Objetivo Identificar los valores de la función de probabilidad bajo la fórmula de distribución de Hipergeometrica.
Descripción Realizar distribuciones de probabilidad conforme a la distribucion de probabilidad de Hipergeometrica a partir de valores iniciales de los ejercicios.
Se generan las tablas de probabilidad conforme a distribucion Hipergeometrica, se identifican los valores de probabilidad cuando la variable discreta x tenga algun exactamente algun valor, ≤ a algun valor o > o ≥, entre otros.
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
#source("../funciones/funciones.distribuciones.r")
# o
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
## Warning: package 'gtools' was built under R version 4.0.3
Una empresa fabrica fusibles que empaca en cajas de 12 unidades cada una. * Asuma que un inspector selecciona al azar 3 de los 12 fusibles de una caja para inspeccionarlos. * Si la caja contiene exactamente 5 fusibles defectuosos,
En este ejercicio:: n=3 Número de ensayos N=12 Total de elementos r=5 fusibles defectuosos en la caja, casos de éxito x es la cantidad de fusible defectusoso como variable aleatoria discreta, desde 0 hasta n
N <- 12
n <- 3
r <- 5
x <- 0:n
datos1 <- data.frame(x=x, f.prob.x = round(f.prob.hiper(x = x, N = N, n = n, r = r), 8))
datos1 <- cbind(datos1, f.acum.x = cumsum(datos1$f.prob.x))
datos1
## x f.prob.x f.acum.x
## 1 0 0.15909091 0.1590909
## 2 1 0.47727273 0.6363636
## 3 2 0.31818182 0.9545455
## 4 3 0.04545455 1.0000000
m <-n; N <-N; k <- r; n <- N - n
datos2 <- data.frame(x=x, f.prob.x = round(dhyper(x = x,m = m, n = n, k = k), 8))
datos2 <- cbind(datos2, f.acum.x = cumsum(datos2$f.prob.x))
datos2
## x f.prob.x f.acum.x
## 1 0 0.15909091 0.1590909
## 2 1 0.47727273 0.6363636
## 3 2 0.31818182 0.9545455
## 4 3 0.04545455 1.0000000
ggplot(data = datos2, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
x <- 1
prob <- datos2$f.prob.x[x+1]
paste("La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: ", round(prob * 100,4), "%")
## [1] "La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: 47.7273 %"
x <- 2
prob <- datos2$f.acum.x[x+1]
paste("La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: ", round(prob * 100,4), "%")
## [1] "La probabilidad de que el inspector encuentre que uno de los tres fusibles está defectuoso es: 95.4545 %"
N <- 12
n <- 3
r <- 5
VE <- f.va.hiper(n = n, N = N, r = r)
paste("El valor esperado o media de este ejercicio es de: ", VE)
## [1] "El valor esperado o media de este ejercicio es de: 1.25"
varianza <- f.varianza.hiper(VE = VE, n = 3, N = 12, r = 5)
desvstd <- sqrt(varianza)
paste("El valor de la varianza es de: ", round(varianza,4), " y la desviación std es de: ", round(desvstd, 4))
## [1] "El valor de la varianza es de: 0.5966 y la desviación std es de: 0.7724"
Lotes con 40 componentes cada uno que contengan 3 o más defectuosos se consideran inaceptables.
El procedimiento para obtener muestras del lote consiste en seleccionar 5 componentes al azar y rechazar el lote si se encuentra un componente defectuoso.
n=5, N=40, k=3 y x=0,1,2,3,4…n
N <- 40
n <- 5
r <- 3
x <- 0:r
m <-n; N <-N; k <- r; n <- N - n
datos <- data.frame(x=x, f.prob.x = round(dhyper(x = x,m = m, n = n, k = k), 8))
datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))
datos
## x f.prob.x f.acum.x
## 1 0 0.66244939 0.6624494
## 2 1 0.30111336 0.9635628
## 3 2 0.03542510 0.9989879
## 4 3 0.00101215 1.0000000
ggplot(data = datos, aes(x,f.prob.x) ) +
geom_point(colour = "red") +
geom_line(colour = 'blue')
x <- 1
prob <- datos$f.prob.x[x+1]
paste("La probabilidad de que, en la muestra, se encuentre exactamente un componente defectuoso de tres es: ", round(prob * 100,4), "%")
## [1] "La probabilidad de que, en la muestra, se encuentre exactamente un componente defectuoso de tres es: 30.1113 %"
N <- 12
n <- 3
r <- 5
VE <- f.va.hiper(n = n, N = N, r = r)
paste("El valor esperado o media de este ejercicio es de: ", VE)
## [1] "El valor esperado o media de este ejercicio es de: 1.25"
varianza <- f.varianza.hiper(VE = VE, n = 3, N = 12, r = 5)
desvstd <- sqrt(varianza)
paste("El valor de la varianza es de: ", round(varianza,4), " y la desviación std es de: ", round(desvstd, 4))
## [1] "El valor de la varianza es de: 0.5966 y la desviación std es de: 0.7724"
Se tiene un lote de 100 artículos de los cuales 12 están defectuosos
N <- 100
n <- 10
r <- 12
x <- 0:n
datos <- data.frame(x=x, f.prob.x = round(f.prob.hiper(x = x, N = N, n = n, r = r), 8))
datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))
datos
## x f.prob.x f.acum.x
## 1 0 0.26075027 0.2607503
## 2 1 0.39607636 0.6568266
## 3 2 0.24507225 0.9018989
## 4 3 0.08068222 0.9825811
## 5 4 0.01549689 0.9980780
## 6 5 0.00179241 0.9998704
## 7 6 0.00012447 0.9999949
## 8 7 0.00000502 0.9999999
## 9 8 0.00000011 1.0000000
## 10 9 0.00000000 1.0000000
## 11 10 0.00000000 1.0000000
x <- 3
prob <- datos$f.prob.x[x+1]
paste("La probabilidad de que haya 3 defectuosos en una muestra de 10 es de", prob)
## [1] "La probabilidad de que haya 3 defectuosos en una muestra de 10 es de 0.08068222"
N <- 12
n <- 3
r <- 5
VE <- f.va.hiper(n = n, N = N, r = r)
paste("El valor esperado o media de este ejercicio es de: ", VE)
## [1] "El valor esperado o media de este ejercicio es de: 1.25"
varianza <- f.varianza.hiper(VE = VE, n = 3, N = 12, r = 5)
desvstd <- sqrt(varianza)
paste("El valor de la varianza es de: ", round(varianza,4), " y la desviación std es de: ", round(desvstd, 4))
## [1] "El valor de la varianza es de: 0.5966 y la desviación std es de: 0.7724"