Metadata

Description

Dataset name: OS Culture Codebook

Codebook: Open science practices in ethnic minority and cultural psychology

Metadata for search engines

  • Temporal Coverage: Winter 2020

  • Date published: 2021-01-14

x
age
gender_f
race_f
continent
career
career_o
lead
culture
politics
c19stress
group
agree
consci
extra
neuro
open
selfQRP
peerQRP
opinionQRP
awarePRRP
selfPRRP
peerPRRP
recentPRRP
opinionPRRP
prrp1_5
prrp2_5
prrp3_5
prrp1_5_o
prrp2_5_o
prrp3_5_o
participate
comfort
positive
negative
entity
repConf
integrity
intMild
intSerious
rep_2
rep_2_o
beh_1
beh_2
beh_3
barrier
barrier_o
opportunity
opportunity_o
engagemotiv01
engagemotiv02
engagemotiv03
engagebarrier01
engagebarrier02
engagebarrier03
convomotiv01
convomotiv02
convomotiv03
convoconcern01
convoconcern02
convoconcern03
attcheck
experience_19
qrp1_1
qrp1_2
qrp1_3
qrp1_4
qrp2_1
qrp2_2
qrp2_3
qrp2_4
qrp3_1
qrp3_2
qrp3_3
qrp3_4
qrp4_1
qrp4_2
qrp4_3
qrp4_4
qrp5_1
qrp5_2
qrp5_3
qrp5_4
qrp6_1
qrp6_2
qrp6_3
qrp6_4
qrp7_1
qrp7_2
qrp7_3
qrp7_4
qrp8_1
qrp8_2
qrp8_3
qrp8_4
qrp9_1
qrp9_2
qrp9_3
qrp9_4
qrp10_1
qrp10_2
qrp10_3
qrp10_4
prrp1_1
prrp1_2
prrp1_3
prrp1_4
prrp1_6
prrp1_7
prrp2_1
prrp2_2
prrp2_3
prrp2_4
prrp2_6
prrp2_7
prrp3_1
prrp3_2
prrp3_3
prrp3_4
prrp3_6
prrp3_7
rep_1_1
rep_1_2
rep_1_3
rep_1_4
int_1_1
int_1_2
int_1_3
int_1_4
int_1_5
int_2_1
int_2_2
int_2_3
int_2_4
int_2_5
participate_1
participate_2
participate_3
participate_4
comfort_1
comfort_2
comfort_3
comfort_4
experience_1
experience_2
experience_3
experience_4
experience_5
experience_6
experience_7
experience_8
experience_9
experience_10
experience_11
experience_12
experience_13
experience_14
experience_15
experience_16
experience_17
experience_18
entity_1
entity_2
tipi_1
tipi_2
tipi_3
tipi_4
tipi_5
tipi_6
tipi_7
tipi_8
tipi_9
tipi_10
lead_1
lead_2
lead_3
prrp1_5_1
prrp1_5_2
prrp1_5_3
prrp1_5_4
prrp1_5_5
prrp1_5_6
prrp1_5_7
prrp1_5_8
prrp1_5_9
prrp1_5_10
prrp2_5_1
prrp2_5_2
prrp2_5_3
prrp2_5_4
prrp2_5_5
prrp2_5_6
prrp2_5_7
prrp2_5_8
prrp2_5_9
prrp3_5_1
prrp3_5_2
prrp3_5_3
prrp3_5_4
prrp3_5_5
prrp3_5_6
rep_2_1
rep_2_2
rep_2_3
rep_2_4
rep_2_5
rep_2_6
rep_2_7
rep_2_8
rep_2_9

Variables

age

What is your age?

Distribution

Distribution of values for age

Distribution of values for age

109 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
age What is your age? haven_labelled 109 0.7061995 2 3.5 7 3.751908 1.149503 7 <U+2582><U+2587><U+2581><U+2585><U+2583><U+2581><U+2582><U+2581>

Value labels

Response choices
name value
18-22 1
23-29 2
30-39 3
40-49 4
50-59 5
60-69 6
70+ 7

gender_f

Gender Coded as Factor

Distribution

Distribution of values for gender_f

Distribution of values for gender_f

119 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
gender_f Gender Coded as Factor haven_labelled 119 0.6792453 1 1 2 1.313492 0.4648357 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583>

Value labels

Response choices
name value
female 1
male 2

race_f

Race/Ethnicity Coded as Factor

Distribution

Distribution of values for race_f

Distribution of values for race_f

122 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
race_f Race/Ethnicity Coded as Factor haven_labelled 122 0.671159 1 5 6 3.586345 1.732509 6 <U+2583><U+2582><U+2581><U+2583><U+2581><U+2581><U+2587><U+2581>

Value labels

Response choices
name value
Asian 1
Black 2
Hispanic 3
Native American 4
Non-Hispanic White 5
Mixed 6

continent

In which continent do you primarily live and work?

Distribution

Distribution of values for continent

Distribution of values for continent

109 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
continent In which continent do you primarily live and work? haven_labelled 109 0.7061995 1 5 6 4.885496 0.5272821 6 <U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587><U+2581>

Value labels

Response choices
name value
Africa 1
Asia 2
Australia/Oceania 3
Europe 4
North America 5
South America 6

career

What is your career stage?

Distribution

Distribution of values for career

Distribution of values for career

110 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
career What is your career stage? haven_labelled 110 0.703504 2 5 7 4.375479 1.148918 7 <U+2582><U+2581><U+2581><U+2585><U+2587><U+2581><U+2581><U+2581>

Value labels

Response choices
name value
Undergraduate student 1
Graduate student 2
Post-doctoral fellow 3
Assistant professor/lecturer 4
Associate/full professor 5
Research scientist 6
Other 7

career_o

What is your career stage? - Text

Distribution

Distribution of values for career_o

Distribution of values for career_o

361 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
career_o What is your career stage? - Text character 361 0.0269542 10 0 12 88 0

Scale: lead

Overview

Reliability: .

Missing: 0.

Likert plot of scale lead items

Likert plot of scale lead items

Distribution of scale lead

Distribution of scale lead

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: lead_1, lead_2 & lead_3
Observations: 371
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.53
Omega (hierarchical): 0.09
Revelle’s Omega (total): 0.53
Greatest Lower Bound (GLB): 0.53
Coefficient H: 0.53
Coefficient Alpha: 0.51

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.53, 0.785 & 0.685

Factor analysis (reproducing only shared variance)
ML1
lead_1 0.531
lead_2 0.588
lead_3 0.429
Component analysis (reproducing full covariance matrix)
PC1
lead_1 0.727
lead_2 0.746
lead_3 0.667
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
lead_1 0.202156334231806 0 0.161725067385445 0.402150553133332 0 0.0208786164216033 0 NA 1 1 1.48928301725181 0.219116000942618 0.101078167115903 371 0 371
lead_2 0.134770889487871 0 0.116922852771909 0.341939837942158 0 0.017752631844056 0 NA 1 1 2.1477969592349 2.62716546141488 0.0673854447439353 371 0 371
lead_3 0.245283018867925 0 0.185619581845997 0.430835910580811 0 0.0223678859759932 0 NA 1 1 1.18884036676685 -0.589867648258422 0.122641509433962 371 0 371
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
lead_1 Leadership position - Your institution haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.2021563 0.4021506 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>
lead_2 Leadership position - Journal editorialship haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1347709 0.3419398 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
lead_3 Leadership position - Professional societies haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.2452830 0.4308359 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>

culture

Do you consider any of your work to be in the subfield of cultural/ethnic minority psychology?

Distribution

Distribution of values for culture

Distribution of values for culture

108 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
culture Do you consider any of your work to be in the subfield of cultural/ethnic minority psychology? haven_labelled 108 0.7088949 0 1 1 0.8707224 0.3361466 2 <U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587>

Value labels

Response choices
name value
No 0
Yes 1

politics

Which of the following best describes how you would label your political views?

Distribution

Distribution of values for politics

Distribution of values for politics

111 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
politics Which of the following best describes how you would label your political views? haven_labelled 111 0.7008086 1 2 7 2.161538 1.053062 7 <U+2583><U+2587><U+2582><U+2581><U+2581><U+2581><U+2581><U+2581>

Value labels

Response choices
name value
Extremely liberal 1
Liberal 2
Slightly liberal 3
Moderate 4
Sligthly conservative 5
Conservative 6
Extremely conservative 7

c19stress

Your current level of stress associated with the COVID-19/coronavirus pandemic

Distribution

Distribution of values for c19stress

Distribution of values for c19stress

108 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
c19stress Your current level of stress associated with the COVID-19/coronavirus pandemic haven_labelled 108 0.7088949 1 6 10 6.140684 2.161243 2 <U+2582><U+2583><U+2585><U+2585><U+2586><U+2587><U+2586><U+2586>

Value labels

Response choices
name value
Low stress 1
High stress 10

group

Recruitment method

Distribution

Distribution of values for group

Distribution of values for group

19 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
group Recruitment method haven_labelled 19 0.9487871 1 1 2 1.448864 0.4980862 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2586>

Value labels

Response choices
name value
Flat 1
Raffle 2

Scale: agree

Overview

Reliability: .

Missing: 109.

Likert plot of scale agree items

Likert plot of scale agree items

Distribution of scale agree

Distribution of scale agree

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: tipi_2 & tipi_7
Observations: 262
Positive correlations: 1
Number of correlations: 1
Percentage positive correlations: 100
Estimates assuming interval level
Estimates for two-item measures
Spearman Brown coefficient: 0.50
Coefficient Alpha: 0.49
Pearson Correlation: 0.33

Eigen values

1.333 & 0.667

Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
tipi_2 3.66793893129771 4 1.10387236407242 1.05065330346048 2 0.0649095778601766 1 3 5 5 -0.320898701284228 -0.926856876813772 0.125954198473282 262 0 262
tipi_7 4.08778625954198 4 0.762378988622737 0.8731431661662 1 0.0539429649539744 1 3 5 5 -1.07637518489251 1.45049393172587 0.17175572519084 262 0 262
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
tipi_2 I see myself as critical, quarrelsome haven_labelled 5. Strongly disagree,
3. Neither agree nor disagree,
1. Strongly agree
109 0.7061995 1 4 5 3.667939 1.0506533 3 <U+2581><U+2583><U+2581><U+2586><U+2581><U+2587><U+2581><U+2586>
tipi_7 I see myself as sympathetic, warm haven_labelled 1. Strongly disagree,
3. Neither agree nor disagree,
5. Strongly agree
108 0.7088949 1 4 5 4.087453 0.8714921 3 <U+2581><U+2581><U+2581><U+2582><U+2581><U+2587><U+2581><U+2586>

Scale: consci

Overview

Reliability: .

Missing: 108.

Likert plot of scale consci items

Likert plot of scale consci items

Distribution of scale consci

Distribution of scale consci

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: tipi_3 & tipi_8
Observations: 263
Positive correlations: 1
Number of correlations: 1
Percentage positive correlations: 100
Estimates assuming interval level
Estimates for two-item measures
Spearman Brown coefficient: 0.69
Coefficient Alpha: 0.69
Pearson Correlation: 0.53

Eigen values

1.526 & 0.474

Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
tipi_3 4.24714828897338 4 0.812730386323397 0.901515605146909 1 0.0555898336550163 1 3 5 5 -1.42175030435064 2.06014744280001 0.199619771863118 263 0 263
tipi_8 4.13688212927757 4 0.935390241778655 0.967155748459706 1 0.0596373782865429 1 3 5 5 -0.91536446439323 -0.0699099394997029 0.159695817490494 263 0 263
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
tipi_3 I see myself as dependable, self-disciplined haven_labelled 1. Strongly disagree,
3. Neither agree nor disagree,
5. Strongly agree
108 0.7088949 1 4 5 4.247148 0.9015156 3 <U+2581><U+2581><U+2581><U+2581><U+2581><U+2587><U+2581><U+2587>
tipi_8 I see myself as disorganized, careless haven_labelled 5. Strongly disagree,
3. Neither agree nor disagree,
1. Strongly agree
108 0.7088949 1 4 5 4.136882 0.9671557 3 <U+2581><U+2582><U+2581><U+2582><U+2581><U+2586><U+2581><U+2587>

Scale: extra

Overview

Reliability: .

