Lifetime IPV and logTrailsA Regression Models (Cross Sectional)

Trails A Regression Model 1

load("/Users/meganwilliams/Desktop/Research/IPV and Cognition Paper/R Commands and Scripts/Abusew01Neupsy.rda")

library(lme4)
library(lmerTest)
library(compute.es)
library(zStat)
library(zUtil)

(lm1 = lmer(log(TrailsAtestSec)~(LifeIPV + Sex +  PovStat)^3 + (1|subclass), data=Abusew01Neupsy))
step(lm1)

Trails A Final Regression Model 1

(lm1 = lmer(log(TrailsAtestSec)~PovStat + (1|subclass), data=Abusew01Neupsy))
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ PovStat + (1 | subclass) 
##    Data: Abusew01Neupsy 
## REML criterion at convergence: 503.1 
## Random effects:
##  Groups   Name        Std.Dev.
##  subclass (Intercept) 0.132   
##  Residual             0.436   
## Number of obs: 393, groups: subclass, 131
## Fixed Effects:
##  (Intercept)  PovStatBelow  
##        3.452         0.177
summary(lm1)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ PovStat + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 503.1 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept) 0.0173   0.132   
##  Residual             0.1905   0.436   
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##              Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)    3.4518     0.0320 230.0000  108.01  < 2e-16
## PovStatBelow   0.1773     0.0462 390.0000    3.84  0.00015
## 
## Correlation of Fixed Effects:
##             (Intr)
## PovStatBelw -0.629

Trails A Regression Model 2 (with CES)

(lm2 = lmer(log(TrailsAtestSec)~(LifeIPV + Sex + PovStat + CESD)^4 + (1|subclass), data=Abusew01Neupsy))

step(lm2)

Trails A Final Regression Model 2 (with CES)

lm2=lmer(log(TrailsAtestSec)~ PovStat + (1|subclass),data = Abusew01Neupsy)
summary(lm2)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsAtestSec) ~ PovStat + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 503.1 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept) 0.0173   0.132   
##  Residual             0.1905   0.436   
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##              Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)    3.4518     0.0320 230.0000  108.01  < 2e-16
## PovStatBelow   0.1773     0.0462 390.0000    3.84  0.00015
## 
## Correlation of Fixed Effects:
##             (Intr)
## PovStatBelw -0.629

Lifetime IPV and logTrailsB Regression Models

Trails B Regression Model 1

(lm1 = lmer(log(TrailsBtestSec)~(LifeIPV + Sex + PovStat)^3 + (1|subclass) , data=Abusew01Neupsy))

(st = step(lm1))

Trails B Final Regression Model 1

lm1 = lmer(log(TrailsBtestSec)~PovStat + (1|subclass) , data=Abusew01Neupsy)
step(lm1)
## Error: subscript out of bounds
summary(lm1)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsBtestSec) ~ PovStat + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 896.8 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept) 0.0638   0.253   
##  Residual             0.5079   0.713   
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##              Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)    4.5771     0.0537 229.0000   85.24  < 2e-16
## PovStatBelow   0.3604     0.0764 388.0000    4.72  3.3e-06
## 
## Correlation of Fixed Effects:
##             (Intr)
## PovStatBelw -0.619

Trails B Regression Model 2 (with CES)

lm1 = lmer(log(TrailsBtestSec)~(LifeIPV + Sex + PovStat + CESD)^4 + (1|subclass) , data=Abusew01Neupsy)
step(lm1)

Trails B Final Regression Model 2 (with CES)

lm2 = lmer(log(TrailsBtestSec)~LifeIPV + PovStat + CESD + LifeIPV:CESD + (1|subclass) , data=Abusew01Neupsy)
summary(lm2)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: log(TrailsBtestSec) ~ LifeIPV + PovStat + CESD + LifeIPV:CESD +      (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 888.9 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept) 0.0724   0.269   
##  Residual             0.4827   0.695   
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)      4.4380     0.0640 330.0000   69.34  < 2e-16
## LifeIPV1         0.2500     0.1215 351.0000    2.06  0.04027
## PovStatBelow     0.3012     0.0778 386.0000    3.87  0.00013
## CESD1            0.3717     0.0953 377.0000    3.90  0.00011
## LifeIPV1:CESD1  -0.4056     0.1660 385.0000   -2.44  0.01502
## 
## Correlation of Fixed Effects:
##             (Intr) LfIPV1 PvSttB CESD1 
## LifeIPV1    -0.358                     
## PovStatBelw -0.370 -0.089              
## CESD1       -0.466  0.302 -0.151       
## LIPV1:CESD1  0.308 -0.763  0.000 -0.575

