library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2)
library(knitr)
library(fdth)
##
## Attaching package: 'fdth'
## The following objects are masked from 'package:mosaic':
##
## sd, var
## The following objects are masked from 'package:stats':
##
## sd, var
source("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/construir%20datos%20y%20funciones%20caso%209.r", encoding = "UTF-8")
kable(head(personas, 10), caption = "Los primeros diez registros de nombres en el conjunto dedatos")
| nombres | generos | ajedrez | beisbol | tiro.arco | pesas | futbol | softbol | atletismo | folklorico | tahitiano | teatro | rondalla | pantomima |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| JUAN | M | NO | NO | NO | SI | NO | SI | NO | NO | NO | NO | NO | SI |
| JOSÉ LUIS | M | NO | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO |
| JOSÉ | M | NO | SI | NO | SI | NO | NO | NO | NO | NO | NO | SI | SI |
| MARÍA GUADALUPE | F | NO | SI | NO | NO | NO | NO | NO | NO | NO | NO | SI | SI |
| FRANCISCO | M | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | NO |
| GUADALUPE | F | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO |
| MARÍA | F | NO | SI | NO | NO | SI | NO | NO | NO | NO | NO | NO | NO |
| JUANA | F | NO | NO | NO | NO | SI | NO | NO | SI | NO | NO | NO | NO |
| ANTONIO | M | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO |
| JESÚS | M | NO | NO | SI | NO | NO | SI | NO | NO | SI | NO | NO | NO |
kable(tail(personas, 10), caption = "Las útimos diez registros de nombres en el conjunto de datos")
| nombres | generos | ajedrez | beisbol | tiro.arco | pesas | futbol | softbol | atletismo | folklorico | tahitiano | teatro | rondalla | pantomima | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 91 | ANDREA | F | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | SI |
| 92 | ISABEL | F | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO |
| 93 | MARÍA TERESA | F | NO | SI | NO | NO | SI | NO | NO | SI | NO | NO | NO | NO |
| 94 | IRMA | F | SI | SI | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO |
| 95 | CARMEN | F | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO |
| 96 | LUCÍA | F | NO | SI | NO | SI | NO | NO | NO | SI | NO | NO | SI | SI |
| 97 | ADRIANA | F | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | NO |
| 98 | AGUSTÍN | M | NO | SI | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO |
| 99 | MARÍA DE LA LUZ | F | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | NO |
| 100 | GUSTAVO | M | NO | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO |
alumnos <- alumnos <- read_csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/promedios%20alumnos/datos%20alumnos%20promedios%20SEP%202020.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## `No. Control` = col_double(),
## Alumno = col_double(),
## Semestre = col_double(),
## `Cr. Apr.` = col_double(),
## Carga = col_double(),
## Promedio = col_double(),
## Carrera = col_character()
## )
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera |
|---|---|---|---|---|---|---|
| 20190001 | 1 | 11 | 198 | 19 | 80.21 | SISTEMAS |
| 20190002 | 2 | 11 | 235 | 10 | 84.33 | SISTEMAS |
| 20190003 | 3 | 9 | 235 | 10 | 95.25 | SISTEMAS |
| 20190004 | 4 | 9 | 226 | 19 | 95.00 | SISTEMAS |
| 20190005 | 5 | 10 | 231 | 14 | 82.32 | SISTEMAS |
| 20190006 | 6 | 9 | 212 | 23 | 95.02 | SISTEMAS |
| 20190007 | 7 | 12 | 221 | 10 | 79.06 | SISTEMAS |
| 20190008 | 8 | 9 | 226 | 9 | 92.47 | SISTEMAS |
| 20190009 | 9 | 9 | 231 | 4 | 91.08 | SISTEMAS |
| 20190010 | 10 | 11 | 222 | 13 | 80.42 | SISTEMAS |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera |
|---|---|---|---|---|---|---|
| 20195920 | 5920 | 7 | 169 | 23 | 89.14 | ADMINISTRACION |
| 20195921 | 5921 | 5 | 109 | 26 | 87.83 | ADMINISTRACION |
| 20195922 | 5922 | 3 | 55 | 29 | 92.83 | ADMINISTRACION |
| 20195923 | 5923 | 2 | 23 | 23 | 88.60 | ADMINISTRACION |
| 20195924 | 5924 | 2 | 27 | 28 | 92.83 | ADMINISTRACION |
| 20195925 | 5925 | 7 | 94 | 13 | 80.95 | ADMINISTRACION |
| 20195926 | 5926 | 5 | 103 | 32 | 92.68 | ADMINISTRACION |
| 20195927 | 5927 | 4 | 79 | 34 | 86.18 | ADMINISTRACION |
| 20195928 | 5928 | 5 | 108 | 32 | 90.48 | ADMINISTRACION |
| 20195929 | 5929 | 7 | 169 | 32 | 92.33 | ADMINISTRACION |
###Simular Muestras
N <- nrow(personas)
n <- 10
muestra <- sample(personas$nombres, n)
kable(muestra, caption = "La muestra de personas")
| x |
|---|
| FRANCISCA |
| GUSTAVO |
| JORGE |
| PATRICIA |
| PEDRO |
| LUCÍA |
| ELIZABETH |
| JESÚS |
| ALEJANDRO |
| RAFAEL |
N <- nrow(alumnos)
n <- 100
muestra <- sample(N, n) # Genera los números
kable(alumnos[muestra, ], caption = "La muestra de alumnos")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera |
|---|---|---|---|---|---|---|
| 20194973 | 4973 | 6 | 133 | 33 | 85.54 | GESTION EMPRESARIAL |