Missing: 108.

Likert plot of scale extra items

Likert plot of scale extra items

Distribution of scale extra

Distribution of scale extra

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: tipi_1 & tipi_6
Observations: 263
Positive correlations: 1
Number of correlations: 1
Percentage positive correlations: 100
Estimates assuming interval level
Estimates for two-item measures
Spearman Brown coefficient: 0.81
Coefficient Alpha: 0.81
Pearson Correlation: 0.69

Eigen values

1.686 & 0.314

Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
tipi_1 3.1787072243346 3 1.42214030708501 1.19253524354 2 0.0735348733151771 1 2 4 5 -0.200154756935808 -0.855782690259789 0.134980988593156 263 0 263
tipi_6 2.95437262357414 3 1.3719559980263 1.17130525399073 2 0.072225776078475 1 2 4 5 0.0890981604474295 -0.888746821318586 0.134980988593156 263 0 263
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
tipi_1 I see myself as extraverted, enthusiastic haven_labelled 1. Strongly disagree,
3. Neither agree nor disagree,
5. Strongly agree
108 0.7088949 1 3 5 3.178707 1.192535 3 <U+2583><U+2586><U+2581><U+2587><U+2581><U+2587><U+2581><U+2583>
tipi_6 I see myself as reserved, quiet haven_labelled 5. Strongly disagree,
3. Neither agree nor disagree,
1. Strongly agree
108 0.7088949 1 3 5 2.954373 1.171305 3 <U+2583><U+2587><U+2581><U+2587><U+2581><U+2587><U+2581><U+2583>

Scale: neuro

Overview

Reliability: .

Missing: 108.

Likert plot of scale neuro items

Likert plot of scale neuro items

Distribution of scale neuro

Distribution of scale neuro

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: tipi_4 & tipi_9
Observations: 263
Positive correlations: 1
Number of correlations: 1
Percentage positive correlations: 100
Estimates assuming interval level
Estimates for two-item measures
Spearman Brown coefficient: 0.63
Coefficient Alpha: 0.62
Pearson Correlation: 0.46

Eigen values

1.46 & 0.54

Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
tipi_4 2.56653992395437 3 1.19307462339999 1.09227955368577 1 0.0673528426435535 1 2 4 5 0.271221777198003 -0.654187194849791 0.14828897338403 263 0 263
tipi_9 2.22053231939163 2 0.790874524714829 0.889311264246006 1 0.0548372817561063 1 1 3 5 0.37233823606494 -0.394597934882847 0.133079847908745 263 0 263
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
tipi_4 I see myself as anxious, easily upset haven_labelled 1. Strongly disagree,
3. Neither agree nor disagree,
5. Strongly agree
108 0.7088949 1 3 5 2.566540 1.0922796 3 <U+2585><U+2587><U+2581><U+2587><U+2581><U+2585><U+2581><U+2581>
tipi_9 I see myself as calm, emotionally stable haven_labelled 5. Strongly disagree,
3. Neither agree nor disagree,
1. Strongly agree
108 0.7088949 1 2 5 2.220532 0.8893113 3 <U+2583><U+2587><U+2581><U+2585><U+2581><U+2582><U+2581><U+2581>

Scale: open

Overview

Reliability: .

Missing: 108.

Likert plot of scale open items

Likert plot of scale open items

Distribution of scale open

Distribution of scale open

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: tipi_5 & tipi_10
Observations: 263
Positive correlations: 1
Number of correlations: 1
Percentage positive correlations: 100
Estimates assuming interval level
Estimates for two-item measures
Spearman Brown coefficient: 0.44
Coefficient Alpha: 0.44
Pearson Correlation: 0.29

Eigen values

1.286 & 0.714

Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
tipi_5 3.90874524714829 4 0.76263315241053 0.873288699348921 2 0.0538492880793795 1 3 5 5 -0.687780360944063 0.460400222159906 0.127376425855513 263 0 263
tipi_10 3.69201520912548 4 0.946768060836502 0.973020072165267 1 0.0599989879774125 1 3 5 5 -0.4514215942755 -0.332401333606577 0.131178707224335 263 0 263
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
tipi_5 I see myself as open to new experiences, complex haven_labelled 1. Strongly disagree,
3. Neither agree nor disagree,
5. Strongly agree
108 0.7088949 1 4 5 3.908745 0.8732887 3 <U+2581><U+2581><U+2581><U+2583><U+2581><U+2587><U+2581><U+2585>
tipi_10 I see myself as conventional, uncreative haven_labelled 5. Strongly disagree,
3. Neither agree nor disagree,
1. Strongly agree
108 0.7088949 1 4 5 3.692015 0.9730201 3 <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2585>

Scale: selfQRP

Overview

Reliability: .

Missing: 107.

Likert plot of scale selfQRP items

Likert plot of scale selfQRP items

Distribution of scale selfQRP

Distribution of scale selfQRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: qrp1_2, qrp2_2, qrp3_2, qrp4_2, qrp5_2, qrp6_2, qrp7_2, qrp8_2, qrp9_2 & qrp10_2
Observations: 264
Positive correlations: 45
Number of correlations: 45
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.70
Omega (hierarchical): 0.45
Revelle’s Omega (total): 0.70
Greatest Lower Bound (GLB): 0.73
Coefficient H: 0.70
Coefficient Alpha: 0.65

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

2.518, 1.186, 1.057, 1.008, 0.931, 0.809, 0.746, 0.674, 0.574 & 0.497

Factor analysis (reproducing only shared variance)
ML1 ML2 ML3 ML4
qrp1_2 -0.055 0.729 0.051 0.016
qrp2_2 0.109 0.567 -0.087 -0.018
qrp3_2 -0.011 0.018 0.631 0.019
qrp4_2 0.229 0.190 0.319 -0.220
qrp5_2 0.063 -0.109 0.238 0.136
qrp6_2 0.052 0.294 0.126 0.351
qrp7_2 0.213 0.027 -0.036 0.335
qrp8_2 0.998 -0.005 0.002 0.007
qrp9_2 0.120 0.019 0.271 -0.051
qrp10_2 0.017 -0.130 0.274 0.221
Component analysis (reproducing full covariance matrix)
TC1 TC4 TC2 TC3
qrp1_2 0.753 0.064 -0.048 0.004
qrp2_2 0.771 -0.058 -0.103 0.030
qrp3_2 0.218 0.483 0.302 -0.050
qrp4_2 0.457 0.429 0.158 -0.250
qrp5_2 -0.026 -0.096 0.859 -0.091
qrp6_2 0.484 -0.141 0.302 0.358
qrp7_2 0.019 0.018 -0.064 0.889
qrp8_2 0.307 0.435 0.101 0.266
qrp9_2 -0.078 0.825 -0.147 0.032
qrp10_2 -0.267 0.265 0.482 0.295
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
qrp1_2 2.40151515151515 3 1.1917847678304 1.09168895195948 2 0.067188810391179 1 1 4 5 -0.0902296317028737 -1.09776307620976 0.162878787878788 264 0 264
qrp2_2 1.88636363636364 1 1.12011752506049 1.05835604834124 2 0.0651373119886591 1 NA 3 5 0.616689494081706 -1.01964843779976 0.162878787878788 264 0 264
qrp3_2 1.82575757575758 1 1.04937204747091 1.02438862131073 2 0.0630467613697007 1 NA 3 5 0.740130666834008 -0.850621906471039 0.134469696969697 264 0 264
qrp4_2 2.23484848484848 3 1.35908514805853 1.16579807344949 2 0.0717499115208654 1 1 4 5 0.287146673041679 -1.06886637655915 0.195075757575758 264 0 264
qrp5_2 1.76136363636364 1 1.28504147943311 1.13359670052145 2 0.0697680540182186 1 NA 3 5 1.22178501708444 0.348458167837494 0.0984848484848485 264 0 264
qrp6_2 1.44318181818182 1 0.635542689249914 0.797209313323617 1 0.049064841499807 1 NA 3 4 1.38979430111458 0.182452416750788 0.0909090909090909 264 0 264
qrp7_2 1.35606060606061 1 0.579963129392787 0.76155310346212 0 0.0468703534825452 1 NA 3 4 2.00514235736426 2.80024862855935 0.053030303030303 264 0 264
qrp8_2 2.11363636363636 2 1.05167646042171 1.02551277925812 2 0.0631159485086205 1 1 3 4 0.0899480206909443 -1.53265504600842 0.208333333333333 264 0 264
qrp9_2 1.28787878787879 1 0.426316395898145 0.652929089486864 0 0.0401850075643581 1 NA 2 5 2.35187182485643 5.43439367997153 0.0492424242424242 264 0 264
qrp10_2 1.08712121212121 1 0.133065445327803 0.364781366475596 0 0.0224507411404797 1 NA 2 3 4.39478830941166 18.9323823092036 0.0170454545454545 264 0 264
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
qrp1_2 Not reporting nonsignificance haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
93 0.7493261 1 3 5 2.392086 1.0985100 5 <U+2586><U+2582><U+2581><U+2587><U+2581><U+2582><U+2581><U+2581>
qrp2_2 Not reporting nonsignificance (covariate) haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
90 0.7574124 1 1 5 1.886121 1.0595752 5 <U+2587><U+2581><U+2581><U+2585><U+2581><U+2581><U+2581><U+2581>
qrp3_2 HARKing haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
85 0.7708895 1 1 5 1.825175 1.0416902 5 <U+2587><U+2582><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581>
qrp4_2 Not reporting alternative models haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
90 0.7574124 1 2 5 2.213523 1.1667853 5 <U+2587><U+2582><U+2581><U+2587><U+2581><U+2582><U+2581><U+2581>
qrp5_2 Rounding p-value haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
89 0.7601078 1 1 5 1.776596 1.1458195 5 <U+2587><U+2581><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581>
qrp6_2 Excluding data haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
85 0.7708895 1 1 4 1.454546 0.8184476 5 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2582><U+2581><U+2581>
qrp7_2 Increasing sample haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
84 0.7735849 1 1 4 1.344948 0.7452652 5 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
qrp8_2 Changing analysis haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
90 0.7574124 1 2 4 2.113879 1.0322581 5 <U+2587><U+2581><U+2582><U+2581><U+2581><U+2587><U+2581><U+2581>
qrp9_2 Not reporting problems haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
87 0.7654987 1 1 5 1.292253 0.6796979 5 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
qrp10_2 Imputing data haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
88 0.7628032 1 1 3 1.102474 0.4040060 5 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>

Scale: peerQRP

Overview

Reliability: .

Missing: 128.