Effect Size

LifeIPV:CESD

Est. = -0.40431319 SE = 0.16903679 df = 386.65710000 t = -2.39187 p = 0.017240

es = tes(t=-2.39, n.1=180, n.2=213, level=95, dig=2, id=HNDid, data=Abusew01Neupsy)
summary(es)
##        id              N.total         n.1           n.2     
##  Min.   :8.11e+09   Min.   :393   Min.   :180   Min.   :213  
##  1st Qu.:8.17e+09   1st Qu.:393   1st Qu.:180   1st Qu.:213  
##  Median :8.21e+09   Median :393   Median :180   Median :213  
##  Mean   :8.19e+09   Mean   :393   Mean   :180   Mean   :213  
##  3rd Qu.:8.22e+09   3rd Qu.:393   3rd Qu.:180   3rd Qu.:213  
##  Max.   :8.22e+09   Max.   :393   Max.   :180   Max.   :213  
##        d             var.d           l.d             u.d       
##  Min.   :-0.24   Min.   :0.01   Min.   :-0.44   Min.   :-0.04  
##  1st Qu.:-0.24   1st Qu.:0.01   1st Qu.:-0.44   1st Qu.:-0.04  
##  Median :-0.24   Median :0.01   Median :-0.44   Median :-0.04  
##  Mean   :-0.24   Mean   :0.01   Mean   :-0.44   Mean   :-0.04  
##  3rd Qu.:-0.24   3rd Qu.:0.01   3rd Qu.:-0.44   3rd Qu.:-0.04  
##  Max.   :-0.24   Max.   :0.01   Max.   :-0.44   Max.   :-0.04  
##       U3.d           cl.d         cliffs.d         pval.d    
##  Min.   :40.4   Min.   :43.2   Min.   :-0.14   Min.   :0.02  
##  1st Qu.:40.4   1st Qu.:43.2   1st Qu.:-0.14   1st Qu.:0.02  
##  Median :40.4   Median :43.2   Median :-0.14   Median :0.02  
##  Mean   :40.4   Mean   :43.2   Mean   :-0.14   Mean   :0.02  
##  3rd Qu.:40.4   3rd Qu.:43.2   3rd Qu.:-0.14   3rd Qu.:0.02  
##  Max.   :40.4   Max.   :43.2   Max.   :-0.14   Max.   :0.02  
##        g             var.g           l.g             u.g       
##  Min.   :-0.24   Min.   :0.01   Min.   :-0.44   Min.   :-0.04  
##  1st Qu.:-0.24   1st Qu.:0.01   1st Qu.:-0.44   1st Qu.:-0.04  
##  Median :-0.24   Median :0.01   Median :-0.44   Median :-0.04  
##  Mean   :-0.24   Mean   :0.01   Mean   :-0.44   Mean   :-0.04  
##  3rd Qu.:-0.24   3rd Qu.:0.01   3rd Qu.:-0.44   3rd Qu.:-0.04  
##  Max.   :-0.24   Max.   :0.01   Max.   :-0.44   Max.   :-0.04  
##       U3.g           cl.g          pval.g           r            var.r  
##  Min.   :40.5   Min.   :43.2   Min.   :0.02   Min.   :0.12   Min.   :0  
##  1st Qu.:40.5   1st Qu.:43.2   1st Qu.:0.02   1st Qu.:0.12   1st Qu.:0  
##  Median :40.5   Median :43.2   Median :0.02   Median :0.12   Median :0  
##  Mean   :40.5   Mean   :43.2   Mean   :0.02   Mean   :0.12   Mean   :0  
##  3rd Qu.:40.5   3rd Qu.:43.2   3rd Qu.:0.02   3rd Qu.:0.12   3rd Qu.:0  
##  Max.   :40.5   Max.   :43.2   Max.   :0.02   Max.   :0.12   Max.   :0  
##       l.r            u.r           pval.r        fisher.z        var.z  
##  Min.   :0.02   Min.   :0.22   Min.   :0.02   Min.   :0.12   Min.   :0  
##  1st Qu.:0.02   1st Qu.:0.22   1st Qu.:0.02   1st Qu.:0.12   1st Qu.:0  
##  Median :0.02   Median :0.22   Median :0.02   Median :0.12   Median :0  
##  Mean   :0.02   Mean   :0.22   Mean   :0.02   Mean   :0.12   Mean   :0  
##  3rd Qu.:0.02   3rd Qu.:0.22   3rd Qu.:0.02   3rd Qu.:0.12   3rd Qu.:0  
##  Max.   :0.02   Max.   :0.22   Max.   :0.02   Max.   :0.12   Max.   :0  
##       l.z            u.z             OR            l.or     
##  Min.   :0.02   Min.   :0.22   Min.   :0.64   Min.   :0.45  
##  1st Qu.:0.02   1st Qu.:0.22   1st Qu.:0.64   1st Qu.:0.45  
##  Median :0.02   Median :0.22   Median :0.64   Median :0.45  
##  Mean   :0.02   Mean   :0.22   Mean   :0.64   Mean   :0.45  
##  3rd Qu.:0.02   3rd Qu.:0.22   3rd Qu.:0.64   3rd Qu.:0.45  
##  Max.   :0.02   Max.   :0.22   Max.   :0.64   Max.   :0.45  
##       u.or         pval.or          lOR            l.lor     
##  Min.   :0.93   Min.   :0.02   Min.   :-0.44   Min.   :-0.8  
##  1st Qu.:0.93   1st Qu.:0.02   1st Qu.:-0.44   1st Qu.:-0.8  
##  Median :0.93   Median :0.02   Median :-0.44   Median :-0.8  
##  Mean   :0.93   Mean   :0.02   Mean   :-0.44   Mean   :-0.8  
##  3rd Qu.:0.93   3rd Qu.:0.02   3rd Qu.:-0.44   3rd Qu.:-0.8  
##  Max.   :0.93   Max.   :0.02   Max.   :-0.44   Max.   :-0.8  
##      u.lor          pval.lor         NNT       
##  Min.   :-0.08   Min.   :0.02   Min.   :-16.5  
##  1st Qu.:-0.08   1st Qu.:0.02   1st Qu.:-16.5  
##  Median :-0.08   Median :0.02   Median :-16.5  
##  Mean   :-0.08   Mean   :0.02   Mean   :-16.5  
##  3rd Qu.:-0.08   3rd Qu.:0.02   3rd Qu.:-16.5  
##  Max.   :-0.08   Max.   :0.02   Max.   :-16.5