| 20195866 | 5866 | 1 | NA | 27 | 0.00 | ADMINISTRACION |
| 20191513 | 1513 | 6 | 67 | 34 | 78.60 | BIOQUIMICA |
| 20194076 | 4076 | 7 | 144 | 32 | 88.52 | MECATRONICA |
| 20192521 | 2521 | 9 | 222 | 23 | 86.40 | ELECTRONICA |
| 20195624 | 5624 | 3 | 55 | 29 | 96.67 | ADMINISTRACION |
| 20194985 | 4985 | 4 | 55 | 29 | 80.42 | GESTION EMPRESARIAL |
| 20195075 | 5075 | 5 | 116 | 32 | 87.71 | GESTION EMPRESARIAL |
| 20195041 | 5041 | 7 | 140 | 35 | 82.27 | GESTION EMPRESARIAL |
| 20190395 | 395 | 1 | NA | 27 | 0.00 | SISTEMAS |
| 20193795 | 3795 | 4 | 66 | 29 | 86.47 | MECATRONICA |
| 20195683 | 5683 | 1 | NA | 27 | 0.00 | ADMINISTRACION |
| 20191577 | 1577 | 9 | 165 | 16 | 78.86 | CIVIL |
| 20192306 | 2306 | 5 | 89 | 27 | 86.33 | ELECTRICA |
| 20193510 | 3510 | 3 | 41 | 24 | 76.80 | MECANICA |
| 20191415 | 1415 | 6 | 123 | 29 | 82.48 | BIOQUIMICA |
| 20190830 | 830 | 5 | 97 | 26 | 93.50 | ARQUITECTURA |
| 20190200 | 200 | 7 | 107 | 17 | 79.26 | SISTEMAS |
| 20195484 | 5484 | 11 | 257 | 5 | 87.44 | ADMINISTRACION |
| 20190025 | 25 | 11 | 230 | 15 | 84.02 | SISTEMAS |
| 20192596 | 2596 | 3 | 52 | 25 | 92.67 | ELECTRONICA |
| 20193863 | 3863 | 1 | NA | 25 | 0.00 | MECATRONICA |
| 20190074 | 74 | 10 | 230 | 15 | 83.94 | SISTEMAS |
| 20191933 | 1933 | 1 | NA | 27 | 0.00 | CIVIL |
| 20191691 | 1691 | 4 | 75 | 32 | 84.19 | CIVIL |
| 20192587 | 2587 | 5 | 90 | 20 | 83.50 | ELECTRONICA |
| 20190886 | 886 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20194827 | 4827 | 7 | 150 | 25 | 88.75 | GESTION EMPRESARIAL |
| 20194756 | 4756 | 9 | 230 | 15 | 91.77 | GESTION EMPRESARIAL |
| 20190663 | 663 | 7 | 151 | 23 | 85.22 | ARQUITECTURA |
| 20192503 | 2503 | 10 | 202 | 23 | 81.25 | ELECTRONICA |
| 20194892 | 4892 | 1 | NA | 27 | 0.00 | GESTION EMPRESARIAL |
| 20194549 | 4549 | 6 | 133 | 23 | 83.25 | QUIMICA |
| 20190308 | 308 | 4 | 83 | 29 | 91.00 | SISTEMAS |
| 20192139 | 2139 | 6 | 143 | 30 | 84.77 | CIVIL |
| 20191319 | 1319 | 7 | 124 | 34 | 83.15 | BIOQUIMICA |
| 20195755 | 5755 | 4 | 84 | 29 | 87.44 | ADMINISTRACION |
| 20195925 | 5925 | 7 | 94 | 13 | 80.95 | ADMINISTRACION |
| 20193632 | 3632 | 1 | NA | 26 | 0.00 | MECANICA |
| 20193546 | 3546 | 3 | 48 | 22 | 78.64 | MECANICA |
| 20191619 | 1619 | 9 | 225 | 10 | 84.85 | CIVIL |
| 20191632 | 1632 | 9 | 159 | 15 | 80.15 | CIVIL |
| 20194890 | 4890 | 7 | 170 | 35 | 87.44 | GESTION EMPRESARIAL |
| 20192090 | 2090 | 4 | 78 | 33 | 83.59 | CIVIL |
| 20191764 | 1764 | 1 | NA | 27 | 0.00 | CIVIL |
| 20190612 | 612 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20191097 | 1097 | 7 | 139 | 24 | 84.62 | ARQUITECTURA |
| 20190796 | 796 | 7 | 116 | 34 | 81.12 | ARQUITECTURA |
| 20190240 | 240 | 2 | 27 | 28 | 92.33 | SISTEMAS |
| 20191202 | 1202 | 1 | NA | 23 | 0.00 | BIOQUIMICA |
| 20194673 | 4673 | 12 | 219 | 16 | 89.93 | GESTION EMPRESARIAL |
| 20195370 | 5370 | 5 | 41 | 4 | 81.44 | INFORMATICA |
| 20191901 | 1901 | 5 | 117 | 31 | 87.08 | CIVIL |
| 20193696 | 3696 | 11 | 231 | 4 | 83.33 | MECATRONICA |
| 20193370 | 3370 | 11 | 225 | 10 | 81.86 | MECANICA |
| 20191197 | 1197 | 3 | 57 | 27 | 82.54 | BIOQUIMICA |
| 20193032 | 3032 | 3 | 55 | 29 | 89.00 | INDUSTRIAL |
| 20194867 | 4867 | 1 | NA | 27 | 0.00 | GESTION EMPRESARIAL |
| 20191967 | 1967 | 1 | NA | 27 | 0.00 | CIVIL |
| 20193638 | 3638 | 7 | 170 | 27 | 86.59 | MECANICA |
| 20190934 | 934 | 7 | 170 | 28 | 88.58 | ARQUITECTURA |
| 20194100 | 4100 | 9 | 225 | 5 | 87.96 | QUIMICA |
| 20195193 | 5193 | 6 | 138 | 33 | 86.21 | GESTION EMPRESARIAL |
| 20195450 | 5450 | 10 | 262 | 10 | 88.60 | ADMINISTRACION |
| 20191067 | 1067 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20193404 | 3404 | 10 | 172 | 18 | 81.13 | MECANICA |
| 20194217 | 4217 | 12 | 225 | 10 | 78.46 | QUIMICA |
| 20191449 | 1449 | 1 | NA | 23 | 0.00 | BIOQUIMICA |
| 20192720 | 2720 | 9 | 202 | 24 | 82.28 | INDUSTRIAL |
| 20195151 | 5151 | 1 | NA | 27 | 0.00 | GESTION EMPRESARIAL |
| 20193110 | 3110 | 1 | NA | 27 | 0.00 | INDUSTRIAL |
| 20191051 | 1051 | 6 | 127 | 24 | 88.19 | ARQUITECTURA |
| 20194783 | 4783 | 1 | NA | 27 | 0.00 | GESTION EMPRESARIAL |
| 20195643 | 5643 | 2 | 27 | 28 | 92.67 | ADMINISTRACION |
| 20194482 | 4482 | 2 | 25 | 30 | 82.00 | QUIMICA |
| 20194046 | 4046 | 1 | NA | 25 | 0.00 | MECATRONICA |
| 20192183 | 2183 | 2 | 27 | 30 | 83.50 | CIVIL |
| 20190659 | 659 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20195318 | 5318 | 1 | NA | 26 | 0.00 | TIC |
| 20192101 | 2101 | 2 | 23 | 25 | 80.80 | CIVIL |
| 20191758 | 1758 | 4 | 80 | 34 | 85.94 | CIVIL |
| 20192297 | 2297 | 5 | 94 | 33 | 84.77 | ELECTRICA |
| 20193793 | 3793 | 7 | 128 | 31 | 84.46 | MECATRONICA |
| 20190822 | 822 | 3 | 48 | 32 | 90.45 | ARQUITECTURA |
| 20190352 | 352 | 8 | 176 | 32 | 80.47 | SISTEMAS |
| 20193467 | 3467 | 3 | 42 | 32 | 82.30 | MECANICA |
| 20190443 | 443 | 7 | 160 | 34 | 90.34 | SISTEMAS |