Distribution of scale peerQRP

Distribution of scale peerQRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: qrp1_1, qrp2_1, qrp3_1, qrp4_1, qrp5_1, qrp6_1, qrp7_1, qrp8_1, qrp9_1 & qrp10_1
Observations: 243
Positive correlations: 45
Number of correlations: 45
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.89
Omega (hierarchical): 0.71
Revelle’s Omega (total): 0.89
Greatest Lower Bound (GLB): 0.90
Coefficient H: 0.86
Coefficient Alpha: 0.85

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 67 and the highest range is 101. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

4.396, 1.136, 0.911, 0.712, 0.585, 0.543, 0.488, 0.471, 0.391 & 0.368

Factor analysis (reproducing only shared variance)
ML1 ML2
qrp1_1 -0.061 0.777
qrp2_1 0.069 0.683
qrp3_1 0.471 0.254
qrp4_1 0.136 0.598
qrp5_1 0.380 0.154
qrp6_1 0.671 0.033
qrp7_1 0.686 -0.040
qrp8_1 0.572 0.179
qrp9_1 0.590 0.097
qrp10_1 0.724 -0.141
Component analysis (reproducing full covariance matrix)
TC1 TC2
qrp1_1 -0.073 0.857
qrp2_1 0.074 0.752
qrp3_1 0.490 0.337
qrp4_1 0.059 0.772
qrp5_1 0.378 0.266
qrp6_1 0.680 0.122
qrp7_1 0.746 -0.015
qrp8_1 0.544 0.310
qrp9_1 0.667 0.112
qrp10_1 0.852 -0.191
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
qrp1_1 58.8353909465021 66 791.931469577934 28.1412769713447 45 1.80526375941619 0 35 80 100 -0.383692539014826 -0.965469480090109 0.0448102423411065 243 0 243
qrp2_1 48.3991769547325 50 728.984627418971 26.9997153210728 44 1.73203254540718 0 20 71 100 0.00664065337977772 -0.971616549699875 0.0385802469135802 243 0 243
qrp3_1 45.6502057613169 50 778.459783015339 27.9008921544695 50 1.78984306622374 0 20 70 100 0.0166501449020511 -1.06494474387619 0.0401234567901235 243 0 243
qrp4_1 53.5061728395062 60 793.341903887358 28.1663257079683 50 1.8068706366198 0 30 81 100 -0.107678370123019 -1.07506403932118 0.0380658436213992 243 0 243
qrp5_1 45.40329218107 42 916.489575893616 30.2735788418485 51 1.94205098818606 0 20 71 100 0.195858491488025 -1.21244239297868 0.0390946502057613 243 0 243
qrp6_1 35.1975308641975 30 611.853382307928 24.7356702417365 38 1.58679398585026 0 10 54 100 0.432602438942964 -0.796839607407768 0.0495884773662552 243 0 243
qrp7_1 35.6460905349794 30 627.34530490086 25.046862176745 41 1.6067569577888 0 14 60 100 0.567056519910227 -0.65726469579524 0.0450617283950617 243 0 243
qrp8_1 49.2921810699589 50 781.860558446417 27.9617695871777 46 1.79374835535282 0 20 71 100 -0.103751993128007 -1.14185416428924 0.0417695473251029 243 0 243
qrp9_1 33.6296296296296 29 619.870523415978 24.897199107851 40 1.59715606744283 0 11 51 100 0.688665139079811 -0.346182804582853 0.0487654320987654 243 0 243
qrp10_1 19.9382716049383 10 422.835016835017 20.5629525320421 25 1.31911401996756 0 2.5 30 100 1.41333458385419 1.66829324729269 0.0742798353909465 243 0 243
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type n_missing complete_rate min median max mean sd hist
qrp1_1 Not reporting nonsignificance numeric 97 0.7385445 0 64 100 58.07664 28.56311 <U+2585><U+2583><U+2585><U+2587><U+2586>
qrp2_1 Not reporting nonsignificance (covariate) numeric 96 0.7412399 0 50 100 48.52364 27.42732 <U+2587><U+2586><U+2587><U+2587><U+2585>
qrp3_1 HARKing numeric 92 0.7520216 0 50 100 45.64158 28.17291 <U+2587><U+2585><U+2586><U+2586><U+2583>
qrp4_1 Not reporting alternative models numeric 96 0.7412399 0 54 100 52.28727 28.51228 <U+2587><U+2587><U+2587><U+2587><U+2587>
qrp5_1 Rounding p-value numeric 101 0.7277628 0 42 100 45.55926 30.24919 <U+2587><U+2586><U+2585><U+2583><U+2585>
qrp6_1 Excluding data numeric 91 0.7547170 0 30 100 35.52857 25.35156 <U+2587><U+2585><U+2583><U+2582><U+2581>
qrp7_1 Increasing sample numeric 93 0.7493261 0 30 100 35.10791 25.36170 <U+2587><U+2585><U+2583><U+2582><U+2581>
qrp8_1 Changing analysis numeric 93 0.7493261 0 51 100 49.72662 27.92300 <U+2587><U+2585><U+2586><U+2587><U+2585>
qrp9_1 Not reporting problems numeric 96 0.7412399 0 29 100 33.54909 24.84963 <U+2587><U+2585><U+2583><U+2582><U+2581>
qrp10_1 Imputing data numeric 91 0.7547170 0 11 100 20.47500 20.49214 <U+2587><U+2583><U+2581><U+2581><U+2581>

Scale: opinionQRP

Overview

Reliability: .

Missing: 117.

Likert plot of scale opinionQRP items

Likert plot of scale opinionQRP items

Distribution of scale opinionQRP

Distribution of scale opinionQRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: qrp1_3, qrp2_3, qrp3_3, qrp4_3, qrp5_3, qrp6_3, qrp7_3, qrp8_3, qrp9_3 & qrp10_3
Observations: 254
Positive correlations: 45
Number of correlations: 45
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.76
Omega (hierarchical): 0.54
Revelle’s Omega (total): 0.76
Greatest Lower Bound (GLB): 0.79
Coefficient H: 0.73
Coefficient Alpha: 0.71

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

2.852, 1.091, 1.022, 0.904, 0.841, 0.783, 0.746, 0.641, 0.597 & 0.523

Factor analysis (reproducing only shared variance)
ML2 ML1 ML3
qrp1_3 0.585 -0.020 0.046
qrp2_3 0.606 0.075 -0.123
qrp3_3 0.259 -0.045 0.407
qrp4_3 0.439 -0.066 0.193
qrp5_3 -0.032 0.179 0.437
qrp6_3 0.005 0.995 0.004
qrp7_3 0.325 0.111 0.057
qrp8_3 0.326 0.117 0.257
qrp9_3 0.218 -0.010 0.196
qrp10_3 -0.045 0.003 0.491
Component analysis (reproducing full covariance matrix)
TC1 TC2 TC3
qrp1_3 0.673 -0.009 0.100
qrp2_3 0.682 -0.216 0.150
qrp3_3 0.413 0.487 -0.042
qrp4_3 0.660 0.163 -0.119
qrp5_3 -0.119 0.560 0.499
qrp6_3 0.063 0.008 0.797
qrp7_3 0.370 -0.136 0.445
qrp8_3 0.415 0.169 0.356
qrp9_3 0.443 0.342 -0.246
qrp10_3 0.009 0.757 -0.013
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
qrp1_3 1.86614173228346 2 0.42469888892347 0.651689257946968 1 0.0408906208045004 1 1 3 3 0.140459016569553 -0.666462271764254 0.143700787401575 254 0 254
qrp2_3 1.72834645669291 2 0.475319784631664 0.689434394726332 1 0.043258961323295 1 1 3 4 0.706281802691002 0.466370400179342 0.196850393700787 254 0 254
qrp3_3 1.5748031496063 1 0.63272229311257 0.795438428234751 1 0.0499102459425867 1 NA 2 4 1.29597320201262 0.993001988781937 0.141732283464567 254 0 254
qrp4_3 1.97637795275591 2 0.600230307179982 0.774745317623787 1 0.0486118447046651 1 1 3 4 0.349239026068767 -0.481877244243003 0.143700787401575 254 0 254
qrp5_3 1.55905511811024 1 0.642743767700974 0.801713020787971 1 0.0503039488948262 1 NA 2 4 1.19749543629212 0.352776737399655 0.112204724409449 254 0 254
qrp6_3 1.40157480314961 1 0.328218854066167 0.572903878557448 1 0.0359471864387037 1 NA 2 4 1.21849422319138 1.19709684040793 0.163385826771654 254 0 254
qrp7_3 1.72047244094488 2 0.526298590146587 0.725464396195008 1 0.0455196846813607 1 1 3 4 0.732571879238658 0.113386796314962 0.21259842519685 254 0 254
qrp8_3 1.84251968503937 2 0.417789673524011 0.646366516400727 1 0.0405566422962565 1 1 3 3 0.16123959646035 -0.647534901540905 0.149606299212598 254 0 254
qrp9_3 1.20866141732283 1 0.229015592418537 0.478555735958244 0 0.0300272574609164 1 NA 2 4 2.48721103833651 6.86299538770684 0.078740157480315 254 0 254
qrp10_3 1.13779527559055 1 0.14299274843609 0.378143819777727 0 0.0237268534896652 1 NA 2 3 2.75413052309218 7.29373738855994 0.0570866141732283 254 0 254
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
qrp1_3 Not reporting nonsignificance haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
99 0.7331536 1 2 3 1.852941 0.6489209 4 <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582>
qrp2_3 Not reporting nonsignificance (covariate) haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
93 0.7493261 1 2 4 1.730216 0.6923152 4 <U+2586><U+2581><U+2587><U+2581><U+2581><U+2582><U+2581><U+2581>
qrp3_3 HARKing haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
87 0.7654987 1 1 4 1.570423 0.7966173 4 <U+2587><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581><U+2581>
qrp4_3 Not reporting alternative models haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
92 0.7520216 1 2 4 1.953405 0.7736540 4 <U+2585><U+2581><U+2587><U+2581><U+2581><U+2583><U+2581><U+2581>
qrp5_3 Rounding p-value haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
96 0.7412399 1 1 4 1.563636 0.8096957 4 <U+2587><U+2581><U+2583><U+2581><U+2581><U+2582><U+2581><U+2581>
qrp6_3 Excluding data haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
88 0.7628032 1 1 4 1.406360 0.5781744 4 <U+2587><U+2581><U+2585><U+2581><U+2581><U+2581><U+2581><U+2581>
qrp7_3 Increasing sample haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
90 0.7574124 1 2 4 1.693950 0.7163392 4 <U+2587><U+2581><U+2587><U+2581><U+2581><U+2582><U+2581><U+2581>
qrp8_3 Changing analysis haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
93 0.7493261 1 2 3 1.830935 0.6610733 4 <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582>
qrp9_3 Not reporting problems haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
88 0.7628032 1 1 4 1.204947 0.4914628 4 <U+2587><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581><U+2581>
qrp10_3 Imputing data haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
90 0.7574124 1 1 3 1.145908 0.3827429 4 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>

Scale: awarePRRP

Overview

Reliability: .

Missing: 88.

Likert plot of scale awarePRRP items

Likert plot of scale awarePRRP items

Distribution of scale awarePRRP

Distribution of scale awarePRRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp1_2, prrp2_2 & prrp3_2
Observations: 283
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.58
Omega (hierarchical): 0.05
Revelle’s Omega (total): 0.58
Greatest Lower Bound (GLB): 0.60
Coefficient H: 0.62
Coefficient Alpha: 0.55

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.591, 0.814 & 0.595

Factor analysis (reproducing only shared variance)
ML1
prrp1_2 0.568
prrp2_2 0.373
prrp3_2 0.704
Component analysis (reproducing full covariance matrix)
PC1
prrp1_2 0.759
prrp2_2 0.624
prrp3_2 0.791
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp1_2 0.858657243816254 1 0.121795353732802 0.348991910698231 0 0.0207454157508162 0 0 NA 1 -2.07001912273632 2.30119229634651 0.0706713780918728 283 0 283
prrp2_2 0.840989399293286 1 0.134200436057439 0.366333776844887 0 0.0217762826909341 0 0 NA 1 -1.87488237128716 1.52591792588922 0.0795053003533569 283 0 283
prrp3_2 0.76678445229682 1 0.179460190963085 0.423627419984927 0 0.0251820362639639 0 0 NA 1 -1.26848858853807 -0.393769718154322 0.11660777385159 283 0 283
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
prrp1_2 Posting data haven_labelled 0. No,
1. Yes
85 0.7708895 0 1 1 0.8601399 0.3474498 2 <U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587>
prrp2_2 Posting instruments haven_labelled 0. No,
1. Yes
84 0.7735849 0 1 1 0.8432056 0.3642420 2 <U+2582><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587>
prrp3_2 Preregistration haven_labelled 0. No,
1. Yes
82 0.7789757 0 1 1 0.7681661 0.4227355 2 <U+2582><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587>

Scale: selfPRRP

Overview

Reliability: .

Missing: 90.