LifeIPV x CESD Interaction Plot

plot of chunk unnamed-chunk-9

Lifetime IPV and Animal Naming Test Regression Models


FluencyWord Regression Model 1

lm1 = lmer(FluencyWord~(LifeIPV + Sex + PovStat)^3 + (1|subclass), data=Abusew01Neupsy)
step(lm1)

NOTE: Because the step() function eliminates a nonsignificant random term in the above regression analysis, I cannot see what the final model would be if I forced it to keep the random term; so, I manually entered the model with various combinations of interaction terms.

lm1 = lmer(FluencyWord~LifeIPV + (1|subclass), data=Abusew01Neupsy)
summary(lm1)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2469 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.24    1.11    
##  Residual             30.27    5.50    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)   19.187      0.354 247.100   54.27   <2e-16
## LifeIPV1      -1.210      0.589 261.000   -2.06    0.041
## 
## Correlation of Fixed Effects:
##          (Intr)
## LifeIPV1 -0.555
lm2 = lmer(FluencyWord~LifeIPV*Sex + (1|subclass), data=Abusew01Neupsy)
summary(lm2)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV * Sex + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2464 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.26    1.12    
##  Residual             30.33    5.51    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                 Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)       18.848      0.476 334.000   39.56   <2e-16
## LifeIPV1          -0.837      0.697 312.000   -1.20     0.23
## SexMen             0.740      0.696 388.000    1.06     0.29
## LifeIPV1:SexMen   -0.999      1.620 389.000   -0.62     0.54
## 
## Correlation of Fixed Effects:
##             (Intr) LfIPV1 SexMen
## LifeIPV1    -0.656              
## SexMen      -0.669  0.459       
## LfIPV1:SxMn  0.291 -0.444 -0.435
lm3 = lmer(FluencyWord~LifeIPV*PovStat + (1|subclass), data=Abusew01Neupsy)
summary(lm3)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV * PovStat + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2457 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.46    1.21    
##  Residual             29.56    5.44    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                       Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)             19.929      0.439 321.000   45.35   <2e-16
## LifeIPV1                -1.536      0.844 332.000   -1.82    0.070
## PovStatBelow            -2.003      0.710 385.000   -2.82    0.005
## LifeIPV1:PovStatBelow    1.267      1.206 377.000    1.05    0.294
## 
## Correlation of Fixed Effects:
##             (Intr) LfIPV1 PvSttB
## LifeIPV1    -0.488              
## PovStatBelw -0.598  0.307       
## LfIPV1:PvSB  0.349 -0.712 -0.583
lm4 = lmer(FluencyWord~PovStat*Sex + (1|subclass), data=Abusew01Neupsy)
summary(lm4)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ PovStat * Sex + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2458 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.4     1.18    
##  Residual             29.7     5.45    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                     Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)           19.078      0.477 302.000   40.01   <2e-16
## PovStatBelow          -1.344      0.701 388.000   -1.92    0.056
## SexMen                 1.256      0.774 383.000    1.62    0.105
## PovStatBelow:SexMen   -1.034      1.193 388.000   -0.87    0.387
## 
## Correlation of Fixed Effects:
##             (Intr) PvSttB SexMen
## PovStatBelw -0.661              
## SexMen      -0.594  0.408       
## PvSttBlw:SM  0.388 -0.587 -0.652
lm5 = lmer(FluencyWord~LifeIPV*Sex*PovStat + (1|subclass), data=Abusew01Neupsy)
summary(lm5)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV * Sex * PovStat + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2444 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.6     1.26    
##  Residual             29.6     5.44    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                               Estimate Std. Error        df t value
## (Intercept)                   19.59325    0.59516 370.00000   32.92
## LifeIPV1                      -1.40289    0.96098 339.00000   -1.46
## SexMen                         0.72831    0.86855 381.00000    0.84
## PovStatBelow                  -2.00204    0.96360 378.00000   -2.08
## LifeIPV1:SexMen                1.59200    2.74733 383.00000    0.58
## LifeIPV1:PovStatBelow          1.68848    1.41488 361.00000    1.19
## SexMen:PovStatBelow            0.00837    1.42337 370.00000    0.01
## LifeIPV1:SexMen:PovStatBelow  -3.68998    3.44087 375.00000   -1.07
##                              Pr(>|t|)
## (Intercept)                    <2e-16
## LifeIPV1                        0.145
## SexMen                          0.402
## PovStatBelow                    0.038
## LifeIPV1:SexMen                 0.563
## LifeIPV1:PovStatBelow           0.234
## SexMen:PovStatBelow             0.995
## LifeIPV1:SexMen:PovStatBelow    0.284
## 
## Correlation of Fixed Effects:
##             (Intr) LfIPV1 SexMen PvSttB LfIPV1:SM LIPV1:P SM:PSB
## LifeIPV1    -0.595                                              
## SexMen      -0.672  0.416                                       
## PovStatBelw -0.604  0.367  0.412                                
## LfIPV1:SxMn  0.208 -0.355 -0.316 -0.122                         
## LfIPV1:PvSB  0.407 -0.685 -0.278 -0.673  0.236                  
## SxMn:PvSttB  0.408 -0.249 -0.606 -0.675  0.188     0.454        
## LIPV1:SM:PS -0.163  0.280  0.245  0.270 -0.795    -0.407  -0.407