| 20190241 | 241 | 5 | 112 | 25 | 91.63 | SISTEMAS |
| 20194569 | 4569 | 3 | 51 | 30 | 88.64 | QUIMICA |
| 20193456 | 3456 | 6 | 89 | 32 | 78.30 | MECANICA |
| 20195534 | 5534 | 8 | 177 | 34 | 86.89 | ADMINISTRACION |
| 20193666 | 3666 | 12 | 190 | 5 | 78.35 | MECATRONICA |
| 20192155 | 2155 | 2 | 22 | 26 | 93.40 | CIVIL |
| 20193527 | 3527 | 1 | NA | 26 | 0.00 | MECANICA |
| 20191607 | 1607 | 10 | 231 | 4 | 83.15 | CIVIL |
| 20194038 | 4038 | 5 | 105 | 24 | 88.57 | MECATRONICA |
| 20190090 | 90 | 4 | 49 | 32 | 82.64 | SISTEMAS |
| 20195706 | 5706 | 4 | 84 | 30 | 86.94 | ADMINISTRACION |
| 20190058 | 58 | 9 | 200 | 25 | 83.66 | SISTEMAS |
| 20190724 | 724 | 4 | 70 | 28 | 87.56 | ARQUITECTURA |
N <- nrow(personas)
n = 10
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
#inicio
cuales <- seq(from = inicio, to =N, by= saltos)
kable(personas[cuales, ], caption = "La muestra sistematizada de personas")
| nombres | generos | ajedrez | beisbol | tiro.arco | pesas | futbol | softbol | atletismo | folklorico | tahitiano | teatro | rondalla | pantomima | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | JESÚS | M | NO | NO | SI | NO | NO | SI | NO | NO | SI | NO | NO | NO |
| 20 | DANIEL | M | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | NO |
| 30 | DAVID | M | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO |
| 40 | MARÍA ELENA | M | NO | NO | NO | NO | NO | NO | SI | SI | NO | NO | NO | NO |
| 50 | ALBERTO | M | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | NO |
| 60 | ROSA MARÍA | F | NO | NO | NO | NO | NO | SI | NO | SI | NO | NO | NO | NO |
| 70 | GABRIEL | M | SI | NO | SI | NO | NO | SI | NO | NO | NO | NO | NO | NO |
| 80 | MARÍA LUISA | F | SI | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO |
| 90 | ARACELI | M | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | SI | NO |
| 100 | GUSTAVO | M | NO | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO |
N <- nrow(alumnos)
n = 100
saltos <- round(N / n, 0)
inicio <- round(sample(N, 1) / n, 0)
cuales <- seq(from = inicio, to =N, by= saltos)
kable(alumnos[cuales, ], caption = "La muestra de alumnos")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera |
|---|---|---|---|---|---|---|
| 20190057 | 57 | 9 | 226 | 4 | 89.10 | SISTEMAS |
| 20190116 | 116 | 7 | 165 | 34 | 93.67 | SISTEMAS |
| 20190175 | 175 | 3 | 50 | 33 | 90.91 | SISTEMAS |
| 20190234 | 234 | 7 | 105 | 22 | 84.00 | SISTEMAS |
| 20190293 | 293 | 4 | 83 | 33 | 86.28 | SISTEMAS |
| 20190352 | 352 | 8 | 176 | 32 | 80.47 | SISTEMAS |
| 20190411 | 411 | 7 | 165 | 34 | 82.78 | SISTEMAS |
| 20190470 | 470 | 9 | 198 | 29 | 83.33 | ARQUITECTURA |
| 20190529 | 529 | 10 | 172 | 12 | 79.97 | ARQUITECTURA |
| 20190588 | 588 | 4 | 80 | 30 | 90.28 | ARQUITECTURA |
| 20190647 | 647 | 6 | 124 | 26 | 83.85 | ARQUITECTURA |
| 20190706 | 706 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20190765 | 765 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20190824 | 824 | 6 | 132 | 30 | 82.96 | ARQUITECTURA |
| 20190883 | 883 | 6 | 91 | 30 | 85.53 | ARQUITECTURA |
| 20190942 | 942 | 5 | 88 | 30 | 83.32 | ARQUITECTURA |
| 20191001 | 1001 | 3 | 52 | 24 | 90.50 | ARQUITECTURA |
| 20191060 | 1060 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20191119 | 1119 | 1 | NA | 26 | 0.00 | ARQUITECTURA |
| 20191178 | 1178 | 9 | 140 | 23 | 82.81 | BIOQUIMICA |
| 20191237 | 1237 | 5 | 79 | 31 | 81.78 | BIOQUIMICA |
| 20191296 | 1296 | 8 | 95 | 28 | 76.81 | BIOQUIMICA |
| 20191355 | 1355 | 1 | NA | 23 | 0.00 | BIOQUIMICA |
| 20191414 | 1414 | 1 | NA | 23 | 0.00 | BIOQUIMICA |
| 20191473 | 1473 | 2 | 18 | 29 | 82.60 | BIOQUIMICA |
| 20191532 | 1532 | 3 | 47 | 25 | 87.09 | BIOQUIMICA |
| 20191591 | 1591 | 10 | 225 | 15 | 80.28 | CIVIL |
| 20191650 | 1650 | 9 | 235 | 10 | 91.00 | CIVIL |
| 20191709 | 1709 | 5 | 67 | 8 | 82.71 | CIVIL |
| 20191768 | 1768 | 6 | 139 | 30 | 85.21 | CIVIL |
| 20191827 | 1827 | 1 | NA | 27 | 0.00 | CIVIL |
| 20191886 | 1886 | 4 | 51 | 31 | 78.83 | CIVIL |
| 20191945 | 1945 | 3 | 55 | 30 | 87.33 | CIVIL |
| 20192004 | 2004 | 4 | 78 | 18 | 81.06 | CIVIL |
| 20192063 | 2063 | 5 | 121 | 31 | 87.12 | CIVIL |
| 20192122 | 2122 | 2 | 27 | 26 | 80.17 | CIVIL |
| 20192181 | 2181 | 1 | NA | 27 | 0.00 | CIVIL |
| 20192240 | 2240 | 9 | 221 | 14 | 92.94 | ELECTRICA |
| 20192299 | 2299 | 7 | 160 | 31 | 88.08 | ELECTRICA |
| 20192358 | 2358 | 7 | 98 | 9 | 81.04 | ELECTRICA |
| 20192417 | 2417 | 3 | 56 | 26 | 92.00 | ELECTRICA |
| 20192476 | 2476 | 3 | 51 | 28 | 85.92 | ELECTRICA |
| 20192535 | 2535 | 6 | 104 | 24 | 82.96 | ELECTRONICA |
| 20192594 | 2594 | 1 | NA | 25 | 0.00 | ELECTRONICA |
| 20192653 | 2653 | 5 | 105 | 28 | 95.17 | ELECTRONICA |
| 20192712 | 2712 | 11 | 235 | 10 | 80.68 | INDUSTRIAL |
| 20192771 | 2771 | 4 | 75 | 32 | 80.59 | INDUSTRIAL |
| 20192830 | 2830 | 8 | 174 | 36 | 81.22 | INDUSTRIAL |