Likert plot of scale selfPRRP items

Likert plot of scale selfPRRP items

Distribution of scale selfPRRP

Distribution of scale selfPRRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp1_3, prrp2_3 & prrp3_3
Observations: 281
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.67
Omega (hierarchical): 0.01
Revelle’s Omega (total): 0.67
Greatest Lower Bound (GLB): 0.70
Coefficient H: 0.76
Coefficient Alpha: 0.62

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.733, 0.778 & 0.489

Factor analysis (reproducing only shared variance)
ML1
prrp1_3 0.838
prrp2_3 0.593
prrp3_3 0.411
Component analysis (reproducing full covariance matrix)
PC1
prrp1_3 0.835
prrp2_3 0.782
prrp3_3 0.652
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp1_3 1.74021352313167 1 1.1644128113879 1.07907961309067 2 0.0643724928375517 1 NA 3 5 1.21960536779836 0.472512956845054 0.103202846975089 281 0 281
prrp2_3 2.20640569395018 2 1.52153024911032 1.23350324244013 2 0.0735846342343997 1 1 3 5 0.463281109624557 -0.956648885139312 0.169039145907473 281 0 281
prrp3_3 1.81850533807829 1 1.37051347229283 1.17068931501609 2 0.0698374694801498 1 NA 3 5 1.16494896010288 0.180802712318851 0.0907473309608541 281 0 281
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
prrp1_3 Posting data haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
85 0.7708895 1 1 5 1.727273 1.073978 5 <U+2587><U+2581><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581>
prrp2_3 Posting instruments haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
86 0.7681941 1 2 5 2.203509 1.230762 5 <U+2587><U+2581><U+2581><U+2586><U+2581><U+2582><U+2581><U+2581>
prrp3_3 Preregistration haven_labelled 1. Never,
2. Once,
3. Occasionally,
4. Frequently,
5. Almost always
82 0.7789757 1 1 5 1.826990 1.174600 5 <U+2587><U+2581><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581>

Scale: peerPRRP

Overview

Reliability: .

Missing: 105.

Distribution of scale peerPRRP

Distribution of scale peerPRRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp1_1, prrp2_1 & prrp3_1
Observations: 266
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.68
Omega (hierarchical): 0.05
Revelle’s Omega (total): 0.68
Greatest Lower Bound (GLB): 0.68
Coefficient H: 0.68
Coefficient Alpha: 0.67

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 65 and the highest range is 101. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.815, 0.629 & 0.555

Factor analysis (reproducing only shared variance)
ML1
prrp1_1 0.639
prrp2_1 0.689
prrp3_1 0.589
Component analysis (reproducing full covariance matrix)
PC1
prrp1_1 0.780
prrp2_1 0.797
prrp3_1 0.756
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp1_1 25.2556390977444 20 344.7721378919 18.5680407661094 20 1.13847962508622 0 10 32 100 1.34809502429879 2.0002195023154 0.0644736842105263 266 0 266
prrp2_1 37.7406015037594 30 528.094722655696 22.9803116309526 33 1.4090133094561 0 19 60 100 0.624775740992544 -0.491566041933891 0.057758031442242 266 0 266
prrp3_1 28.1691729323308 25 484.405234785076 22.0092079545148 30 1.34947112278184 0 10 40 100 1.23405841224116 1.4537137416041 0.0567669172932331 266 0 266
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type n_missing complete_rate min median max mean sd hist
prrp1_1 Posting data numeric 93 0.7493261 0 20 100 25.32374 18.29471 <U+2587><U+2585><U+2581><U+2581><U+2581>
prrp2_1 Posting instruments numeric 98 0.7358491 0 30 100 37.83883 23.00806 <U+2586><U+2587><U+2583><U+2583><U+2581>
prrp3_1 Preregistration numeric 90 0.7574124 0 25 100 28.13879 21.85321 <U+2587><U+2586><U+2582><U+2581><U+2581>

Scale: recentPRRP

Overview

Reliability: .

Missing: 96.

Likert plot of scale recentPRRP items

Likert plot of scale recentPRRP items

Distribution of scale recentPRRP

Distribution of scale recentPRRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp1_4, prrp2_4 & prrp3_4
Observations: 275
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.54
Omega (hierarchical): 0.09
Revelle’s Omega (total): 0.54
Greatest Lower Bound (GLB): 0.54
Coefficient H: 0.54
Coefficient Alpha: 0.53

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.551, 0.767 & 0.682

Factor analysis (reproducing only shared variance)
ML1
prrp1_4 0.583
prrp2_4 0.543
prrp3_4 0.451
Component analysis (reproducing full covariance matrix)
PC1
prrp1_4 0.745
prrp2_4 0.731
prrp3_4 0.680
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp1_4 0.149090909090909 0 0.127325812873258 0.35682742729961 0 0.0215175034774659 0 NA 1 1 1.98123701507426 1.93935177380713 0.0745454545454545 275 0 275
prrp2_4 0.272727272727273 0 0.19907100199071 0.446173735209403 1 0.026905288563654 0 NA 1 1 1.0262268299154 -0.9538488472312 0.136363636363636 275 0 275
prrp3_4 0.16 0 0.134890510948905 0.367274435468772 0 0.0221474817734457 0 NA 1 1 1.86504046791987 1.48915335364915 0.08 275 0 275
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
prrp1_4 Posting data haven_labelled 0. No,
1. Yes
91 0.7547170 0 0 1 0.1500000 0.3577108 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>
prrp2_4 Posting instruments haven_labelled 0. No,
1. Yes
89 0.7601078 0 0 1 0.2695035 0.4444907 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583>
prrp3_4 Preregistration haven_labelled 0. No,
1. Yes
88 0.7628032 0 0 1 0.1660777 0.3728097 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>

Scale: opinionPRRP

Overview

Reliability: .

Missing: 101.

Likert plot of scale opinionPRRP items

Likert plot of scale opinionPRRP items

Distribution of scale opinionPRRP

Distribution of scale opinionPRRP

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp1_6, prrp2_6 & prrp3_6
Observations: 270
Positive correlations: 3
Number of correlations: 3
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.64
Omega (hierarchical): 0.14
Revelle’s Omega (total): 0.64
Greatest Lower Bound (GLB): 0.64
Coefficient H: 0.65
Coefficient Alpha: 0.64

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.735, 0.701 & 0.564

Factor analysis (reproducing only shared variance)
ML1
prrp1_6 0.658
prrp2_6 0.503
prrp3_6 0.663
Component analysis (reproducing full covariance matrix)
PC1
prrp1_6 0.784
prrp2_6 0.709
prrp3_6 0.786
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp1_6 2.81851851851852 3 0.453930882555418 0.673743929512851 1 0.0410027497973732 1 2 4 4 -0.207023227548719 0.0342865497252829 0.133333333333333 270 0 270
prrp2_6 3.1037037037037 3 0.383257607049429 0.619078029855226 0 0.0376758890897294 1 2 4 4 -0.353194400105707 0.708350738160816 0.118518518518519 270 0 270
prrp3_6 2.85185185185185 3 0.498416632245629 0.705986283326828 1 0.0429649569630375 1 2 4 4 -0.293056271970838 0.0557020430614203 0.122222222222222 270 0 270
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
prrp1_6 Posting data haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
93 0.7493261 1 3 4 2.809353 0.6821491 4 <U+2581><U+2581><U+2583><U+2581><U+2581><U+2587><U+2581><U+2582>
prrp2_6 Posting instruments haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
90 0.7574124 1 3 4 3.099644 0.6245283 4 <U+2581><U+2581><U+2582><U+2581><U+2581><U+2587><U+2581><U+2583>
prrp3_6 Preregistration haven_labelled 1. It should never be used,
2. It should only be used rarely,
3. It should be used often,
4. It should be used almost always
90 0.7574124 1 3 4 2.846975 0.6980072 4 <U+2581><U+2581><U+2583><U+2581><U+2581><U+2587><U+2581><U+2582>

Scale: prrp1_5

Overview

Reliability: .

Missing: 0.

Likert plot of scale prrp1_5 items

Likert plot of scale prrp1_5 items

Distribution of scale prrp1_5

Distribution of scale prrp1_5

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp1_5_1, prrp1_5_2, prrp1_5_3, prrp1_5_4, prrp1_5_5, prrp1_5_6, prrp1_5_7, prrp1_5_8, prrp1_5_9 & prrp1_5_10
Observations: 371
Positive correlations: 20
Number of correlations: 45
Percentage positive correlations: 44
Estimates assuming interval level
Omega (total): 0.43
Omega (hierarchical): 0.13
Revelle’s Omega (total): 0.43
Greatest Lower Bound (GLB): 0.36
Coefficient H: 0.51
Coefficient Alpha: 0.12

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.57, 1.221, 1.106, 1.078, 1.056, 0.911, 0.834, 0.791, 0.76 & 0.673

Factor analysis (reproducing only shared variance)
ML1 ML2 ML3 ML4 ML5
prrp1_5_1 -0.017 -0.009 -0.001 0.601 0.019
prrp1_5_2 0.009 0.013 0.570 0.030 0.002
prrp1_5_3 -0.012 -0.050 0.383 -0.128 0.160
prrp1_5_4 0.070 0.012 0.108 0.311 0.026
prrp1_5_5 -0.009 0.001 -0.022 0.043 0.496
prrp1_5_6 -0.102 -0.073 -0.064 -0.022 -0.093
prrp1_5_7 -0.025 -0.002 0.484 0.040 -0.100
prrp1_5_8 -0.041 0.066 0.195 -0.096 0.107
prrp1_5_9 0.000 0.997 0.000 -0.001 0.001
prrp1_5_10 0.997 0.000 -0.001 -0.001 0.000
Component analysis (reproducing full covariance matrix)
TC1 TC2 TC4 TC3 TC5
prrp1_5_1 -0.035 0.774 0.093 -0.023 -0.101
prrp1_5_2 0.729 0.063 -0.081 -0.037 -0.043
prrp1_5_3 0.597 -0.212 0.256 -0.221 0.096
prrp1_5_4 0.116 0.688 -0.041 -0.059 0.211
prrp1_5_5 -0.086 0.050 0.866 -0.091 0.080
prrp1_5_6 -0.052 -0.066 -0.151 -0.181 -0.835
prrp1_5_7 0.695 0.130 -0.231 0.059 0.026
prrp1_5_8 0.322 -0.233 0.291 0.360 -0.065
prrp1_5_9 -0.073 -0.048 -0.117 0.851 0.120
prrp1_5_10 -0.140 -0.166 -0.309 -0.377 0.544
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp1_5_1 0.207547169811321 0 0.164915859255482 0.406098336927747 0 0.0210835751439445 0 NA 1 1 1.44811201446372 0.0975250153404984 0.10377358490566 371 0 371
prrp1_5_2 0.134770889487871 0 0.116922852771909 0.341939837942158 0 0.017752631844056 0 NA 1 1 2.1477969592349 2.62716546141488 0.0673854447439353 371 0 371
prrp1_5_3 0.0619946091644205 0 0.0583084432141036 0.241471412829974 0 0.0125365711074582 0 NA 1 1 3.64746616282997 11.3652493521709 0.0309973045822102 371 0 371
prrp1_5_4 0.107816711590297 0 0.0964522473956436 0.310567621293083 0 0.0161238675103804 0 NA 1 1 2.53927915246079 4.47201773763107 0.0539083557951483 371 0 371
prrp1_5_5 0.0350404312668464 0 0.0339039848473811 0.184130347437301 0 0.00955957132413879 0 NA 1 1 5.07770371699247 23.9119531836375 0.0175202156334232 371 0 371
prrp1_5_6 0.0404312668463612 0 0.0389014351278502 0.197234467393126 0 0.0102399033340506 0 NA 1 1 4.68538411874261 20.0609420157465 0.0202156334231806 371 0 371
prrp1_5_7 0.0485175202156334 0 0.0462883368543746 0.215147244589315 0 0.0111698883886798 0 NA 1 1 4.21971046073008 15.8915974695732 0.0242587601078167 371 0 371
prrp1_5_8 0.132075471698113 0 0.11494135645079 0.339030022934239 0 0.0176015617760558 0 NA 1 1 2.18221794037836 2.77701665755518 0.0660377358490566 371 0 371
prrp1_5_9 0.0646900269541779 0 0.0606687550083777 0.2463102819786 0 0.0127877926762993 0 NA 1 1 3.55380516946338 10.6871153635888 0.032345013477089 371 0 371
prrp1_5_10 0.118598382749326 0 0.104815327456837 0.323751953595398 0 0.0168083639378259 0 NA 1 1 2.36890514747336 3.63125825908692 0.0592991913746631 371 0 371
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
prrp1_5_1 Posting data - The data were propritary or access was restricted haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.2075472 0.4060983 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>
prrp1_5_2 Posting data - It was too time-consuming haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1347709 0.3419398 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_3 Posting data - I didn’t want to be scooped haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0619946 0.2414714 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_4 Posting data - The data were too difficult to deidentify haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1078167 0.3105676 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_5 Posting data - I didn’t perceive my field to be in favor of this haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0350404 0.1841303 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_6 Posting data - The data were already publicly available haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0404313 0.1972345 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_7 Posting data - I was nervous that someone would discover a mistake haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0485175 0.2151472 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_8 Posting data - I was unfamiliar with the practice haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1320755 0.3390300 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_9 Posting data - I am planning to but haven’t done it yet haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0646900 0.2463103 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp1_5_10 Posting data - Other reason haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1185984 0.3237520 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>

Scale: prrp2_5

Overview

Reliability: .

