1.- Cargar Librerias

library(ggplot2)
library(stringr)  # String
library(stringi)  # String
library(gtools)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(knitr)
options(scipen = 999)

2.- Ejercicios

2.1.- Ejercicio 1

Se venden 5000 billetes para una rifa a 1 euro cada uno. Existe un único premio de cierta cantidad, calcular los valores de las variables aleatorias y sus probabilidades para 0 para no gana y 1 para si gana cuando un comprador adquiere tres billetes. (Hero, n.d.)
Tabla de probabilidad
discretas <- c(0,1)   # 0 Que no gane, 1 que gane
n <- 5000
casos <- c(4997,50)
probabilidades <- casos / n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
              casos = casos,
              f.prob.x = probabilidades,
              F.acum.x = acumulada,
              x.f.prob.x = (discretas * probabilidades))
kable(tabla, caption = "Tabla de probabilidad con la columna para valor esperado")
Tabla de probabilidad con la columna para valor esperado
x casos f.prob.x F.acum.x x.f.prob.x
0 4997 0.9994 0.9994 0.00
1 50 0.0100 1.0094 0.01
Valor esperado Se determina el valor esperado de acuerdo a la fórmula: μ=∑xP(x)
-VE es el valor esperado
VE <- sum(tabla$x * tabla$f.prob.x)

VE
## [1] 0.01
El valor esperado significa la media ponderada de las probabilidades o lo que es lo mismo es lo que se puede esperar.
Significa muy muy muy …. remoto la probabilidad de ganar en el sorteo de 5000 boletos 0.01
Varianza * Agregando columna para obtención de la varianza a partir de los datos de la tabla previamente generada.
tabla <- cbind(tabla, 'VE' = VE, 'x-VE.cuad.f.prob.x' = (tabla$x - VE)^2 * tabla$f.prob.x)

kable(tabla, caption = "Tabla de probabilidad con valor esperado y columnas para varianza")
Tabla de probabilidad con valor esperado y columnas para varianza
x casos f.prob.x F.acum.x x.f.prob.x VE x-VE.cuad.f.prob.x
0 4997 0.9994 0.9994 0.00 0.01 0.0000999
1 50 0.0100 1.0094 0.01 0.01 0.0098010
varianza <- sum((tabla$x - VE)^2 * tabla$f.prob.x)
varianza
## [1] 0.00990094
desv.std <- sqrt(varianza)
desv.std
## [1] 0.09950347