FluencyWord Regression Model 2 (with CES)

lm2 = lmer(FluencyWord~(LifeIPV + Sex + PovStat + CESD)^4 + (1|subclass), data=Abusew01Neupsy)
step(lm2,keep.effs="subclass")

NOTE: Because the step() function eliminates a nonsignificant random term in the above regression analysis, I cannot see what the final model would be if I forced it to keep the random term; so, I manually entered the model with various combinations of interaction terms.

lm1 = lmer(FluencyWord~LifeIPV*CESD + (1|subclass), data=Abusew01Neupsy)
summary(lm1)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV * CESD + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2456 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.69    1.30    
##  Residual             29.24    5.41    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)      19.891      0.436 317.000   45.63   <2e-16
## LifeIPV1         -0.890      0.923 360.000   -0.96   0.3356
## CESD1            -1.962      0.713 384.000   -2.75   0.0062
## LifeIPV1:CESD1    0.403      1.250 389.000    0.32   0.7475
## 
## Correlation of Fixed Effects:
##             (Intr) LfIPV1 CESD1 
## LifeIPV1    -0.444              
## CESD1       -0.587  0.283       
## LIPV1:CESD1  0.339 -0.756 -0.577
lm2 = lmer(FluencyWord~LifeIPV*Sex*CESD + (1|subclass), data=Abusew01Neupsy)
summary(lm2)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV * Sex * CESD + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2444 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.7     1.30    
##  Residual             29.5     5.43    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                       Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)             19.555      0.602 371.000   32.48   <2e-16
## LifeIPV1                -0.621      1.049 370.000   -0.59    0.554
## SexMen                   0.697      0.860 384.000    0.81    0.418
## CESD1                   -1.844      0.958 381.000   -1.92    0.055
## LifeIPV1:SexMen          0.118      3.044 384.000    0.04    0.969
## LifeIPV1:CESD1           0.413      1.452 385.000    0.28    0.776
## SexMen:CESD1            -0.174      1.447 382.000   -0.12    0.904
## LifeIPV1:SexMen:CESD1   -1.070      3.661 382.000   -0.29    0.770
## 
## Correlation of Fixed Effects:
##             (Intr) LfIPV1 SexMen CESD1  LfIPV1:SM LIPV1:C SM:CES
## LifeIPV1    -0.559                                              
## SexMen      -0.687  0.400                                       
## CESD1       -0.615  0.355  0.429                                
## LfIPV1:SxMn  0.192 -0.349 -0.287 -0.111                         
## LIPV1:CESD1  0.411 -0.734 -0.289 -0.663  0.246                  
## SexMn:CESD1  0.409 -0.235 -0.594 -0.663  0.166     0.438        
## LIPV1:SM:CE -0.158  0.288  0.237  0.253 -0.830    -0.389  -0.394
lm3 = lmer(FluencyWord~LifeIPV*PovStat*CESD + (1|subclass), data=Abusew01Neupsy)
summary(lm3)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV * PovStat * CESD + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2440 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.66    1.29    
##  Residual             29.04    5.39    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                             Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)                   20.596      0.519 357.000   39.69   <2e-16
## LifeIPV1                      -1.369      1.213 373.000   -1.13    0.260
## PovStatBelow                  -2.287      0.919 376.000   -2.49    0.013
## CESD1                         -2.259      0.943 385.000   -2.40    0.017
## LifeIPV1:PovStatBelow          1.780      1.896 383.000    0.94    0.349
## LifeIPV1:CESD1                 0.760      1.758 384.000    0.43    0.666
## PovStatBelow:CESD1             1.442      1.466 382.000    0.98    0.326
## LifeIPV1:PovStatBelow:CESD1   -1.393      2.545 