Missing: 0.

Likert plot of scale prrp2_5 items

Likert plot of scale prrp2_5 items

Distribution of scale prrp2_5

Distribution of scale prrp2_5

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp2_5_1, prrp2_5_2, prrp2_5_3, prrp2_5_4, prrp2_5_5, prrp2_5_6, prrp2_5_7, prrp2_5_8 & prrp2_5_9
Observations: 371
Positive correlations: 21
Number of correlations: 36
Percentage positive correlations: 58
Estimates assuming interval level
Omega (total): 0.50
Omega (hierarchical): 0.18
Revelle’s Omega (total): 0.50
Greatest Lower Bound (GLB): 0.46
Coefficient H: 0.51
Coefficient Alpha: 0.19

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.621, 1.204, 1.152, 1.059, 0.907, 0.888, 0.811, 0.748 & 0.61

Factor analysis (reproducing only shared variance)
ML2 ML1 ML3 ML4
prrp2_5_1 0.096 0.049 0.208 -0.109
prrp2_5_2 0.166 0.169 0.279 0.036
prrp2_5_3 -0.028 -0.026 0.699 0.031
prrp2_5_4 0.038 0.042 0.453 -0.094
prrp2_5_5 -0.004 0.997 -0.003 0.002
prrp2_5_6 0.998 -0.004 -0.003 0.000
prrp2_5_7 0.001 0.012 0.011 0.533
prrp2_5_8 -0.049 -0.070 -0.060 0.146
prrp2_5_9 -0.134 -0.031 0.036 -0.173
Component analysis (reproducing full covariance matrix)
TC1 TC2 TC3 TC4
prrp2_5_1 0.416 -0.249 0.408 0.241
prrp2_5_2 0.323 0.440 0.326 -0.190
prrp2_5_3 0.767 0.107 -0.103 0.029
prrp2_5_4 0.737 -0.038 0.006 -0.025
prrp2_5_5 0.020 0.710 0.071 -0.183
prrp2_5_6 -0.033 -0.059 0.790 -0.126
prrp2_5_7 0.027 0.637 -0.238 0.283
prrp2_5_8 0.040 -0.061 -0.075 0.812
prrp2_5_9 0.179 -0.263 -0.505 -0.454
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp2_5_1 0.175202156334232 0 0.144896918481824 0.380653278564397 0 0.019762533535884 0 NA 1 1 1.71577802673469 0.948980971874117 0.0876010781671159 371 0 371
prrp2_5_2 0.0970350404312668 0 0.0878560501202011 0.296405212707538 0 0.0153885918924315 0 NA 1 1 2.7337511900661 5.50303280639339 0.0485175202156334 371 0 371
prrp2_5_3 0.0296495956873315 0 0.0288482552633496 0.169847741413743 0 0.00881805536613915 0 NA 1 1 5.5685136000169 29.1655435139661 0.0148247978436658 371 0 371
prrp2_5_4 0.0215633423180593 0 0.021155387193123 0.1454489160947 0 0.0075513314713069 0 NA 1 1 6.61441588172319 41.9767614324095 0.0107816711590297 371 0 371
prrp2_5_5 0.0431266846361186 0 0.0413783055292489 0.203416581254452 0 0.0105608626936229 0 NA 1 1 4.51634365953029 18.4970469023046 0.0215633423180593 371 0 371
prrp2_5_6 0.207547169811321 0 0.164915859255482 0.406098336927747 0 0.0210835751439445 0 NA 1 1 1.44811201446372 0.0975250153404984 0.10377358490566 371 0 371
prrp2_5_7 0.113207547169811 0 0.100662927078021 0.317274214328901 0 0.0164720564719513 0 NA 1 1 2.45143709337658 4.03124678795354 0.0566037735849057 371 0 371
prrp2_5_8 0.0377358490566038 0 0.0364099949005609 0.190814032242288 0 0.00990657094962473 0 NA 1 1 4.87144097564409 21.8486924639067 0.0188679245283019 371 0 371
prrp2_5_9 0.0889487870619946 0 0.0812559189917681 0.285054238684093 0 0.0147992786842298 0 NA 1 1 2.89965260435462 6.44268806394592 0.0444743935309973 371 0 371
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
prrp2_5_1 Posting instruments - The materials were proprietary or access was restricted haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1752022 0.3806533 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>
prrp2_5_2 Posting instruments - It was too time-consuming haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0970350 0.2964052 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp2_5_3 Posting instruments - I didn’t want to be scooped haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0296496 0.1698477 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp2_5_4 Posting instruments - Materials were too difficult to deidentify haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0215633 0.1454489 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp2_5_5 Posting instruments - I didn’t perceive my field to be in favor of this haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0431267 0.2034166 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp2_5_6 Posting instruments - The materials were already publicly available haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.2075472 0.4060983 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>
prrp2_5_7 Posting instruments - I was unfamiliar with the practice haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1132075 0.3172742 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp2_5_8 Posting instruments - I am planning to but haven’t done it yet haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0377358 0.1908140 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp2_5_9 Posting instruments - Other reason haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0889488 0.2850542 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>

Scale: prrp3_5

Overview

Reliability: .

Missing: 0.

Likert plot of scale prrp3_5 items

Likert plot of scale prrp3_5 items

Distribution of scale prrp3_5

Distribution of scale prrp3_5

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: prrp3_5_1, prrp3_5_2, prrp3_5_3, prrp3_5_4, prrp3_5_5 & prrp3_5_6
Observations: 371
Positive correlations: 4
Number of correlations: 15
Percentage positive correlations: 27
Estimates assuming interval level
Omega (total): 0.61
Omega (hierarchical): 0.29
Revelle’s Omega (total): 0.61
Greatest Lower Bound (GLB): 0.31
Coefficient H: 0.63
Coefficient Alpha: -0.23

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

1.412, 1.17, 1.093, 0.925, 0.748 & 0.652

Factor analysis (reproducing only shared variance)
ML3 ML1 ML2
prrp3_5_1 0.209 -0.071 -0.025
prrp3_5_2 0.989 0.003 0.002
prrp3_5_3 0.258 -0.112 -0.072
prrp3_5_4 -0.052 -0.107 -0.129
prrp3_5_5 0.000 -0.001 0.997
prrp3_5_6 0.000 0.997 -0.001
Component analysis (reproducing full covariance matrix)
TC1 TC2 TC3
prrp3_5_1 0.544 0.033 0.344
prrp3_5_2 0.772 -0.031 0.139
prrp3_5_3 0.662 0.033 -0.202
prrp3_5_4 -0.068 -0.003 -0.865
prrp3_5_5 -0.184 0.767 0.304
prrp3_5_6 -0.189 -0.766 0.296
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
prrp3_5_1 0.134770889487871 0 0.116922852771909 0.341939837942158 0 0.017752631844056 0 NA 1 1 2.1477969592349 2.62716546141488 0.0673854447439353 371 0 371
prrp3_5_2 0.0566037735849057 0 0.0535441101478837 0.231396002877932 0 0.0120134818861701 0 NA 1 1 3.85313015307142 12.9162130316955 0.0283018867924528 371 0 371
prrp3_5_3 0.0835579514824798 0 0.0767829824433598 0.27709742410091 0 0.0143861814540365 0 NA 1 1 3.02203593808503 7.17133210654357 0.0417789757412399 371 0 371
prrp3_5_4 0.0296495956873315 0 0.0288482552633496 0.169847741413743 0 0.00881805536613915 0 NA 1 1 5.5685136000169 29.1655435139661 0.0148247978436658 371 0 371
prrp3_5_5 0.280323450134771 0 0.202287462664821 0.44976378540832 1 0.0233505722737505 0 NA 1 1 0.982147588746264 -1.04102734300332 0.140161725067385 371 0 371
prrp3_5_6 0.175202156334232 0 0.144896918481824 0.380653278564397 0 0.019762533535884 0 NA 1 1 1.71577802673469 0.948980971874117 0.0876010781671159 371 0 371
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
prrp3_5_1 Preregistration - It was too time-consuming haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1347709 0.3419398 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp3_5_2 Preregistration - I didn’t want to be scooped haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0566038 0.2313960 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp3_5_3 Preregistration - I didn’t perceive my field to be in favor of this haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0835580 0.2770974 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp3_5_4 Preregistration - The materials were already publicly available haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0296496 0.1698477 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
prrp3_5_5 Preregistration - I was unfamiliar with the practice haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.2803235 0.4497638 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583>
prrp3_5_6 Preregistration - Other reason haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1752022 0.3806533 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>

prrp1_5_o

If answered “No” above. Why not? - Text - Posting data

Distribution

Distribution of values for prrp1_5_o

Distribution of values for prrp1_5_o

328 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
prrp1_5_o If answered “No” above. Why not? - Text - Posting data character 328 0.115903 43 0 3 265 0

prrp2_5_o

If answered “No” above. Why not? - Text - Posting instruments

Distribution

Distribution of values for prrp2_5_o

Distribution of values for prrp2_5_o

340 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
prrp2_5_o If answered “No” above. Why not? - Text - Posting instruments character 340 0.083558 31 0 3 138 0

prrp3_5_o

If answered “No” above. Why not? - Text - Preregistration

Distribution

Distribution of values for prrp3_5_o

Distribution of values for prrp3_5_o

307 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
prrp3_5_o If answered “No” above. Why not? - Text - Preregistration character 307 0.1725067 64 0 5 600 0

Scale: participate

Overview

Reliability: .

Missing: 105.

Likert plot of scale participate items

Likert plot of scale participate items

Distribution of scale participate

Distribution of scale participate

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: participate_1, participate_2, participate_3 & participate_4
Observations: 266
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.88
Omega (hierarchical): 0.83
Revelle’s Omega (total): 0.88
Greatest Lower Bound (GLB): 0.88
Coefficient H: 0.88
Coefficient Alpha: 0.84

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

2.772, 0.623, 0.342 & 0.263

Factor analysis (reproducing only shared variance)
ML1
participate_1 0.680
participate_2 0.835
participate_3 0.683
participate_4 0.886
Component analysis (reproducing full covariance matrix)
PC1
participate_1 0.772
participate_2 0.881
participate_3 0.769
participate_4 0.899
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
participate_1 3.19548872180451 3 3.44088523194779 1.854962326288 4 0.113735037550972 1 1 5 7 0.347442763159845 -1.07276670868598 0.0864661654135338 266 0 266
participate_2 3.6203007518797 4 2.7571712299617 1.66047319459294 3 0.101810143776521 1 2 5 7 0.0812584044844383 -0.942264699674576 0.0977443609022556 266 0 266
participate_3 2.62406015037594 2 3.02040005674564 1.73792981928087 3 0.10655931414651 1 1 4 7 0.748119486530506 -0.636425559676063 0.0845864661654135 266 0 266
participate_4 3.21804511278195 3 2.35982408852319 1.53617189419778 2 0.0941887420543795 1 2 5 7 0.327425805096657 -0.750513835678495 0.112781954887218 266 0 266
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
participate_1 In your department haven_labelled 1. Not at all,
7. Extremely
105 0.7169811 1 3 7 3.195489 1.854962 2 <U+2587><U+2585><U+2583><U+2585><U+2581><U+2585><U+2582><U+2582>
participate_2 At conference or other professional gatherings outside of your department haven_labelled 1. Not at all,
7. Extremely
105 0.7169811 1 4 7 3.620301 1.660473 2 <U+2585><U+2587><U+2587><U+2587><U+2581><U+2587><U+2585><U+2582>
participate_3 Online haven_labelled 1. Not at all,
7. Extremely
105 0.7169811 1 2 7 2.624060 1.737930 2 <U+2587><U+2583><U+2582><U+2582><U+2581><U+2582><U+2581><U+2581>
participate_4 In general haven_labelled 1. Not at all,
7. Extremely
105 0.7169811 1 3 7 3.218045 1.536172 2 <U+2585><U+2587><U+2587><U+2586><U+2581><U+2585><U+2583><U+2581>

Scale: comfort

Overview

Reliability: .