| 20192889 | 2889 | 5 | 112 | 30 | 90.72 | INDUSTRIAL |
| 20192948 | 2948 | 6 | 120 | 26 | 79.30 | INDUSTRIAL |
| 20193007 | 3007 | 6 | 142 | 25 | 83.56 | INDUSTRIAL |
| 20193066 | 3066 | 7 | 149 | 25 | 87.74 | INDUSTRIAL |
| 20193125 | 3125 | 3 | 55 | 27 | 84.08 | INDUSTRIAL |
| 20193184 | 3184 | 6 | 139 | 28 | 84.48 | INDUSTRIAL |
| 20193243 | 3243 | 3 | 51 | 29 | 86.83 | INDUSTRIAL |
| 20193302 | 3302 | 5 | 95 | 27 | 81.18 | INDUSTRIAL |
| 20193361 | 3361 | 5 | 87 | 31 | 84.70 | INDUSTRIAL |
| 20193420 | 3420 | 7 | 132 | 27 | 83.52 | MECANICA |
| 20193479 | 3479 | 7 | 142 | 35 | 80.45 | MECANICA |
| 20193538 | 3538 | 5 | 108 | 29 | 84.88 | MECANICA |
| 20193597 | 3597 | 5 | 103 | 34 | 81.17 | MECANICA |
| 20193656 | 3656 | 6 | 113 | 29 | 79.72 | MECANICA |
| 20193715 | 3715 | 10 | 178 | 8 | 79.81 | MECATRONICA |
| 20193774 | 3774 | 7 | 159 | 30 | 87.76 | MECATRONICA |
| 20193833 | 3833 | 7 | 151 | 31 | 82.44 | MECATRONICA |
| 20193892 | 3892 | 6 | 76 | 20 | 81.18 | MECATRONICA |
| 20193951 | 3951 | 6 | 47 | 4 | 82.09 | MECATRONICA |
| 20194010 | 4010 | 1 | NA | 25 | 0.00 | MECATRONICA |
| 20194069 | 4069 | 5 | 105 | 24 | 86.74 | MECATRONICA |
| 20194128 | 4128 | 11 | 161 | 32 | 81.21 | QUIMICA |
| 20194187 | 4187 | 5 | 109 | 25 | 87.22 | QUIMICA |
| 20194246 | 4246 | 9 | 230 | 5 | 85.70 | QUIMICA |
| 20194305 | 4305 | 2 | 11 | 25 | 91.67 | QUIMICA |
| 20194364 | 4364 | 4 | 86 | 28 | 88.50 | QUIMICA |
| 20194423 | 4423 | 9 | 215 | 20 | 83.36 | QUIMICA |
| 20194482 | 4482 | 2 | 25 | 30 | 82.00 | QUIMICA |
| 20194541 | 4541 | 5 | 88 | 29 | 84.84 | QUIMICA |
| 20194600 | 4600 | 9 | 204 | 20 | 82.31 | QUIMICA |
| 20194659 | 4659 | 7 | 162 | 30 | 88.71 | QUIMICA |
| 20194718 | 4718 | 10 | 225 | 10 | 85.17 | GESTION EMPRESARIAL |
| 20194777 | 4777 | 5 | 107 | 33 | 87.87 | GESTION EMPRESARIAL |
| 20194836 | 4836 | 1 | NA | 27 | 0.00 | GESTION EMPRESARIAL |
| 20194895 | 4895 | 3 | 53 | 29 | 87.92 | GESTION EMPRESARIAL |
| 20194954 | 4954 | 2 | 22 | 26 | 91.20 | GESTION EMPRESARIAL |
| 20195013 | 5013 | 2 | 27 | 27 | 84.50 | GESTION EMPRESARIAL |
| 20195072 | 5072 | 3 | 54 | 28 | 93.08 | GESTION EMPRESARIAL |
| 20195131 | 5131 | 3 | 54 | 28 | 90.75 | GESTION EMPRESARIAL |
| 20195190 | 5190 | 3 | 45 | 33 | 85.10 | GESTION EMPRESARIAL |
| 20195249 | 5249 | 2 | 22 | 27 | 92.40 | GESTION EMPRESARIAL |
| 20195308 | 5308 | 1 | NA | 26 | 0.00 | TIC |
| 20195367 | 5367 | 7 | 85 | 18 | 82.58 | INFORMATICA |
| 20195426 | 5426 | 7 | 156 | 33 | 90.29 | INFORMATICA |
| 20195485 | 5485 | 9 | 262 | 10 | 92.09 | ADMINISTRACION |
| 20195544 | 5544 | 5 | 89 | 28 | 85.63 | ADMINISTRACION |
| 20195603 | 5603 | 1 | NA | 27 | 0.00 | ADMINISTRACION |
| 20195662 | 5662 | 1 | NA | 27 | 0.00 | ADMINISTRACION |
| 20195721 | 5721 | 8 | 180 | 34 | 85.00 | ADMINISTRACION |
| 20195780 | 5780 | 4 | 84 | 33 | 89.94 | ADMINISTRACION |
| 20195839 | 5839 | 6 | 140 | 28 | 91.93 | ADMINISTRACION |
| 20195898 | 5898 | 2 | 23 | 28 | 87.80 | ADMINISTRACION |
N <- nrow(personas)
n <- 10
femeninos <- filter(personas, generos=='F')
masculinos <- filter(personas, generos=='M')
frfem <- nrow(femeninos) / N
frmas <- nrow(masculinos) / N
frfem
## [1] 0.42
muestraFem <- sample(femeninos, n * frfem)
kable(muestraFem, caption = "La muestra de personas Femenino")
| nombres | generos | ajedrez | beisbol | tiro.arco | pesas | futbol | softbol | atletismo | folklorico | tahitiano | teatro | rondalla | pantomima | orig.id | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2 | GUADALUPE | F | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | NO | 2 |
| 15 | TERESA | F | NO | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | 15 |
| 14 | FRANCISCA | F | NO | NO | SI | NO | NO | NO | SI | NO | NO | NO | NO | NO | 14 |
| 7 | JAVIER | F | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | SI | NO | 7 |
muestraMas <- sample(masculinos, n * frmas)
kable(muestraMas, caption = "La muestra de personas Masculino")
| nombres | generos | ajedrez | beisbol | tiro.arco | pesas | futbol | softbol | atletismo | folklorico | tahitiano | teatro | rondalla | pantomima | orig.id | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 30 | MARIO | M | NO | NO | SI | SI | NO | NO | NO | NO | NO | NO | NO | NO | 30 |
| 52 | JOSÉ GUADALUPE | M | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | NO | SI | 52 |
| 7 | MIGUEL ÁNGEL | M | NO | NO | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | 7 |
| 58 | GUSTAVO | M | NO | NO | NO | NO | NO | NO | NO | SI | NO | NO | NO | NO | 58 |
| 34 | LUIS | M | NO | NO | NO | NO | NO | NO | NO | NO | SI | NO | NO | SI | 34 |
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$Carrera))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos")
| Category | f | rf | rf… | cf | cf… | muestra |
|---|---|---|---|---|---|---|
| INDUSTRIAL | 707 | 0.1192444 | 11.924439 | 707 | 11.92444 | 12 |
