library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
#source("../funciones/funciones.distribuciones.r")

# o

source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/funciones/funciones.distribuciones.r")
## Warning: package 'gtools' was built under R version 4.0.3

Suponga que desea saber el número de llegadas, en un lapso de 15 minutos, a la rampa del cajero automático de un banco.

Si se puede suponer que la probabilidad de llegada de los automóviles es la misma en cualesquiera de dos lapsos de la misma duración y si la llegada o no–llegada de un automóvil en cualquier lapso es independiente de la llegada o no–llegada de un automóvil en cualquier otro lapso, se puede aplicar la función de probabilidad de Poisson.

Dichas condiciones se satisfacen y en un análisis de datos pasados encuentra que el número promedio de automóviles que llegan en un lapso de 15 minutos es igual a 10

prob <- round(f.prob.poisson(10, 5),4)

paste("La probabilidad de que sean exactamente 5 automóviles es de : ", prob)
## [1] "La probabilidad de que sean exactamente 5 automóviles es de :  0.0378"
prob2 <- round(dpois(x = 5, lambda = 10),4)
paste("La probabilida de que sean exactamente 5 automóviles es de : ", prob2)
## [1] "La probabilida de que sean exactamente 5 automóviles es de :  0.0378"
datos <- data.frame(x=1:20, f.prob.x = round(dpois(x = 1:20, lambda = 10),4))

datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))

datos
##     x f.prob.x f.acum.x
## 1   1   0.0005   0.0005
## 2   2   0.0023   0.0028
## 3   3   0.0076   0.0104
## 4   4   0.0189   0.0293
## 5   5   0.0378   0.0671
## 6   6   0.0631   0.1302
## 7   7   0.0901   0.2203
## 8   8   0.1126   0.3329
## 9   9   0.1251   0.4580
## 10 10   0.1251   0.5831
## 11 11   0.1137   0.6968
## 12 12   0.0948   0.7916
## 13 13   0.0729   0.8645
## 14 14   0.0521   0.9166
## 15 15   0.0347   0.9513
## 16 16   0.0217   0.9730
## 17 17   0.0128   0.9858
## 18 18   0.0071   0.9929
## 19 19   0.0037   0.9966
## 20 20   0.0019   0.9985
ggplot(data = datos, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

datos$f.acum[10]
## [1] 0.5831
paste("La probabilidad de que el valor de x sea menor o igua a 10 es: ", datos$f.acum[10])
## [1] "La probabilidad de que el valor de x sea menor o igua a 10 es:  0.5831"
prob <- round(dpois(x = 1, lambda = 2),4)

paste("La probabilidad cuando x = 1 y media igual a 2 es del:", prob * 100, "%")
## [1] "La probabilidad cuando x = 1 y media igual a 2 es del: 27.07 %"

En ciertas instalaciones industriales los accidentes ocurren con muy poca frecuencia. Se sabe que la probabilidad de un accidente en cualquier día dado es 0.005 y los accidentes son independientes entre sí

n <- 400
prob <- 0.005

media <- n * prob
datos <- data.frame(x=0:10, f.prob.x = round(dpois(x = 0:10, lambda = media),4))

datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))

datos
##     x f.prob.x f.acum.x
## 1   0   0.1353   0.1353
## 2   1   0.2707   0.4060
## 3   2   0.2707   0.6767
## 4   3   0.1804   0.8571
## 5   4   0.0902   0.9473
## 6   5   0.0361   0.9834
## 7   6   0.0120   0.9954
## 8   7   0.0034   0.9988
## 9   8   0.0009   0.9997
## 10  9   0.0002   0.9999
## 11 10   0.0000   0.9999
ggplot(data = datos, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

x <- 1
prob <- datos$f.prob.x[x+1]
paste("La probabiidad del valor de x=1 es: ", prob)
## [1] "La probabiidad del valor de x=1 es:  0.2707"
x <- 3
prob <- datos$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", prob)
## [1] "La probabiidad del valor de x<=3 es:  0.8571"

Un fabricante de automóviles se preocupa por una falla en el mecanismo de freno de un modelo específico. La falla puede causar en raras ocasiones una catástrofe a alta velocidad. Suponga que la distribución del número de automóviles por año que experimentará la falla es una variable aleatoria de Poisson con λ=5

media <- 5

datos <- data.frame(x=0:20, f.prob.x = round(dpois(x = 0:20, lambda = media),8))

datos <- cbind(datos, f.acum.x = cumsum(datos$f.prob.x))

datos
##     x   f.prob.x   f.acum.x
## 1   0 0.00673795 0.00673795
## 2   1 0.03368973 0.04042768
## 3   2 0.08422434 0.12465202
## 4   3 0.14037390 0.26502592
## 5   4 0.17546737 0.44049329
## 6   5 0.17546737 0.61596066
## 7   6 0.14622281 0.76218347
## 8   7 0.10444486 0.86662833
## 9   8 0.06527804 0.93190637
## 10  9 0.03626558 0.96817195
## 11 10 0.01813279 0.98630474
## 12 11 0.00824218 0.99454692
## 13 12 0.00343424 0.99798116
## 14 13 0.00132086 0.99930202
## 15 14 0.00047174 0.99977376
## 16 15 0.00015725 0.99993101
## 17 16 0.00004914 0.99998015
## 18 17 0.00001445 0.99999460
## 19 18 0.00000401 0.99999861
## 20 19 0.00000106 0.99999967
## 21 20 0.00000026 0.99999993
ggplot(data = datos, aes(x,f.prob.x) ) +
  geom_point(colour = "red") +
  geom_line(colour = 'blue')

x <- 3
prob <- datos$f.acum.x[x+1]
paste("La probabiidad del valor de x<=3 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x<=3 es:  26.5026 %"
x <- 1
prob <- 1 - datos$f.acum.x[x+1]

paste("La probabiidad del valor de x>1 es: ", round(prob * 100,4), "%")
## [1] "La probabiidad del valor de x>1 es:  95.9572 %"