Missing: 107.

Likert plot of scale comfort items

Likert plot of scale comfort items

Distribution of scale comfort

Distribution of scale comfort

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: comfort_1, comfort_2, comfort_3 & comfort_4
Observations: 264
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.93
Omega (hierarchical): 0.87
Revelle’s Omega (total): 0.93
Greatest Lower Bound (GLB): 0.94
Coefficient H: 0.95
Coefficient Alpha: 0.89

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

3.086, 0.544, 0.229 & 0.14

Factor analysis (reproducing only shared variance)
ML1
comfort_1 0.791
comfort_2 0.883
comfort_3 0.718
comfort_4 0.960
Component analysis (reproducing full covariance matrix)
PC1
comfort_1 0.850
comfort_2 0.920
comfort_3 0.787
comfort_4 0.948
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
comfort_1 5.03030303030303 5 2.99527595345086 1.73068655551803 2 0.1065163942683 1 3 7 7 -0.681152422451347 -0.48702842675317 0.115530303030303 264 0 264
comfort_2 4.84848484848485 5 2.72980758151861 1.6522129346784 2 0.101686676772452 1 3 6 7 -0.530703639948529 -0.525516358744471 0.111742424242424 264 0 264
comfort_3 4.20075757575758 4 3.82646330222376 1.95613478631299 3 0.120391773701902 1 2 6 7 -0.176713869456117 -1.20281661867317 0.0732323232323232 264 0 264
comfort_4 4.70833333333333 5 2.66365652724968 1.63207123841139 2 0.100447041060272 1 3 6 7 -0.457820025500902 -0.608168783793895 0.109848484848485 264 0 264
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
comfort_1 With other psychology researchers in your department haven_labelled 1. Not at all,
7. Extremely
105 0.7169811 1 5 7 5.037594 1.726185 2 <U+2581><U+2582><U+2583><U+2583><U+2581><U+2587><U+2587><U+2587>
comfort_2 With other psychology researchers at conferences or other professional gatherings outside of your department haven_labelled 1. Not at all,
7. Extremely
105 0.7169811 1 5 7 4.853383 1.647505 2 <U+2581><U+2582><U+2585><U+2585><U+2581><U+2587><U+2587><U+2586>
comfort_3 With other psychology researchers online haven_labelled 1. Not at all,
7. Extremely
106 0.7142857 1 4 7 4.200000 1.952465 2 <U+2585><U+2585><U+2586><U+2586><U+2581><U+2585><U+2587><U+2585>
comfort_4 With other psychology researchers in general haven_labelled 1. Not at all,
7. Extremely
106 0.7142857 1 5 7 4.713208 1.630909 2 <U+2581><U+2582><U+2585><U+2586><U+2581><U+2587><U+2587><U+2585>

Scale: positive

Overview

Reliability: .

Missing: 169.

Likert plot of scale positive items

Likert plot of scale positive items

Distribution of scale positive

Distribution of scale positive

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: experience_1, experience_2, experience_3, experience_4, experience_5, experience_8, experience_12, experience_13, experience_14, experience_15, experience_17 & experience_18
Observations: 202
Positive correlations: 58
Number of correlations: 66
Percentage positive correlations: 88
Estimates assuming interval level
Omega (total): 0.92
Omega (hierarchical): 0.85
Revelle’s Omega (total): 0.92
Greatest Lower Bound (GLB): 0.92
Coefficient H: 0.93
Coefficient Alpha: 0.88

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 11 and the highest range is 11. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

6.124, 1.188, 0.824, 0.702, 0.69, 0.524, 0.418, 0.4, 0.361, 0.316, 0.238 & 0.214

Factor analysis (reproducing only shared variance)
ML1 ML2
experience_1 0.795 0.007
experience_2 0.834 -0.019
experience_3 0.753 -0.025
experience_4 0.670 0.305
experience_5 -0.119 0.337
experience_8 0.435 0.065
experience_12 0.814 -0.192
experience_13 0.731 0.322
experience_14 0.779 -0.155
experience_15 0.530 0.135
experience_17 0.736 -0.366
experience_18 0.728 0.293
Component analysis (reproducing full covariance matrix)
TC1 TC2
experience_1 0.813 -0.070
experience_2 0.841 -0.049
experience_3 0.781 -0.041
experience_4 0.750 0.248
experience_5 0.004 0.867
experience_8 0.498 0.081
experience_12 0.784 -0.230
experience_13 0.803 0.249
experience_14 0.778 -0.163
experience_15 0.614 0.206
experience_17 0.668 -0.404
experience_18 0.794 0.163
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
experience_1 5.2970297029703 5 5.19491650657603 2.27923594798258 3 0.160366481686156 0 3 7 10 0.00519892473665971 -0.462694819844098 0.0693069306930693 202 0 202
experience_2 5.12871287128713 5 4.63011674301759 2.1517706065047 2 0.151398051555951 0 3 7 10 -0.247029645366685 0.0796759268004615 0.0965346534653465 202 0 202
experience_3 5.47029702970297 5 4.74786956307571 2.17896066120426 3 0.153311137128721 0 3 7 10 0.0172640163242719 -0.367607196381161 0.0816831683168317 202 0 202
experience_4 5.07920792079208 5 6.72006305108123 2.59230844057593 3 0.182394185397284 0 2 7 10 -0.138185079780887 -0.473587719563758 0.0767326732673267 202 0 202
experience_5 4.93069306930693 5 8.1941776267179 2.86254740165432 4 0.201408132347806 0 2 7 10 -0.297231141797095 -0.91875742184187 0.0668316831683168 202 0 202
experience_8 5.36138613861386 6 5.56526772080193 2.35908196568113 3 0.165984427887075 0 3 7 10 -0.162008621445725 -0.451448332004855 0.0792079207920792 202 0 202
experience_12 5.03960396039604 5 4.58548839958623 2.14137535233462 3 0.15066664402486 0 3 7 10 0.0125276015260756 -0.146898603219973 0.0792079207920792 202 0 202
experience_13 5.53465346534653 6 5.08585783951529 2.25518465752038 3 0.158674238794476 0 4 8 10 -0.22980080909168 -0.27012306619847 0.0816831683168317 202 0 202
experience_14 4.81188118811881 5 4.2828432096941 2.06950313111483 3 0.145609732186405 0 3 7 10 0.295466331263207 -0.175594503186639 0.0891089108910891 202 0 202
experience_15 3.65346534653465 3 5.73006255849466 2.39375490777453 3 0.168424007579625 0 1 5 10 0.339145224331557 -0.548920871484198 0.0829207920792079 202 0 202
experience_17 5.54455445544554 6 4.44825378060194 2.10908837666939 3 0.148394940344378 1 4 7 10 0.0239541171745921 -0.355290688181978 0.0841584158415842 202 0 202
experience_18 5.44059405940594 6 4.91436382444215 2.21683644512674 3 0.15597606798598 0 4 8 10 -0.18999117175152 -0.425621422397793 0.0841584158415842 202 0 202
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
experience_1 Collaborative haven_labelled 0. Not at all,
10. Extremely
151 0.5929919 0 5 10 5.313636 2.290898 2 <U+2581><U+2582><U+2582><U+2587><U+2583><U+2583><U+2582><U+2582>
experience_2 Supportive haven_labelled 0. Not at all,
10. Extremely
154 0.5849057 0 5 10 5.092166 2.217519 2 <U+2582><U+2581><U+2582><U+2587><U+2585><U+2583><U+2582><U+2582>
experience_3 Open haven_labelled 0. Not at all,
10. Extremely
150 0.5956873 0 5 10 5.502262 2.185956 2 <U+2581><U+2581><U+2582><U+2587><U+2583><U+2583><U+2582><U+2582>
experience_4 Exciting haven_labelled 0. Not at all,
10. Extremely
153 0.5876011 0 5 10 5.105505 2.601465 2 <U+2582><U+2582><U+2582><U+2587><U+2583><U+2583><U+2582><U+2583>
experience_5 Competitive haven_labelled 0. Not at all,
10. Extremely
158 0.5741240 0 5 10 5.009390 2.908982 2 <U+2587><U+2582><U+2583><U+2587><U+2585><U+2587><U+2582><U+2585>
experience_8 Easy to follow haven_labelled 0. Not at all,
10. Extremely
153 0.5876011 0 6 10 5.357798 2.330020 2 <U+2582><U+2583><U+2585><U+2587><U+2586><U+2586><U+2583><U+2582>
experience_12 Friendly haven_labelled 0. Not at all,
10. Extremely
152 0.5902965 0 5 10 5.105023 2.167932 2 <U+2581><U+2581><U+2583><U+2587><U+2583><U+2583><U+2582><U+2582>
experience_13 Helpful haven_labelled 0. Not at all,
10. Extremely
152 0.5902965 0 6 10 5.511416 2.232703 2 <U+2581><U+2582><U+2582><U+2587><U+2586><U+2585><U+2583><U+2582>
experience_14 Comfortable haven_labelled 0. Not at all,
10. Extremely
151 0.5929919 0 5 10 4.827273 2.121252 2 <U+2581><U+2582><U+2583><U+2587><U+2583><U+2583><U+2581><U+2581>
experience_15 Diverse haven_labelled 0. Not at all,
10. Extremely
157 0.5768194 0 3 10 3.672897 2.440948 2 <U+2587><U+2583><U+2585><U+2587><U+2582><U+2582><U+2581><U+2581>
experience_17 Respectful haven_labelled 0. Not at all,
10. Extremely
150 0.5956873 1 6 10 5.502262 2.092464 2 <U+2583><U+2583><U+2583><U+2586><U+2587><U+2586><U+2582><U+2583>
experience_18 Productive haven_labelled 0. Not at all,
10. Extremely
153 0.5876011 0 6 10 5.454128 2.214366 2 <U+2582><U+2582><U+2583><U+2587><U+2586><U+2585><U+2583><U+2582>

Scale: negative

Overview

Reliability: .

Missing: 173.

