Objetivo Resolver cuestiones de casos de probabilidad en casos mediante la identificación de variables aleatorias, funciones de probabilidad, funciones acumuladas, media, varianza y desviación estándar de distribuciones de variables discretas; visualización gráfica relacionada con variables discretas.

Descripción Identificar casos relacionados con variables discretas para elaborar mediante programación R y markdown las variables discretas, las funciones de probabilidad de cada variable, la función acumulada, su visualización gráfica para su correcta implementación.

Se incluye en el caso, media, varianza y desviación estándar de distribuciones de variables discretas.

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
library(stringr)  # String
## Warning: package 'stringr' was built under R version 4.0.3
library(stringi)  # String
## Warning: package 'stringi' was built under R version 4.0.3
library(gtools)
## Warning: package 'gtools' was built under R version 4.0.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(knitr)
## Warning: package 'knitr' was built under R version 4.0.3
options(scipen = 999) # Notación normal

Se venden 5000 billetes para una rifa a 1 euro cada uno. Existe un único premio de cierta cantidad, calcular los valores de las variables aleatorias y sus probabilidades para 0 para no gana y 1 para si gana cuando un comprador adquiere tres billetes. (Hero, n.d.)

discretas <- c(0,1)   # 0 Que no gane, 1 que gane
n <- 5000
casos <- c(4997,50)
probabilidades <- casos / n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 4997 0.9994 0.9994 0.00
1 50 0.0100 1.0094 0.01
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 0.01
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4997 0.9994 0.9994 0.00 0.01 0.0000999
1 50 0.0100 1.0094 0.01 0.01 0.0098010
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 0.00990094
desv.std <- sqrt(varianza)
desv.std
## [1] 0.09950347

Las ventas de automóviles de una empresa

Durante los últimos 300 días de operación, los datos de ventas muestran que hubo

54 días en los que no se vendió ningún automóvil,

117 días en los que se vendió 1 automóvil,

72 días en los que se vendieron 2 automóviles,

42 días en los que se vendieron 3 automóviles,

12 días en los que se vendieron 4 automóviles y

3 días en los que se vendieron 5 automóviles.

¿Cuál es la probabilida de que se venda exactamente un automoviles?

¿Cuál es la la probabilidad de que se venda al menos 2 automóviles?

discretas <- 0:5   # c(0,1,2,3,4,5)
n <- 300

casos <- c(54, 117, 72, 42, 12, 3)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada,
                     x.f.prob.x= (discretas*probabilidades))
kable(tabla)
x casos f.prob.x F.acum.x x.f.prob.x
0 54 0.18 0.18 0.00
1 117 0.39 0.57 0.39
2 72 0.24 0.81 0.48
3 42 0.14 0.95 0.42
4 12 0.04 0.99 0.16
5 3 0.01 1.00 0.05
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 1.5
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 54 0.18 0.18 0.00 1.5 0.4050
1 117 0.39 0.57 0.39 1.5 0.0975
2 72 0.24 0.81 0.48 1.5 0.0600
3 42 0.14 0.95 0.42 1.5 0.3150
4 12 0.04 0.99 0.16 1.5 0.2500
5 3 0.01 1.00 0.05 1.5 0.1225
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 1.25
desv.std <- sqrt(varianza)
desv.std
## [1] 1.118034

En Estados Unidos un porcentaje de los niños de cuarto grado no pueden leer un libro adecuado a su edad. La tabla siguiente muestra, de acuerdo con las edades de entre 6 y 14 años, el número de niños que tienen problemas de lectura. La mayoría de estos niños tienen problemas de lectura que debieron ser detectados y corregidos antes del tercer grado.(Anderson et al., 2008)

¿Cuál es la probabilida de elegir alumnos que tienen problemas de exactamente 10 años? ¿Cuál es la probabilidad de encontrar alumnos por de 11 años o menos?

discretas <- 6:14
#n <- '?'

casos <- c(37369, 87436, 160840,239719,286719,306533,310787,302604,289168)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada,
                    x.f.prob.x= (discretas*probabilidades))
kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x
6 37369 0.0184888 0.0184888 0.1109325
7 87436 0.0432600 0.0617487 0.3028199
8 160840 0.0795775 0.1413262 0.6366198
9 239719 0.1186038 0.2599300 1.0674340
10 286719 0.1418576 0.4017876 1.4185758
11 306533 0.1516608 0.5534484 1.6682687
12 310787 0.1537655 0.7072139 1.8451861
13 302604 0.1497169 0.8569307 1.9463193
14 289168 0.1430693 1.0000000 2.0029696
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 10.99913
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
6 37369 0.0184888 0.0184888 0.1109325 10.99913 0.4620571
7 87436 0.0432600 0.0617487 0.3028199 10.99913 0.6918572
8 160840 0.0795775 0.1413262 0.6366198 10.99913 0.7157799
9 239719 0.1186038 0.2599300 1.0674340 10.99913 0.4740005
10 286719 0.1418576 0.4017876 1.4185758 10.99913 0.1416097
11 306533 0.1516608 0.5534484 1.6682687 10.99913 0.0000001
12 310787 0.1537655 0.7072139 1.8451861 10.99913 0.1540345
13 302604 0.1497169 0.8569307 1.9463193 10.99913 0.5993912
14 289168 0.1430693 1.0000000 2.0029696 10.99913 1.2883739
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 4.527104
desv.std <- sqrt(varianza)
desv.std
## [1] 2.127699