| ARQUITECTURA | 675 | 0.1138472 | 11.384719 | 1382 | 23.30916 | 11 |
| CIVIL | 648 | 0.1092933 | 10.929330 | 2030 | 34.23849 | 11 |
| GESTION EMPRESARIAL | 585 | 0.0986676 | 9.866757 | 2615 | 44.10525 | 10 |
| QUIMICA | 568 | 0.0958003 | 9.580030 | 3183 | 53.68528 | 10 |
| ADMINISTRACION | 497 | 0.0838253 | 8.382527 | 3680 | 62.06780 | 8 |
| SISTEMAS | 452 | 0.0762355 | 7.623545 | 4132 | 69.69135 | 8 |
| BIOQUIMICA | 441 | 0.0743802 | 7.438016 | 4573 | 77.12936 | 7 |
| MECATRONICA | 432 | 0.0728622 | 7.286220 | 5005 | 84.41558 | 7 |
| MECANICA | 301 | 0.0507674 | 5.076741 | 5306 | 89.49233 | 5 |
| ELECTRICA | 280 | 0.0472255 | 4.722550 | 5586 | 94.21488 | 5 |
| ELECTRONICA | 161 | 0.0271547 | 2.715466 | 5747 | 96.93034 | 3 |
| INFORMATICA | 101 | 0.0170349 | 1.703491 | 5848 | 98.63383 | 2 |
| TIC | 81 | 0.0136617 | 1.366166 | 5929 | 100.00000 | 1 |
N <- nrow(alumnos)
n <- 100
sistemas <- filter(alumnos, Carrera =='SISTEMAS')
civil <- filter(alumnos, Carrera == 'CIVIL')
frsistemas <- nrow(sistemas) / N
frcivil <- nrow(civil) / N
frsistemas
## [1] 0.07623545
muestrasistemas <- sample(sistemas, round(n * frsistemas, 0))
kable(muestrasistemas, caption = "La muestra de alumnos de Sistemas")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | orig.id |
|---|---|---|---|---|---|---|---|
| 20190279 | 279 | 8 | 177 | 31 | 88.82 | SISTEMAS | 279 |
| 20190127 | 127 | 4 | 68 | 34 | 80.53 | SISTEMAS | 127 |
| 20190048 | 48 | 9 | 212 | 4 | 91.28 | SISTEMAS | 48 |
| 20190104 | 104 | 3 | 50 | 33 | 86.55 | SISTEMAS | 104 |
| 20190452 | 452 | 2 | 27 | 28 | 84.50 | SISTEMAS | 452 |
| 20190226 | 226 | 6 | 128 | 32 | 83.18 | SISTEMAS | 226 |
| 20190184 | 184 | 5 | 116 | 26 | 92.64 | SISTEMAS | 184 |
| 20190356 | 356 | 3 | 55 | 28 | 91.67 | SISTEMAS | 356 |
muestracivil <- sample(civil, round(n * frcivil, 0))
kable(muestracivil, caption = "La muestra de alumnos de Civil")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | orig.id |
|---|---|---|---|---|---|---|---|
| 20191740 | 1740 | 5 | 113 | 30 | 88.63 | CIVIL | 172 |
| 20192009 | 2009 | 4 | 82 | 31 | 82.71 | CIVIL | 441 |
| 20191578 | 1578 | 10 | 205 | 25 | 81.95 | CIVIL | 10 |
| 20191905 | 1905 | 7 | 154 | 32 | 82.64 | CIVIL | 337 |
| 20191984 | 1984 | 6 | 133 | 30 | 86.79 | CIVIL | 416 |
| 20191731 | 1731 | 8 | 187 | 25 | 86.03 | CIVIL | 163 |
| 20191798 | 1798 | 6 | 116 | 34 | 84.04 | CIVIL | 230 |
| 20191829 | 1829 | 6 | 97 | 28 | 79.57 | CIVIL | 261 |
| 20192158 | 2158 | 2 | 27 | 30 | 93.17 | CIVIL | 590 |
| 20192056 | 2056 | 8 | 172 | 21 | 88.53 | CIVIL | 488 |
| 20191587 | 1587 | 10 | 216 | 14 | 78.87 | CIVIL | 19 |
N <- nrow(alumnos)
n <- 100
locdurangomx <- read.csv("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/datos/locdurangomx.csv", encoding = "UTF-8")
set.seed(1000)
localidades6 <- locdurangomx[sample(nrow(locdurangomx), 5), ]
localidades6 <- rbind(localidades6, locdurangomx[1,])
registros <- locdurangomx[sample(localidades6$X, N, replace = TRUE, prob = c(.10, 0.12, 0.05, 0.07, 0.06, 0.60)),c("Nom_Loc", "Lat_Decimal", "Lon_Decimal")]
alumnos$localidad <- registros$Nom_Loc
alumnos$latitud <- registros$Lat_Decimal
alumnos$longitud <- registros$Lon_Decimal
kable(head(alumnos, 10), caption = "Los primeros diez registros de alumnos")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud |
|---|---|---|---|---|---|---|---|---|---|
| 20190001 | 1 | 11 | 198 | 19 | 80.21 | SISTEMAS | Las Aves | 23.94883 | -104.5715 |
| 20190002 | 2 | 11 | 235 | 10 | 84.33 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 |
| 20190003 | 3 | 9 | 235 | 10 | 95.25 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 |
| 20190004 | 4 | 9 | 226 | 19 | 95.00 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 |
| 20190005 | 5 | 10 | 231 | 14 | 82.32 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 |
| 20190006 | 6 | 9 | 212 | 23 | 95.02 | SISTEMAS | Las Aves | 23.94883 | -104.5715 |
| 20190007 | 7 | 12 | 221 | 10 | 79.06 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 |
| 20190008 | 8 | 9 | 226 | 9 | 92.47 | SISTEMAS | Los Fresnos | 24.08339 | -104.6095 |
| 20190009 | 9 | 9 | 231 | 4 | 91.08 | SISTEMAS | Las Aves | 23.94883 | -104.5715 |
| 20190010 | 10 | 11 | 222 | 13 | 80.42 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 |
kable(tail(alumnos, 10), caption = "Las útimos diez registros de alumnos")
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud |
|---|---|---|---|---|---|---|---|---|---|
| 20195920 | 5920 | 7 | 169 | 23 | 89.14 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 |
| 20195921 | 5921 | 5 | 109 | 26 | 87.83 | ADMINISTRACION | Los Fresnos | 24.08339 | -104.6095 |
| 20195922 | 5922 | 3 | 55 | 29 | 92.83 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 |
| 20195923 | 5923 | 2 | 23 | 23 | 88.60 | ADMINISTRACION | Michel [Granja] | 24.00545 | -104.7152 |
