1.- Cargar Librerias

library(ggplot2)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(knitr)
options(scipen = 999)

2.- Solución de ejercicios

2.1.- Ejercicio 1

Vuelo de un avión Considere una variable aleatoria x que representa el tiempo de vuelo de un avión que viaja de Chicago a Nueva York. Suponga que el tiempo de vuelo es cualquier valor en el intervalo de 120 minutos a 160 minutos (Anderson et al., 2008).
Dado que la variable aleatoria x toma cualquier valor en este intervalo, x es una variable aleatoria continua y no una variable aleatoria discreta.
Hay que razonar que se cuenta con datos suficientes como para concluir que la probabilidad de que el tiempo de vuelo esté en cualquier intervalo de 1 minuto es el mismo que la probabilidad de que el tiempo de vuelo esté en cualquier otro intervalo de 1 minuto dentro del intervalo que va de 120 a 160 minutos.
Como cualquier intervalo de 1 minuto es igual de probable, se dice que la variable aleatoria x tiene una distribución de probabilidad uniforme (Anderson et al., 2008).
Función de densidad
a.min <- 120
b.max <- 140
altura <- 1 / (b.max -a.min)
a <- 120
b <- 130

p.x <- altura * (b-a)
paste("La probabilidad de que el tiempo de vuelo se encuentre entre ", a , " y ", b, " minutos es del:", p.x * 100, "%")
## [1] "La probabilidad de que el tiempo de vuelo se encuentre entre  120  y  130  minutos es del: 50 %"
p.x <- (b - a) * dunif(x = a, min = a.min, max = b.max) 

p.x
## [1] 0.5
a <- 128
b <- 136

p.x <- altura * (b-a)
p.x
## [1] 0.4
paste("La probabilidad de que el tiempo de vuelo se encuentre entre ", a , " y ", b, " minutos es del:", p.x * 100, "%")
## [1] "La probabilidad de que el tiempo de vuelo se encuentre entre  128  y  136  minutos es del: 40 %"
p.x <- (b - a) * dunif(x = a, min = a.min, max = b.max) 

p.x
## [1] 0.4
VE <- (a.min + b.max) / 2
paste("El valor esperado es de: ", VE)
## [1] "El valor esperado es de:  130"
varianza.x <- (b.max - a.min)^2 / 12

paste("La varianza es: ", round(varianza.x,2))
## [1] "La varianza es:  33.33"
ds <- sqrt(varianza.x)
paste("La desviación estándard es igual a : ", round(ds, 2), " que significa que ese valor se dispersa conforme al valor medio esperado de ", VE)
## [1] "La desviación estándard es igual a :  5.77  que significa que ese valor se dispersa conforme al valor medio esperado de  130"

2.2.- Caso de Licitaciones

Al estudiar licitaciones de embarque, una empresa dedicada a la fabricación de circuitos impresos, encuentra que los contratos nacionales tienen licitaciones distribuidas uniformemente entre 20 y 25 unidades (en miles de dólares).
Se determina lo siguiente: * a) Función de densidad * b) ¿Cuál es la probabilidad de que la licitación esté entre 22 y 24 (mil dólares)? * c) ¿Cuál es la probabidiad de que sea inferior a 22 (mil dólares)? * d) ¿Cuál es la probabilidad de que rebase los 24 (mil dólares)? * e) ¿Cuál es el valor esperado? * f) ¿Cuál es la varianza? * g) ¿Cuál es la desviación estándard? * h) ¿Qué se interpreta del caso?
Función de densidad
a.min <- 20
b.max <- 25
altura <- 1 / (b.max - a.min)
b). ¿Cuál es la probabilidad de que la licitación esté entre 22 y 24 (mil dólares)?
a <- 22
b <- 24

p.x <- altura * (b-a)
paste("La probabilidad de que la licitación esté entre ", a , " y ", b, " es del:", p.x * 100, "%")
## [1] "La probabilidad de que la licitación esté entre  22  y  24  es del: 40 %"
b). Cuál es la probabilidad de que sea inferior a 22 (mil dólares)? Entonces solo 20 y 21 Sumar la P(X=20)+P(X=21) Solución aritmética
p.x <- (b - a) * dunif(x = a, min = a.min, max = b.max) 

p.x
## [1] 0.4
a <- 20
b <- 22

p.x <- altura * (b-a)
paste("La probabilidad de que sea inferior a ", b , " (mil dólares) es del: ", p.x * 100, "%")
## [1] "La probabilidad de que sea inferior a  22  (mil dólares) es del:  40 %"
Solución por medio de la función de densidad dunif() * Pueden sumarse las probabilidades de P(X=20)+P(X=21) o * Utilizar al argumento
a <- 20
b <- 22

suma <- dunif(x=a, min = a.min, max = b.max) + 
        dunif(x=a+1, min = a.min, max = b.max) # Sin contar la x=22
suma
## [1] 0.4
punif
## function (q, min = 0, max = 1, lower.tail = TRUE, log.p = FALSE) 
## .Call(C_punif, q, min, max, lower.tail, log.p)
## <bytecode: 0x000000001832a7f8>
## <environment: namespace:stats>