Likert plot of scale negative items

Likert plot of scale negative items

Distribution of scale negative

Distribution of scale negative

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: experience_6, experience_7, experience_9, experience_10, experience_11 & experience_16
Observations: 198
Positive correlations: 15
Number of correlations: 15
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.91
Omega (hierarchical): 0.75
Revelle’s Omega (total): 0.91
Greatest Lower Bound (GLB): 0.86
Coefficient H: 0.91
Coefficient Alpha: 0.82

(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 11 and the highest range is 11. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

3.252, 0.983, 0.688, 0.528, 0.356 & 0.192

Factor analysis (reproducing only shared variance)
ML1
experience_6 0.851
experience_7 0.913
experience_9 0.358
experience_10 0.518
experience_11 0.681
experience_16 0.588
Component analysis (reproducing full covariance matrix)
PC1
experience_6 0.827
experience_7 0.870
experience_9 0.466
experience_10 0.667
experience_11 0.794
experience_16 0.720
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
experience_6 3.65151515151515 3 7.09113982464236 2.66291941760211 3 0.189245442476678 0 1 5 10 0.282378729084326 -0.825604003439775 0.0833333333333333 198 0 198
experience_7 3.84343434343434 4 8.21394144490591 2.86599746072915 5 0.203677570566938 0 1 6 10 0.256994179467568 -0.991125445055775 0.071969696969697 198 0 198
experience_9 3.65151515151515 3 6.13682510383018 2.47726161392578 4 0.176051316896411 0 1 6 10 0.367425585666395 -0.610690002866982 0.0732323232323232 198 0 198
experience_10 5.38888888888889 6 7.99520586576424 2.82757950653279 4 0.200947325448412 0 3 8 10 -0.331217822922146 -0.63195577911501 0.0757575757575758 198 0 198
experience_11 5.2979797979798 6 8.42344767471671 2.90231763849457 5 0.206258733206189 0 3 8 10 -0.372869193717614 -0.834944995422701 0.0656565656565657 198 0 198
experience_16 4.71717171717172 5 6.57950058965287 2.56505372061734 4 0.18229043024208 0 2 7 10 -0.0406384777760869 -0.528260998578667 0.0782828282828283 198 0 198
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
experience_6 Hostile haven_labelled 0. Not at all,
10. Extremely
156 0.5795148 0 3 10 3.553488 2.636139 2 <U+2587><U+2585><U+2585><U+2587><U+2582><U+2582><U+2582><U+2581>
experience_7 Aggressive haven_labelled 0. Not at all,
10. Extremely
157 0.5768194 0 3 10 3.733645 2.824954 2 <U+2587><U+2583><U+2583><U+2586><U+2583><U+2582><U+2582><U+2581>
experience_9 Difficult to follow haven_labelled 0. Not at all,
10. Extremely
158 0.5741240 0 3 10 3.666667 2.468035 2 <U+2587><U+2585><U+2586><U+2587><U+2585><U+2582><U+2582><U+2581>
experience_10 Status-oriented haven_labelled 0. Not at all,
10. Extremely
164 0.5579515 0 6 10 5.415459 2.842355 2 <U+2585><U+2582><U+2583><U+2587><U+2586><U+2585><U+2585><U+2585>
experience_11 Cliquey haven_labelled 0. Not at all,
10. Extremely
161 0.5660377 0 6 10 5.233333 2.894944 2 <U+2586><U+2582><U+2583><U+2587><U+2585><U+2586><U+2585><U+2585>
experience_16 Stressful haven_labelled 0. Not at all,
10. Extremely
157 0.5768194 0 5 10 4.616822 2.558773 2 <U+2583><U+2583><U+2583><U+2587><U+2585><U+2585><U+2581><U+2582>

Scale: entity

Overview

Reliability: .

Missing: 115.

Likert plot of scale entity items

Likert plot of scale entity items

Distribution of scale entity

Distribution of scale entity

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: entity_1 & entity_2
Observations: 256
Positive correlations: 1
Number of correlations: 1
Percentage positive correlations: 100
Estimates assuming interval level
Estimates for two-item measures
Spearman Brown coefficient: 0.27
Coefficient Alpha: 0.27
Pearson Correlation: 0.16

Eigen values

1.157 & 0.843

Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
entity_1 4.9296875 5 2.53621323529412 1.59254928818361 2 0.0995343305114755 1 3.5 6 7 -0.565109033169177 -0.30273311971762 0.099609375 256 0 256
entity_2 3.32421875 3 2.13368566176471 1.46071409309444 2 0.0912946308184024 1 2 4 7 0.450272711171177 -0.0578615779584348 0.1171875 256 0 256
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
entity_1 Within an entitative group? haven_labelled 1. Not at all,
7. Extremely
114 0.6927224 1 5 7 4.937743 1.594674 2 <U+2581><U+2582><U+2582><U+2586><U+2581><U+2587><U+2586><U+2586>
entity_2 Between entitative groups? haven_labelled 1. Not at all,
7. Extremely
115 0.6900270 1 3 7 3.324219 1.460714 2 <U+2583><U+2586><U+2587><U+2587><U+2581><U+2583><U+2581><U+2581>

Scale: repConf

Overview

Reliability: .

Missing: 99.

Likert plot of scale repConf items

Likert plot of scale repConf items

Distribution of scale repConf

Distribution of scale repConf

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: rep_1_1, rep_1_2, rep_1_3 & rep_1_4
Observations: 272
Positive correlations: 6
Number of correlations: 6
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.88
Omega (hierarchical): 0.69
Revelle’s Omega (total): 0.88
Greatest Lower Bound (GLB): 0.88
Coefficient H: 0.87
Coefficient Alpha: 0.81

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

2.568, 0.831, 0.332 & 0.269

Factor analysis (reproducing only shared variance)
ML1
rep_1_1 0.895
rep_1_2 0.720
rep_1_3 0.674
rep_1_4 0.578
Component analysis (reproducing full covariance matrix)
PC1
rep_1_1 0.864
rep_1_2 0.742
rep_1_3 0.831
rep_1_4 0.762
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
rep_1_1 3.55882352941176 4 0.705014108964619 0.839651182911463 1 0.050911331114982 1 3 5 5 -0.56373919298193 -0.0569978761336583 0.130514705882353 272 0 272
rep_1_2 3.49632352941176 4 0.737993813761667 0.859065663242145 1 0.0520885068954214 1 3 5 5 -0.445884675463495 -0.138973765821954 0.152573529411765 272 0 272
rep_1_3 3.55147058823529 4 0.661547644888214 0.81335579231245 1 0.0493169388663555 1 3 5 5 -0.457491402332683 0.0334593430608312 0.15625 272 0 272
rep_1_4 3.49264705882353 4 0.693672672020838 0.832870141150971 1 0.0505001700645374 1 3 5 5 -0.478413456548778 -0.00121511859451121 0.159926470588235 272 0 272
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
rep_1_1 Influential research findings haven_labelled 1. Very low confidence,
2. Low confidence,
3. Neither high nor low confidence,
4. Moderate confidence,
5. High confidence
98 0.7358491 1 4 5 3.560440 0.8385315 5 <U+2581><U+2582><U+2581><U+2583><U+2581><U+2587><U+2581><U+2581>
rep_1_2 Canonical research findings haven_labelled 1. Very low confidence,
2. Low confidence,
3. Neither high nor low confidence,
4. Moderate confidence,
5. High confidence
99 0.7331536 1 4 5 3.496323 0.8590657 5 <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2582>
rep_1_3 Recent research findings haven_labelled 1. Very low confidence,
2. Low confidence,
3. Neither high nor low confidence,
4. Moderate confidence,
5. High confidence
98 0.7358491 1 4 5 3.553114 0.8123130 5 <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2582>
rep_1_4 Latest issues of your field’s top journal haven_labelled 1. Very low confidence,
2. Low confidence,
3. Neither high nor low confidence,
4. Moderate confidence,
5. High confidence
98 0.7358491 1 4 5 3.494505 0.8319046 5 <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2581>

Scale: integrity

Overview

Reliability: .

Missing: 108.

Likert plot of scale integrity items

Likert plot of scale integrity items

Distribution of scale integrity

Distribution of scale integrity

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: int_1_1, int_1_2, int_1_3, int_1_4, int_1_5, int_2_1, int_2_2, int_2_3, int_2_4 & int_2_5
Observations: 263
Positive correlations: 45
Number of correlations: 45
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.92
Omega (hierarchical): 0.70
Revelle’s Omega (total): 0.92
Greatest Lower Bound (GLB): 0.95
Coefficient H: 0.90
Coefficient Alpha: 0.89

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

5.138, 1.328, 0.807, 0.724, 0.514, 0.476, 0.33, 0.249, 0.245 & 0.188

Factor analysis (reproducing only shared variance)
ML1 ML2
int_1_1 0.707 0.067
int_1_2 0.863 0.014
int_1_3 0.524 0.190
int_1_4 0.853 -0.033
int_1_5 0.688 -0.039
int_2_1 0.158 0.553
int_2_2 0.021 0.819
int_2_3 0.036 0.768
int_2_4 0.047 0.775
int_2_5 -0.182 0.671
Component analysis (reproducing full covariance matrix)
TC1 TC2
int_1_1 0.783 0.052
int_1_2 0.869 0.029
int_1_3 0.646 0.141
int_1_4 0.865 -0.010
int_1_5 0.755 -0.044
int_2_1 0.270 0.540
int_2_2 0.148 0.758
int_2_3 0.133 0.762
int_2_4 0.114 0.783
int_2_5 -0.260 0.859
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
int_1_1 1.79087452471483 2 0.372130148317998 0.610024711235535 1 0.0376157351347309 1 1 3 3 0.145252021672122 -0.494228434941472 0.155893536121673 263 0 263
int_1_2 1.61977186311787 2 0.389225901953386 0.62387971753647 1 0.038470071422601 1 1 3 3 0.487523901306244 -0.640981000515971 0.228136882129278 263 0 263
int_1_3 1.66159695817491 2 0.407947058311323 0.63870733384808 1 0.0393843814129738 1 1 3 3 0.43838954422186 -0.680698517561674 0.214828897338403 263 0 263
int_1_4 1.63498098859316 2 0.362435782079935 0.602026396497641 1 0.0371225379196616 1 1 3 3 0.366201292599991 -0.663694285579543 0.214828897338403 263 0 263
int_1_5 1.45247148288973 1 0.263953792122602 0.513764335199128 1 0.0316800660671265 1 NA 2 3 0.361996525802919 -1.46939222327506 0.218631178707224 263 0 263
int_2_1 1.4638783269962 1 0.310713145444519 0.557416491902167 1 0.0343717733608779 1 NA 2 3 0.676380154135319 -0.599504504126857 0.201520912547529 263 0 263
int_2_2 1.3041825095057 1 0.242997707021159 0.492947975978357 1 0.0303964743691246 1 NA 2 3 1.23615510110959 0.375297772287927 0.136882129277567 263 0 263
int_2_3 1.29277566539924 1 0.246016312077323 0.496000314593976 1 0.0305846896312146 1 NA 2 3 1.3800790528495 0.877996965927718 0.127376425855513 263 0 263
int_2_4 1.28136882129278 1 0.241140103909674 0.49106018359227 1 0.0302800681038102 1 NA 2 3 1.45547228315005 1.12291817499834 0.121673003802281 263 0 263
int_2_5 1.08365019011407 1 0.0769454038835515 0.277390345692765 0 0.0171046214691485 1 NA 2 2 3.02490866318568 7.20480535346754 0.0418250950570342 263 0 263
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
int_1_1 Mild issues/questionable research practices - In research from other institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 2 3 1.791045 0.6067612 3 <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582>
int_1_2 Mild issues/questionable research practices - In research at your institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 2 3 1.611940 0.6230341 3 <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581>
int_1_3 Mild issues/questionable research practices - In graduate student research at your institution? haven_labelled 1. Never,
2. Once or Twice,
3. Often
106 0.7142857 1 2 3 1.656604 0.6388642 3 <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582>
int_1_4 Mild issues/questionable research practices - Of senior colleagues and/or collaborators? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 2 3 1.634328 0.6063465 3 <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581>
int_1_5 Mild issues/questionable research practices - In your own research? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.451493 0.5133769 3 <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581>
int_2_1 Serious issues/scientific misconducts - In research from other institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.466418 0.5565334 3 <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581>
int_2_2 Serious issues/scientific misconducts - In research at your institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.302239 0.4915719 3 <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581>
int_2_3 Serious issues/scientific misconducts - In graduate student research at your institution? haven_labelled 1. Never,
2. Once or Twice,
3. Often
107 0.7115903 1 1 3 1.291667 0.4953843 3 <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581>
int_2_4 Serious issues/scientific misconducts - Of senior colleagues and/or collaborators? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.283582 0.4913017 3 <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581>
int_2_5 Serious issues/scientific misconducts - In your own research? haven_labelled 1. Never,
2. Once or Twice,
3. Often
104 0.7196765 1 1 2 1.082397 0.2754850 3 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>

Scale: intMild

Overview

Reliability: .

Missing: 106.