| 20195924 | 5924 | 2 | 27 | 28 | 92.83 | ADMINISTRACION | Las Brisas | 23.97352 | -104.5800 |
| 20195925 | 5925 | 7 | 94 | 13 | 80.95 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 |
| 20195926 | 5926 | 5 | 103 | 32 | 92.68 | ADMINISTRACION | Las Aves | 23.94883 | -104.5715 |
| 20195927 | 5927 | 4 | 79 | 34 | 86.18 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 |
| 20195928 | 5928 | 5 | 108 | 32 | 90.48 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 |
| 20195929 | 5929 | 7 | 169 | 32 | 92.33 | ADMINISTRACION | Microondas el Tecolote | 24.05248 | -104.8519 |
N <- nrow(alumnos)
n <- 100
tabla_frec <- data.frame(fdt_cat(alumnos$localidad))
tabla_frec$muestra <- round(tabla_frec$rf * n, 0)
kable(tabla_frec, caption = "Tabla de frecuencia de alumnos por localidad")
| Category | f | rf | rf… | cf | cf… | muestra |
|---|---|---|---|---|---|---|
| Victoria de Durango | 3564 | 0.6011132 | 60.111317 | 3564 | 60.11132 | 60 |
| Las Brisas | 691 | 0.1165458 | 11.654579 | 4255 | 71.76590 | 12 |
| Las Aves | 626 | 0.1055827 | 10.558273 | 4881 | 82.32417 | 11 |
| Los Fresnos | 431 | 0.0726935 | 7.269354 | 5312 | 89.59352 | 7 |
| Microondas el Tecolote | 329 | 0.0554900 | 5.548997 | 5641 | 95.14252 | 6 |
| Michel [Granja] | 288 | 0.0485748 | 4.857480 | 5929 | 100.00000 | 5 |
N <- nrow(alumnos)
n <- 100
loc1 <- filter(alumnos, localidad == tabla_frec$Category[1])
loc2 <- filter(alumnos, localidad == tabla_frec$Category[2])
loc3 <- filter(alumnos, localidad == tabla_frec$Category[3])
loc4 <- filter(alumnos, localidad == tabla_frec$Category[4])
loc5 <- filter(alumnos, localidad == tabla_frec$Category[5])
loc6 <- filter(alumnos, localidad == tabla_frec$Category[6])
frloc1 <- nrow(loc1) / N
frloc2 <- nrow(loc2) / N
frloc3 <- nrow(loc3) / N
frloc4 <- nrow(loc4) / N
frloc5 <- nrow(loc5) / N
frloc6 <- nrow(loc6) / N
muestraloc1 <- sample(loc1, round(n * frloc1, 0))
kable(muestraloc1, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[1] ))
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud | orig.id |
|---|---|---|---|---|---|---|---|---|---|---|
| 20195752 | 5752 | 3 | 55 | 29 | 95.67 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 | 3462 |
| 20191354 | 1354 | 7 | 167 | 34 | 86.40 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 809 |
| 20195197 | 5197 | 8 | 195 | 25 | 87.88 | GESTION EMPRESARIAL | Victoria de Durango | 24.02399 | -104.6702 | 3142 |
| 20194694 | 4694 | 9 | 230 | 15 | 92.17 | GESTION EMPRESARIAL | Victoria de Durango | 24.02399 | -104.6702 | 2835 |
| 20191656 | 1656 | 12 | 179 | 33 | 77.27 | CIVIL | Victoria de Durango | 24.02399 | -104.6702 | 995 |
| 20193520 | 3520 | 1 | NA | 26 | 0.00 | MECANICA | Victoria de Durango | 24.02399 | -104.6702 | 2155 |
| 20191220 | 1220 | 5 | 81 | 34 | 85.44 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 728 |
| 20191366 | 1366 | 2 | 23 | 29 | 90.17 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 818 |
| 20190579 | 579 | 4 | 80 | 30 | 89.11 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 331 |
| 20192440 | 2440 | 1 | NA | 24 | 0.00 | ELECTRICA | Victoria de Durango | 24.02399 | -104.6702 | 1484 |
| 20195184 | 5184 | 3 | 60 | 29 | 84.85 | GESTION EMPRESARIAL | Victoria de Durango | 24.02399 | -104.6702 | 3132 |
| 20191337 | 1337 | 8 | 186 | 24 | 84.36 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 798 |
| 20190945 | 945 | 6 | 134 | 24 | 87.86 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 563 |
| 20194561 | 4561 | 1 | NA | 25 | 0.00 | QUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 2751 |
| 20190949 | 949 | 2 | 26 | 26 | 87.67 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 565 |
| 20190853 | 853 | 2 | 24 | 22 | 87.00 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 511 |
| 20194009 | 4009 | 2 | 25 | 28 | 80.67 | MECATRONICA | Victoria de Durango | 24.02399 | -104.6702 | 2423 |
| 20190981 | 981 | 5 | 110 | 32 | 89.50 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 587 |
| 20193423 | 3423 | 7 | 102 | 30 | 80.91 | MECANICA | Victoria de Durango | 24.02399 | -104.6702 | 2093 |
| 20195597 | 5597 | 8 | 207 | 27 | 93.09 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 | 3369 |
| 20192461 | 2461 | 7 | 150 | 28 | 82.79 | ELECTRICA | Victoria de Durango | 24.02399 | -104.6702 | 1496 |
| 20191351 | 1351 | 3 | 52 | 30 | 85.75 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 807 |
| 20190343 | 343 | 8 | 165 | 28 | 81.31 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 | 201 |
| 20194890 | 4890 | 7 | 170 | 35 | 87.44 | GESTION EMPRESARIAL | Victoria de Durango | 24.02399 | -104.6702 | 2947 |
| 20191348 | 1348 | 7 | 164 | 32 | 91.03 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 806 |
| 20190739 | 739 | 1 | NA | 26 | 0.00 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 433 |
