 degrees of freedom
## (1269 observations deleted due to missingness)
## Multiple R-squared: 0.1626, Adjusted R-squared: 0.1599
## F-statistic: 58.37 on 4 and 1202 DF, p-value: < 2.2e-16
legit2 <- lm(foxExposure.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c, data = d)
summary(legit2)
##
## Call:
## lm(formula = foxExposure.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0078 -0.8235 -0.3244 0.7113 3.8539
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.002599 0.029173 0.089 0.9290
## pDem_Rep 1.317180 0.059965 21.966 < 2e-16 ***
## pInd_Not 0.340356 0.070770 4.809 1.61e-06 ***
## otherMediaExposure.c 0.578605 0.033436 17.305 < 2e-16 ***
## pDem_Rep:otherMediaExposure.c 0.027023 0.067322 0.401 0.6882
## pInd_Not:otherMediaExposure.c -0.199843 0.082027 -2.436 0.0149 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.24 on 2398 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.2206, Adjusted R-squared: 0.219
## F-statistic: 135.8 on 5 and 2398 DF, p-value: < 2.2e-16
legit3 <- lm(ownvote.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c + foxExposure.c, data = d)
summary(legit3)
##
## Call:
## lm(formula = ownvote.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c +
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3548 -1.0238 0.2652 0.8142 2.3876
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.15074 0.04071 -3.703 0.000223 ***
## pDem_Rep -0.71447 0.09047 -7.898 6.39e-15 ***
## pInd_Not 0.76798 0.10022 7.663 3.72e-14 ***
## otherMediaExposure.c 0.25384 0.04728 5.369 9.48e-08 ***
## foxExposure.c -0.11268 0.02874 -3.920 9.35e-05 ***
## pDem_Rep:otherMediaExposure.c 0.04131 0.09126 0.453 0.650860
## pInd_Not:otherMediaExposure.c -0.19139 0.10788 -1.774 0.076310 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.229 on 1200 degrees of freedom
## (1269 observations deleted due to missingness)
## Multiple R-squared: 0.1733, Adjusted R-squared: 0.1692
## F-statistic: 41.93 on 6 and 1200 DF, p-value: < 2.2e-16
No mediation
angerMediator1 <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c, data = d)
summary(angerMediator1)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.1078 -1.7370 -0.3501 1.6287 4.4288
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.208138 0.047585 67.419 < 2e-16 ***
## pDem_Rep 0.006411 0.097825 0.066 0.94775
## pInd_Not 0.475621 0.115428 4.121 3.91e-05 ***
## otherMediaExposure.c 0.200665 0.054560 3.678 0.00024 ***
## pDem_Rep:otherMediaExposure.c -0.218398 0.109922 -1.987 0.04705 *
## pInd_Not:otherMediaExposure.c -0.195488 0.133807 -1.461 0.14415
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.022 on 2396 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.01975, Adjusted R-squared: 0.01771
## F-statistic: 9.657 on 5 and 2396 DF, p-value: 3.841e-09
angerMediator2 <- lm(foxExposure.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c, data = d)
summary(angerMediator2)
##
## Call:
## lm(formula = foxExposure.c ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c,
## data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0078 -0.8235 -0.3244 0.7113 3.8539
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.002599 0.029173 0.089 0.9290
## pDem_Rep 1.317180 0.059965 21.966 < 2e-16 ***
## pInd_Not 0.340356 0.070770 4.809 1.61e-06 ***
## otherMediaExposure.c 0.578605 0.033436 17.305 < 2e-16 ***
## pDem_Rep:otherMediaExposure.c 0.027023 0.067322 0.401 0.6882
## pInd_Not:otherMediaExposure.c -0.199843 0.082027 -2.436 0.0149 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.24 on 2398 degrees of freedom
## (72 observations deleted due to missingness)
## Multiple R-squared: 0.2206, Adjusted R-squared: 0.219
## F-statistic: 135.8 on 5 and 2398 DF, p-value: < 2.2e-16
angerMediator3 <- lm(emotion_1 ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c + foxExposure.c, data = d)
summary(angerMediator3)
##
## Call:
## lm(formula = emotion_1 ~ (pDem_Rep + pInd_Not) * otherMediaExposure.c +
## foxExposure.c, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.100 -1.740 -0.353 1.628 4.436
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.208168 0.047594 67.406 < 2e-16 ***
## pDem_Rep 0.018826 0.107278 0.175 0.860709
## pInd_Not 0.478833 0.116009 4.128 3.79e-05 ***
## otherMediaExposure.c 0.206093 0.057861 3.562 0.000375 ***
## foxExposure.c -0.009411 0.033346 -0.282 0.777802
## pDem_Rep:otherMediaExposure.c -0.218093 0.109948 -1.984 0.047415 *
## pInd_Not:otherMediaExposure.c -0.197393 0.134002 -1.473 0.140867
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.022 on 2395 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.01979, Adjusted R-squared: 0.01733
## F-statistic: 8.057 on 6 and 2395 DF, p-value: 1.236e-08