Determinar las predicciones de datos en base al modelo de regresión lineal.
De un conjunto de datos con bivariable en donde una es X variable, independiente y otra de variable dependiente. Predecir el valor de Y conforme a X.
\[Y= a+bx\]
Donde: * \(Y\) es el valor a predecir * \(a\) Es el valor del creuce del eje y * \(b\) es el valor de la pendiente o inclinacion * \(x\) el valor de la variable independiete
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(mosaic)
## Registered S3 method overwritten by 'mosaic':
## method from
## fortify.SpatialPolygonsDataFrame ggplot2
##
## The 'mosaic' package masks several functions from core packages in order to add
## additional features. The original behavior of these functions should not be affected by this.
##
## Attaching package: 'mosaic'
## The following object is masked from 'package:Matrix':
##
## mean
## The following object is masked from 'package:ggplot2':
##
## stat
## The following objects are masked from 'package:dplyr':
##
## count, do, tally
## The following objects are masked from 'package:stats':
##
## binom.test, cor, cor.test, cov, fivenum, IQR, median, prop.test,
## quantile, sd, t.test, var
## The following objects are masked from 'package:base':
##
## max, mean, min, prod, range, sample, sum
library(readr)
library(ggplot2)
library(knitr)
2.1. Cargar o generar los datos
semanas <- c(1:12)
comerciales <- c(2,5,1,3,4,1,5,3,4,2,3,2)
ventas <- c(50,57,41,54,54,38,63,48,59,46, 45, 48 )
datos <- data.frame(semanas,comerciales,ventas)
kable(datos, caption = "Ventas en función de inversión en comerciales")
| semanas | comerciales | ventas |
|---|---|---|
| 1 | 2 | 50 |
| 2 | 5 | 57 |
| 3 | 1 | 41 |
| 4 | 3 | 54 |
| 5 | 4 | 54 |
| 6 | 1 | 38 |
| 7 | 5 | 63 |
| 8 | 3 | 48 |
| 9 | 4 | 59 |
| 10 | 2 | 46 |
| 11 | 3 | 45 |
| 12 | 2 | 48 |
2.2. Valor de correlación entre las varibles
r <- cor(datos$comerciales, datos$ventas)
r
## [1] 0.9006177
2.3. Gráfica de dispersión
ggplot(data = datos, aes(x = comerciales, y = ventas)) +
geom_point(colour = 'blue')
2.4. Generar el modelo regresión lineal Y=a+bx
Determinar los coeficintes a y b por medio de la función lineal lm()
El caracter ‘~’ en la fórmula de la función lm() de regresión se interpreta como que la variable ‘y’ está en función de la variable ‘x’.
modelo <- lm(data = datos, formula = ventas~comerciales)
modelo
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Coefficients:
## (Intercept) comerciales
## 36.131 4.841
\[r^2\]
summary(modelo)
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6534 -2.7331 0.1076 2.8357 4.1873
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.1315 2.3650 15.278 2.93e-08 ***
## comerciales 4.8406 0.7387 6.553 6.45e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.378 on 10 degrees of freedom
## Multiple R-squared: 0.8111, Adjusted R-squared: 0.7922
## F-statistic: 42.94 on 1 and 10 DF, p-value: 6.449e-05
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: ", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: 0.811112191696598"
Determinar los valores de a y b
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 36.13147
## comerciales
## 4.840637
Gráfica de tendencia
ggplot() +
geom_point(data = datos, aes(x = comerciales, y = ventas), colour='blue') +
geom_line(aes( x = datos$comerciales, y = predict(modelo, datos)), color = "red") +
xlab("Comerciales") +
ylab("Ventas") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
2.5. Predecir conforme al modelo
x <- c(4,3.5,2,0,1)
prediccion <- predict(object = modelo, newdata = data.frame(comerciales = x))
prediccion
## 1 2 3 4 5
## 55.49402 53.07371 45.81275 36.13147 40.97211
y = a + b * x
y
## [1] 55.49402 53.07371 45.81275 36.13147 40.97211
Uno de los problemas más desafiantes que se enfrentan en el área del control de la contaminación del agua lo representa la industria de la peletería (dedicada a la elaboración de indumentaria, cuero y piel animal).