| 20191212 | 1212 | 7 | 165 | 36 | 86.37 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 723 |
| 20193020 | 3020 | 3 | 55 | 29 | 92.15 | INDUSTRIAL | Victoria de Durango | 24.02399 | -104.6702 | 1848 |
| 20191394 | 1394 | 2 | 23 | 29 | 86.83 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 836 |
| 20194023 | 4023 | 1 | NA | 25 | 0.00 | MECATRONICA | Victoria de Durango | 24.02399 | -104.6702 | 2434 |
| 20192358 | 2358 | 7 | 98 | 9 | 81.04 | ELECTRICA | Victoria de Durango | 24.02399 | -104.6702 | 1435 |
| 20194165 | 4165 | 4 | 53 | 20 | 77.91 | QUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 2522 |
| 20194937 | 4937 | 7 | 167 | 33 | 88.00 | GESTION EMPRESARIAL | Victoria de Durango | 24.02399 | -104.6702 | 2978 |
| 20192500 | 2500 | 9 | 197 | 20 | 84.05 | ELECTRONICA | Victoria de Durango | 24.02399 | -104.6702 | 1518 |
| 20190866 | 866 | 6 | 142 | 28 | 88.53 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 518 |
| 20190307 | 307 | 2 | 27 | 28 | 77.00 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 | 180 |
| 20195480 | 5480 | 9 | 228 | 24 | 86.23 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 | 3304 |
| 20195413 | 5413 | 1 | NA | 27 | 0.00 | INFORMATICA | Victoria de Durango | 24.02399 | -104.6702 | 3267 |
| 20195861 | 5861 | 7 | 169 | 32 | 93.89 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 | 3521 |
| 20190661 | 661 | 3 | 52 | 28 | 83.42 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 384 |
| 20191654 | 1654 | 10 | 171 | 32 | 78.42 | CIVIL | Victoria de Durango | 24.02399 | -104.6702 | 994 |
| 20194474 | 4474 | 8 | 205 | 20 | 83.76 | QUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 2699 |
| 20194055 | 4055 | 3 | 43 | 14 | 81.10 | MECATRONICA | Victoria de Durango | 24.02399 | -104.6702 | 2453 |
| 20190746 | 746 | 4 | 76 | 28 | 89.29 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 436 |
| 20193336 | 3336 | 7 | 179 | 26 | 89.12 | INDUSTRIAL | Victoria de Durango | 24.02399 | -104.6702 | 2038 |
| 20195409 | 5409 | 3 | 55 | 27 | 87.92 | INFORMATICA | Victoria de Durango | 24.02399 | -104.6702 | 3266 |
| 20195033 | 5033 | 3 | 50 | 28 | 94.45 | GESTION EMPRESARIAL | Victoria de Durango | 24.02399 | -104.6702 | 3034 |
| 20190549 | 549 | 9 | 218 | 17 | 88.69 | ARQUITECTURA | Victoria de Durango | 24.02399 | -104.6702 | 313 |
| 20192620 | 2620 | 3 | 47 | 23 | 86.91 | ELECTRONICA | Victoria de Durango | 24.02399 | -104.6702 | 1591 |
| 20190186 | 186 | 3 | 41 | 28 | 83.89 | SISTEMAS | Victoria de Durango | 24.02399 | -104.6702 | 110 |
| 20191297 | 1297 | 3 | 52 | 30 | 87.00 | BIOQUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 775 |
| 20193034 | 3034 | 5 | 85 | 31 | 88.21 | INDUSTRIAL | Victoria de Durango | 24.02399 | -104.6702 | 1858 |
| 20194007 | 4007 | 7 | 115 | 27 | 82.96 | MECATRONICA | Victoria de Durango | 24.02399 | -104.6702 | 2421 |
| 20195690 | 5690 | 4 | 79 | 29 | 88.53 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 | 3421 |
| 20194231 | 4231 | 7 | 172 | 32 | 88.94 | QUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 2561 |
| 20193544 | 3544 | 3 | 48 | 27 | 82.82 | MECANICA | Victoria de Durango | 24.02399 | -104.6702 | 2165 |
| 20192218 | 2218 | 11 | 235 | 10 | 84.19 | ELECTRICA | Victoria de Durango | 24.02399 | -104.6702 | 1345 |
| 20195545 | 5545 | 7 | 145 | 29 | 85.77 | ADMINISTRACION | Victoria de Durango | 24.02399 | -104.6702 | 3341 |
| 20194135 | 4135 | 7 | 172 | 26 | 85.39 | QUIMICA | Victoria de Durango | 24.02399 | -104.6702 | 2500 |
| 20193613 | 3613 | 3 | 52 | 24 | 85.50 | MECANICA | Victoria de Durango | 24.02399 | -104.6702 | 2207 |
muestraloc2 <- sample(loc2, round(n * frloc2, 0))
kable(muestraloc2, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[2] ))
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud | orig.id |
|---|---|---|---|---|---|---|---|---|---|---|
| 20192268 | 2268 | 10 | 216 | 14 | 83.80 | ELECTRICA | Las Brisas | 23.97352 | -104.58 | 262 |
| 20195323 | 5323 | 1 | NA | 26 | 0.00 | TIC | Las Brisas | 23.97352 | -104.58 | 631 |
| 20192994 | 2994 | 7 | 172 | 33 | 86.44 | INDUSTRIAL | Las Brisas | 23.97352 | -104.58 | 344 |
| 20194348 | 4348 | 5 | 114 | 30 | 89.92 | QUIMICA | Las Brisas | 23.97352 | -104.58 | 515 |
| 20193182 | 3182 | 2 | 27 | 24 | 83.00 | INDUSTRIAL | Las Brisas | 23.97352 | -104.58 | 375 |
| 20192346 | 2346 | 5 | 99 | 28 | 84.35 | ELECTRICA | Las Brisas | 23.97352 | -104.58 | 271 |
| 20192814 | 2814 | 7 | 163 | 35 | 84.35 | INDUSTRIAL | Las Brisas | 23.97352 | -104.58 | 326 |
| 20195766 | 5766 | 1 | NA | 27 | 0.00 | ADMINISTRACION | Las Brisas | 23.97352 | -104.58 | 678 |
| 20192753 | 2753 | 6 | 158 | 26 | 88.00 | INDUSTRIAL | Las Brisas | 23.97352 | -104.58 | 321 |
| 20194882 | 4882 | 3 | 32 | 31 | 84.43 | GESTION EMPRESARIAL | Las Brisas | 23.97352 | -104.58 | 577 |