384.000   -0.55    0.584
## 
## Correlation of Fixed Effects:
##             (Intr) LfIPV1 PvSttB CESD1  LfIPV1:PSB LIPV1:C PSB:CE
## LifeIPV1    -0.411                                               
## PovStatBelw -0.548  0.234                                        
## CESD1       -0.537  0.237  0.301                                 
## LfIPV1:PvSB  0.268 -0.646 -0.486 -0.153                          
## LIPV1:CESD1  0.294 -0.702 -0.166 -0.544  0.451                   
## PvStB:CESD1  0.345 -0.150 -0.626 -0.644  0.309      0.350        
## LIPV1:PSB:C -0.204  0.484  0.367  0.378 -0.751     -0.692  -0.584
lm4 = lmer(FluencyWord~PovStat*Sex*CESD + (1|subclass), data=Abusew01Neupsy)
summary(lm4)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ PovStat * Sex * CESD + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2440 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.76    1.33    
##  Residual             28.91    5.38    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                           Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)                 19.851      0.604 374.000   32.87   <2e-16
## PovStatBelow                -1.477      1.033 383.000   -1.43    0.154
## SexMen                       1.281      0.950 382.000    1.35    0.178
## CESD1                       -1.984      0.946 374.000   -2.10    0.037
## PovStatBelow:SexMen         -1.150      1.634 384.000   -0.70    0.482
## PovStatBelow:CESD1           0.987      1.422 377.000    0.69    0.488
## SexMen:CESD1                -0.560      1.634 383.000   -0.34    0.732
## PovStatBelow:SexMen:CESD1    0.389      2.457 384.000    0.16    0.874
## 
## Correlation of Fixed Effects:
##             (Intr) PvSttB SexMen CESD1  PvSB:SM PSB:CE SM:CES
## PovStatBelw -0.571                                           
## SexMen      -0.621  0.369                                    
## CESD1       -0.616  0.356  0.394                             
## PvSttBlw:SM  0.362 -0.636 -0.585 -0.227                      
## PvStB:CESD1  0.412 -0.720 -0.267 -0.665  0.461               
## SexMn:CESD1  0.362 -0.215 -0.585 -0.583  0.344   0.394       
## PSB:SM:CESD -0.240  0.425  0.391  0.385 -0.669  -0.588 -0.670
lm5 = lmer(FluencyWord~LifeIPV*Sex*PovStat*CESD + (1|subclass), data=Abusew01Neupsy)
summary(lm5)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: FluencyWord ~ LifeIPV * Sex * PovStat * CESD + (1 | subclass) 
##    Data: Abusew01Neupsy 
## 
## REML criterion at convergence: 2410 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subclass (Intercept)  1.74    1.32    
##  Residual             29.36    5.42    
## Number of obs: 393, groups: subclass, 131
## 
## Fixed effects:
##                                    Estimate Std. Error       df t value
## (Intercept)                         20.1102     0.7083 377.0000   28.39
## LifeIPV1                            -0.9767     1.3510 363.0000   -0.72
## SexMen                               1.0507     1.0347 375.0000    1.02
## PovStatBelow                        -1.9550     1.3158 373.0000   -1.49
## CESD1                               -1.7554     1.2873 377.0000   -1.36
## LifeIPV1:SexMen                      0.1473     4.2289 375.0000    0.03
## LifeIPV1:PovStatBelow                1.5144     2.1872 372.0000    0.69
## SexMen:PovStatBelow                 -0.7598     1.8582 375.0000   -0.41
## LifeIPV1:CESD1                       0.0525     2.0257 375.0000    0.03
## SexMen:CESD1                        -1.0970     1.9097 377.0000   -0.57
## PovStatBelow:CESD1                   0.6999     2.0024 377.0000    0.35
## LifeIPV1:SexMen:PovStatBelow         0.0218     6.1150 374.0000    0.00
## LifeIPV1:SexMen:CESD1                3.0472     5.6495 377.0000    0.54
## LifeIPV1:PovStatBelow:CESD1         -0.1333     2.9827 376.0000   -0.04
## SexMen:PovStatBelow:CESD1            