Los desechos de ésta tienen una complejidad química. Se caracterizan por valores elevados de demanda de oxígeno bioquímico, sólidos volátiles y otras medidas de la contaminación. (Walpole et al., 2007)
3.1. Cargar o generar los datos
seq <- c(1:33)
solido <- c(3,7,11,15,18,27,29,30,30,31,31,32,33,33,34,36,36,36,37,38,39,39,39,40,41,42,42,43,44,45,46,47,50)
oxigeno <- c(5,11,21,16,16,28,27,25,35,30,40,32,34,32,34,37,38,34,36,38,37,36,45,39,41,40,44,37,44,46,46,49,51 )
datos <- data.frame(seq,solido,oxigeno)
kable(datos, caption = "Contaminante oxígeno en función de reducción de sólidos")
| seq | solido | oxigeno |
|---|---|---|
| 1 | 3 | 5 |
| 2 | 7 | 11 |
| 3 | 11 | 21 |
| 4 | 15 | 16 |
| 5 | 18 | 16 |
| 6 | 27 | 28 |
| 7 | 29 | 27 |
| 8 | 30 | 25 |
| 9 | 30 | 35 |
| 10 | 31 | 30 |
| 11 | 31 | 40 |
| 12 | 32 | 32 |
| 13 | 33 | 34 |
| 14 | 33 | 32 |
| 15 | 34 | 34 |
| 16 | 36 | 37 |
| 17 | 36 | 38 |
| 18 | 36 | 34 |
| 19 | 37 | 36 |
| 20 | 38 | 38 |
| 21 | 39 | 37 |
| 22 | 39 | 36 |
| 23 | 39 | 45 |
| 24 | 40 | 39 |
| 25 | 41 | 41 |
| 26 | 42 | 40 |
| 27 | 42 | 44 |
| 28 | 43 | 37 |
| 29 | 44 | 44 |
| 30 | 45 | 46 |
| 31 | 46 | 46 |
| 32 | 47 | 49 |
| 33 | 50 | 51 |
3.2. Valor de correlación entre las variables
r <- cor(datos$solido, datos$oxigeno)
r
## [1] 0.9554794
3.3. Gráfica de dispersión
ggplot(data = datos, aes(x = solido, y = oxigeno)) +
geom_point(colour = 'blue')
3.4. Generar el modelo regresión lineal Y=a+bx
modelo <- lm(data = datos, formula = oxigeno~solido)
modelo
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Coefficients:
## (Intercept) solido
## 3.8296 0.9036
Encontrar el coeficiente de determinación r2
summary(modelo)
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.939 -1.783 -0.228 1.506 8.157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.82963 1.76845 2.166 0.0382 *
## solido 0.90364 0.05012 18.030 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.23 on 31 degrees of freedom
## Multiple R-squared: 0.9129, Adjusted R-squared: 0.9101
## F-statistic: 325.1 on 1 and 31 DF, p-value: < 2.2e-16
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.912940801014387"
**** Determinar los valores de a y b
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 3.829633
## solido
## 0.9036432
Gráfica de tendencia
ggplot() +
geom_point(data = datos, aes(x = solido, y = oxigeno), colour='blue') +
geom_line(aes( x = datos$solido, y = predict(modelo, datos)), color = "red") +
xlab("Reducción de sólido") +
ylab("% Oxígeno") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
3.5. Predecir conforme al modelo
x <- c(15,20,35,40,50)
prediccion <- predict(object = modelo, newdata = data.frame(solido = x))
prediccion
## 1 2 3 4 5
## 17.38428 21.90250 35.45715 39.97536 49.01179
y = a + b * x
y
## [1] 17.38428 21.90250 35.45715 39.97536 49.01179
**En el caso 21 hablamos sobre la regresión lineal simple.