| 20193378 | 3378 | 10 | 225 | 10 | 82.12 | MECANICA | Las Brisas | 23.97352 | -104.58 | 391 |
| 20191305 | 1305 | 1 | NA | 23 | 0.00 | BIOQUIMICA | Las Brisas | 23.97352 | -104.58 | 161 |
muestraloc3 <- sample(loc3, round(n * frloc3, 0))
kable(muestraloc3, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[3] ))
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud | orig.id |
|---|---|---|---|---|---|---|---|---|---|---|
| 20193085 | 3085 | 5 | NA | 26 | 0.00 | INDUSTRIAL | Las Aves | 23.94883 | -104.5715 | 320 |
| 20190244 | 244 | 5 | 112 | 25 | 87.54 | SISTEMAS | Las Aves | 23.94883 | -104.5715 | 23 |
| 20191061 | 1061 | 8 | 168 | 32 | 82.86 | ARQUITECTURA | Las Aves | 23.94883 | -104.5715 | 121 |
| 20190039 | 39 | 9 | 222 | 13 | 92.21 | SISTEMAS | Las Aves | 23.94883 | -104.5715 | 6 |
| 20194015 | 4015 | 4 | 62 | 26 | 85.00 | MECATRONICA | Las Aves | 23.94883 | -104.5715 | 439 |
| 20191448 | 1448 | 7 | 174 | 27 | 87.08 | BIOQUIMICA | Las Aves | 23.94883 | -104.5715 | 165 |
| 20194301 | 4301 | 6 | 129 | 26 | 84.96 | QUIMICA | Las Aves | 23.94883 | -104.5715 | 462 |
| 20190390 | 390 | 5 | 107 | 30 | 80.26 | SISTEMAS | Las Aves | 23.94883 | -104.5715 | 41 |
| 20193641 | 3641 | 5 | 57 | 23 | 78.85 | MECANICA | Las Aves | 23.94883 | -104.5715 | 387 |
| 20193522 | 3522 | 1 | NA | 26 | 0.00 | MECANICA | Las Aves | 23.94883 | -104.5715 | 366 |
| 20190306 | 306 | 4 | 87 | 33 | 93.26 | SISTEMAS | Las Aves | 23.94883 | -104.5715 | 34 |
muestraloc4 <- sample(loc4, round(n * frloc4, 0))
kable(muestraloc4, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[4] ))
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud | orig.id |
|---|---|---|---|---|---|---|---|---|---|---|
| 20194732 | 4732 | 12 | 225 | 10 | 86.83 | GESTION EMPRESARIAL | Los Fresnos | 24.08339 | -104.6095 | 310 |
| 20194974 | 4974 | 8 | 205 | 30 | 88.56 | GESTION EMPRESARIAL | Los Fresnos | 24.08339 | -104.6095 | 332 |
| 20195248 | 5248 | 1 | NA | 27 | 0.00 | GESTION EMPRESARIAL | Los Fresnos | 24.08339 | -104.6095 | 356 |
| 20194853 | 4853 | 2 | 32 | 27 | 94.57 | GESTION EMPRESARIAL | Los Fresnos | 24.08339 | -104.6095 | 325 |
| 20192243 | 2243 | 10 | 226 | 9 | 82.25 | ELECTRICA | Los Fresnos | 24.08339 | -104.6095 | 154 |
| 20195503 | 5503 | 10 | 262 | 10 | 93.87 | ADMINISTRACION | Los Fresnos | 24.08339 | -104.6095 | 388 |
| 20191152 | 1152 | 11 | 108 | 17 | 78.00 | BIOQUIMICA | Los Fresnos | 24.08339 | -104.6095 | 72 |
muestraloc5 <- sample(loc5, round(n * frloc5, 0))
kable(muestraloc5, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[5] ))
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud | orig.id |
|---|---|---|---|---|---|---|---|---|---|---|
| 20192935 | 2935 | 5 | 104 | 34 | 86.39 | INDUSTRIAL | Microondas el Tecolote | 24.05248 | -104.8519 | 168 |
| 20192340 | 2340 | 1 | NA | 24 | 0.00 | ELECTRICA | Microondas el Tecolote | 24.05248 | -104.8519 | 133 |
| 20191209 | 1209 | 5 | 104 | 30 | 82.91 | BIOQUIMICA | Microondas el Tecolote | 24.05248 | -104.8519 | 62 |
| 20190236 | 236 | 1 | NA | 27 | 0.00 | SISTEMAS | Microondas el Tecolote | 24.05248 | -104.8519 | 15 |
| 20195268 | 5268 | 5 | 101 | 28 | 82.55 | TIC | Microondas el Tecolote | 24.05248 | -104.8519 | 294 |
| 20192138 | 2138 | 5 | 99 | 33 | 84.43 | CIVIL | Microondas el Tecolote | 24.05248 | -104.8519 | 116 |
muestraloc6 <- sample(loc6, round(n * frloc6, 0))
kable(muestraloc6, caption = paste("La muestra de alumnos de Localidad ",tabla_frec$Category[6] ))
| No. Control | Alumno | Semestre | Cr. Apr. | Carga | Promedio | Carrera | localidad | latitud | longitud | orig.id |
|---|---|---|---|---|---|---|---|---|---|---|
| 20193554 | 3554 | 3 | 52 | 31 | 86.33 | MECANICA | Michel [Granja] | 24.00545 | -104.7152 | 175 |
| 20194555 | 4555 | 6 | 133 | 23 | 83.14 | QUIMICA | Michel [Granja] | 24.00545 | -104.7152 | 223 |
| 20192499 | 2499 | 11 | 205 | 15 | 79.93 | ELECTRONICA | Michel [Granja] | 24.00545 | -104.7152 | 119 |
| 20192495 | 2495 | 3 | 51 | 28 | 92.50 | ELECTRICA | Michel [Granja] | 24.00545 | -104.7152 | 118 |
| 20192977 | 2977 | 8 | 201 | 28 | 83.67 | INDUSTRIAL | Michel [Granja] | 24.00545 | -104.7152 | 143 |
library(leaflet)
map<-leaflet() %>%
addTiles() %>%
addMarkers(lat=localidades6$Lat_Decimal[1],lng=localidades6$Lon_Decimal[1] ,popup=localidades6$Nom_Loc[1]) %>%
addMarkers(lat=localidades6$Lat_Decimal[2],lng=localidades6$Lon_Decimal[2] ,popup=localidades6$Nom_Loc[2]) %>%
addMarkers(lat=localidades6$Lat_Decimal[3],lng=localidades6$Lon_Decimal[3] ,popup=localidades6$Nom_Loc[3]) %>%
addMarkers(lat=localidades6$Lat_Decimal[4],lng=localidades6$Lon_Decimal[4] ,popup=localidades6$Nom_Loc[4]) %>%
addMarkers (lat=localidades6$Lat_Decimal[5],lng=localidades6$Lon_Decimal[5] ,popup=localidades6$Nom_Loc[5]) %>%
addMarkers (lat=localidades6$Lat_Decimal[6],lng=localidades6$Lon_Decimal[6] ,popup=localidades6$Nom_Loc[6])
# Mostrar el mapa
map