1.8468     3.0014 376.0000    0.62
## LifeIPV1:SexMen:PovStatBelow:CESD1  -5.8362     7.6243 376.0000   -0.77
##                                    Pr(>|t|)
## (Intercept)                          <2e-16
## LifeIPV1                               0.47
## SexMen                                 0.31
## PovStatBelow                           0.14
## CESD1                                  0.17
## LifeIPV1:SexMen                        0.97
## LifeIPV1:PovStatBelow                  0.49
## SexMen:PovStatBelow                    0.68
## LifeIPV1:CESD1                         0.98
## SexMen:CESD1                           0.57
## PovStatBelow:CESD1                     0.73
## LifeIPV1:SexMen:PovStatBelow           1.00
## LifeIPV1:SexMen:CESD1                  0.59
## LifeIPV1:PovStatBelow:CESD1            0.96
## SexMen:PovStatBelow:CESD1              0.54
## LifeIPV1:SexMen:PovStatBelow:CESD1     0.44
## 
## Correlation of Fixed Effects:
##               (Intr) LfIPV1 SexMen PvSttB CESD1  LfIPV1:SM LfIPV1:PSB
## LifeIPV1      -0.513                                                 
## SexMen        -0.675  0.355                                          
## PovStatBelw   -0.528  0.276  0.363                                   
## CESD1         -0.543  0.291  0.370  0.290                            
## LfIPV1:SxMn    0.162 -0.320 -0.245 -0.088 -0.093                     
## LfIPV1:PvSB    0.316 -0.620 -0.213 -0.600 -0.179  0.197              
## SxMn:PvSttB    0.374 -0.195 -0.555 -0.710 -0.206  0.136     0.424    
## LIPV1:CESD1    0.350 -0.679 -0.237 -0.189 -0.642  0.216     0.420    
## SexMn:CESD1    0.369 -0.196 -0.545 -0.199 -0.676  0.139     0.118    
## PvStB:CESD1    0.350 -0.187 -0.242 -0.659 -0.645  0.067     0.398    
## LfIPV1:SM:PSB -0.110  0.220  0.165  0.214  0.070 -0.690    -0.357    
## LIPV1:SM:CE   -0.122  0.241  0.184  0.067  0.228 -0.750    -0.148    
## LIPV1:PSB:C   -0.236  0.460  0.159  0.448  0.438 -0.151    -0.740    
## SM:PSB:CESD   -0.234  0.124  0.349  0.441  0.431 -0.089    -0.260    
## LIPV1:SM:PSB:  0.091 -0.178 -0.135 -0.173 -0.176  0.556     0.285    
##               SxM:PSB LIPV1:C SM:CES PSB:CE LfIPV1:SM:PSB LIPV1:SM:C
## LifeIPV1                                                            
## SexMen                                                              
## PovStatBelw                                                         
## CESD1                                                               
## LfIPV1:SxMn                                                         
## LfIPV1:PvSB                                                         
## SxMn:PvSttB                                                         
## LIPV1:CESD1    0.133                                                
## SexMn:CESD1    0.306   0.433                                        
## PvStB:CESD1    0.472   0.415   0.438                                
## LfIPV1:SM:PSB -0.302  -0.154  -0.100 -0.150                         
## LIPV1:SM:CE   -0.102  -0.357  -0.342 -0.150  0.520                  
## LIPV1:PSB:C   -0.318  -0.681  -0.293 -0.676  0.269         0.244    
## SM:PSB:CESD   -0.626  -0.276  -0.640 -0.671  0.192         0.216    
## LIPV1:SM:PSB:  0.245   0.269   0.257  0.268 -0.804        -0.741    
##               LIPV1:PSB: SM:PSB:
## LifeIPV1                        
## SexMen                          
## PovStatBelw                     
## CESD1                           
## LfIPV1:SxMn                     
## LfIPV1:PvSB                     
## SxMn:PvSttB                     
## LIPV1:CESD1                     
## SexMn:CESD1                     
## PvStB:CESD1                     
## LfIPV1:SM:PSB                   
## LIPV1:SM:CE                     
## LIPV1:PSB:C                     
## SM:PSB:CESD    0.447            
## LIPV1:SM:PSB: -0.391     -0.393