Likert plot of scale intMild items

Likert plot of scale intMild items

Distribution of scale intMild

Distribution of scale intMild

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: int_1_1, int_1_2, int_1_3, int_1_4 & int_1_5
Observations: 265
Positive correlations: 10
Number of correlations: 10
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.89
Omega (hierarchical): 0.82
Revelle’s Omega (total): 0.89
Greatest Lower Bound (GLB): 0.89
Coefficient H: 0.89
Coefficient Alpha: 0.87

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

3.272, 0.611, 0.529, 0.323 & 0.264

Factor analysis (reproducing only shared variance)
ML1
int_1_1 0.739
int_1_2 0.881
int_1_3 0.652
int_1_4 0.827
int_1_5 0.669
Component analysis (reproducing full covariance matrix)
PC1
int_1_1 0.798
int_1_2 0.889
int_1_3 0.739
int_1_4 0.862
int_1_5 0.746
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
int_1_1 1.78867924528302 2 0.371841052029731 0.609787710625371 1 0.037458961294252 1 1 3 3 0.14702106443572 -0.496637596020182 0.156603773584906 265 0 265
int_1_2 1.61509433962264 2 0.389165237278445 0.623831096754919 1 0.0383216396465715 1 1 3 3 0.499096030384462 -0.636118970708686 0.230188679245283 265 0 265
int_1_3 1.65660377358491 2 0.408147512864494 0.638864236645388 1 0.0392451180891112 1 1 3 3 0.44987118439655 -0.678148356912257 0.216981132075472 265 0 265
int_1_4 1.63018867924528 2 0.362721555174385 0.602263692392614 1 0.0369967645283168 1 1 3 3 0.378083971303195 -0.66409982409902 0.216981132075472 265 0 265
int_1_5 1.44905660377358 1 0.26349342481418 0.51331610613167 1 0.0315327577388903 1 NA 2 3 0.375057053481523 -1.46128317074733 0.216981132075472 265 0 265
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
int_1_1 Mild issues/questionable research practices - In research from other institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 2 3 1.791045 0.6067612 3 <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582>
int_1_2 Mild issues/questionable research practices - In research at your institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 2 3 1.611940 0.6230341 3 <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581>
int_1_3 Mild issues/questionable research practices - In graduate student research at your institution? haven_labelled 1. Never,
2. Once or Twice,
3. Often
106 0.7142857 1 2 3 1.656604 0.6388642 3 <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582>
int_1_4 Mild issues/questionable research practices - Of senior colleagues and/or collaborators? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 2 3 1.634328 0.6063465 3 <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581>
int_1_5 Mild issues/questionable research practices - In your own research? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.451493 0.5133769 3 <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581>

Scale: intSerious

Overview

Reliability: .

Missing: 108.

Likert plot of scale intSerious items

Likert plot of scale intSerious items

Distribution of scale intSerious

Distribution of scale intSerious

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: int_2_1, int_2_2, int_2_3, int_2_4 & int_2_5
Observations: 263
Positive correlations: 10
Number of correlations: 10
Percentage positive correlations: 100
Estimates assuming interval level
Omega (total): 0.88
Omega (hierarchical): 0.83
Revelle’s Omega (total): 0.88
Greatest Lower Bound (GLB): 0.85
Coefficient H: 0.88
Coefficient Alpha: 0.84

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

3.121, 0.744, 0.466, 0.383 & 0.286

Factor analysis (reproducing only shared variance)
ML1
int_2_1 0.658
int_2_2 0.841
int_2_3 0.770
int_2_4 0.816
int_2_5 0.547
Component analysis (reproducing full covariance matrix)
PC1
int_2_1 0.733
int_2_2 0.859
int_2_3 0.830
int_2_4 0.854
int_2_5 0.654
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
int_2_1 1.4638783269962 1 0.310713145444519 0.557416491902167 1 0.0343717733608779 1 NA 2 3 0.676380154135319 -0.599504504126857 0.201520912547529 263 0 263
int_2_2 1.3041825095057 1 0.242997707021159 0.492947975978357 1 0.0303964743691246 1 NA 2 3 1.23615510110959 0.375297772287927 0.136882129277567 263 0 263
int_2_3 1.29277566539924 1 0.246016312077323 0.496000314593976 1 0.0305846896312146 1 NA 2 3 1.3800790528495 0.877996965927718 0.127376425855513 263 0 263
int_2_4 1.28136882129278 1 0.241140103909674 0.49106018359227 1 0.0302800681038102 1 NA 2 3 1.45547228315005 1.12291817499834 0.121673003802281 263 0 263
int_2_5 1.08365019011407 1 0.0769454038835515 0.277390345692765 0 0.0171046214691485 1 NA 2 2 3.02490866318568 7.20480535346754 0.0418250950570342 263 0 263
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
int_2_1 Serious issues/scientific misconducts - In research from other institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.466418 0.5565334 3 <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581>
int_2_2 Serious issues/scientific misconducts - In research at your institutions? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.302239 0.4915719 3 <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581>
int_2_3 Serious issues/scientific misconducts - In graduate student research at your institution? haven_labelled 1. Never,
2. Once or Twice,
3. Often
107 0.7115903 1 1 3 1.291667 0.4953843 3 <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581>
int_2_4 Serious issues/scientific misconducts - Of senior colleagues and/or collaborators? haven_labelled 1. Never,
2. Once or Twice,
3. Often
103 0.7223720 1 1 3 1.283582 0.4913017 3 <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581>
int_2_5 Serious issues/scientific misconducts - In your own research? haven_labelled 1. Never,
2. Once or Twice,
3. Often
104 0.7196765 1 1 2 1.082397 0.2754850 3 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>

Scale: rep_2

Overview

Reliability: .

Missing: 0.

Likert plot of scale rep_2 items

Likert plot of scale rep_2 items

Distribution of scale rep_2

Distribution of scale rep_2

Reliability details


Scale diagnosis
Reliability (internal consistency) estimates

Scale structure
Information about this scale
Dataframe: res$dat
Items: rep_2_1, rep_2_2, rep_2_3, rep_2_4, rep_2_5, rep_2_6, rep_2_7, rep_2_8 & rep_2_9
Observations: 371
Positive correlations: 24
Number of correlations: 36
Percentage positive correlations: 67
Estimates assuming interval level
Omega (total): 0.73
Omega (hierarchical): 0.47
Revelle’s Omega (total): 0.73
Greatest Lower Bound (GLB): 0.73
Coefficient H: 0.73
Coefficient Alpha: 0.64

(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)

Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.


Eigen values

2.55, 1.119, 1.114, 0.929, 0.873, 0.776, 0.615, 0.564 & 0.46

Factor analysis (reproducing only shared variance)
ML2 ML1 ML3
rep_2_1 0.219 0.089 0.267
rep_2_2 0.413 0.038 0.312
rep_2_3 0.626 0.128 -0.060
rep_2_4 0.722 -0.073 0.007
rep_2_5 0.003 0.997 0.000
rep_2_6 0.015 0.307 0.367
rep_2_7 -0.048 -0.045 0.399
rep_2_8 0.044 -0.047 -0.137
rep_2_9 -0.048 0.106 -0.099
Component analysis (reproducing full covariance matrix)
TC1 TC2 TC3
rep_2_1 0.351 0.360 -0.140
rep_2_2 0.614 0.240 -0.079
rep_2_3 0.756 0.061 0.056
rep_2_4 0.802 -0.065 0.006
rep_2_5 0.247 0.645 0.021
rep_2_6 0.083 0.732 -0.022
rep_2_7 -0.181 0.612 0.071
rep_2_8 0.178 -0.256 0.724
rep_2_9 -0.142 0.244 0.754
Item descriptives
mean median var sd IQR se min q1 q3 max skew kurt dip n NA valid
rep_2_1 0.307277628032345 0 0.213433379471115 0.461988505778137 1 0.0239852481320183 0 NA 1 1 0.838838781683588 -1.30340518383503 0.153638814016173 371 0 371
rep_2_2 0.366576819407008 0 0.232825817731478 0.482520277015876 1 0.0250512045823797 0 NA 1 1 0.556023644407386 -1.70003157114474 0.183288409703504 371 0 371
rep_2_3 0.417789757412399 0 0.243898885408319 0.493861200549627 1 0.0256399959951555 0 NA 1 1 0.334733024041072 -1.89821606247463 0.208894878706199 371 0 371
rep_2_4 0.223719676549865 0 0.174138559044219 0.417299124183384 0 0.02166509104367 0 NA 1 1 1.33131253664317 -0.228869887763615 0.111859838274933 371 0 371
rep_2_5 0.390835579514825 0 0.238726597217163 0.4885965587447 1 0.0253666694114027 0 NA 1 1 0.449270857915825 -1.80793123835233 0.195417789757412 371 0 371
rep_2_6 0.261455525606469 0 0.193618416259926 0.440020927070436 1 0.0228447482720134 0 NA 1 1 1.09011814492901 -0.816070938521698 0.130727762803235 371 0 371
rep_2_7 0.0269541778975741 0 0.026298535732498 0.162168232809321 0 0.0084193551450183 0 NA 1 1 5.86563407466848 32.5812768232464 0.0134770889487871 371 0 371
rep_2_8 0.0431266846361186 0 0.0413783055292489 0.203416581254452 0 0.0105608626936229 0 NA 1 1 4.51634365953029 18.4970469023046 0.0215633423180593 371 0 371
rep_2_9 0.132075471698113 0 0.11494135645079 0.339030022934239 0 0.0176015617760558 0 NA 1 1 2.18221794037836 2.77701665755518 0.0660377358490566 371 0 371
Scattermatrix
Scatterplot

Scatterplot


Summary statistics

name label data_type value_labels n_missing complete_rate min median max mean sd n_value_labels hist
rep_2_1 Replication failure - Outdated methods haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.3072776 0.4619885 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583>
rep_2_2 Replication failure - Low quality data haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.3665768 0.4825203 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2585>
rep_2_3 Replication failure - Lack of external validity haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.4177898 0.4938612 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2586>
rep_2_4 Replication failure - Lack of internal validity haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.2237197 0.4172991 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582>
rep_2_5 Replication failure - Publication bias haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.3908356 0.4885966 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2585>
rep_2_6 Replication failure - Author bias haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.2614555 0.4400209 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583>
rep_2_7 Replication failure - Fraud haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0269542 0.1621682 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
rep_2_8 Replication failure - I don’t think there is a replication problem haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.0431267 0.2034166 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>
rep_2_9 Replication failure - Other explanation haven_labelled 0. No,
1. Yes
0 1 0 0 1 0.1320755 0.3390300 2 <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581>

rep_2_o

When studies in your field do not replicate, what do you think are the primary explanations? - Text

Distribution

Distribution of values for rep_2_o

Distribution of values for rep_2_o

322 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
rep_2_o When studies in your field do not replicate, what do you think are the primary explanations? - Text character 322 0.1320755 49 0 7 315 0

beh_1

What is the likelihood that you will pre-register hypotheses or analyses online in advance of your next new empirical project?

Distribution

Distribution of values for beh_1

Distribution of values for beh_1

111 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd hist
beh_1 What is the likelihood that you will pre-register hypotheses or analyses online in advance of your next new empirical project? numeric 111 0.7008086 0 30 100 38.92308 30.01277 <U+2587><U+2585><U+2583><U+2583><U+2582>

beh_2

What is the likelihood that you will post the data or code online for your next completed empirical project?

Distribution

Distribution of values for beh_2

Distribution of values for beh_2

111 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd hist
beh_2 What is the likelihood that you will post the data or code online for your next completed empirical project? numeric 111 0.7008086 0 30 100 37.42308 30.13313 <U+2587><U+2583><U+2583><U+2582><U+2582>

beh_3

What is the likelihood that you will post the study instruments online for your next completed empirical project?

Distribution

Distribution of values for beh_3

Distribution of values for beh_3

113 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd hist
beh_3 What is the likelihood that you will post the study instruments online for your next completed empirical project? numeric 113 0.6954178 0 60 100 53.52713 31.75112 <U+2587><U+2583><U+2585><U+2587><U+2585>

barrier

Specific barriers for EMCP researchers to engaging in open science practices?

Distribution

Distribution of values for barrier

Distribution of values for barrier

114 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
barrier Specific barriers for EMCP researchers to engaging in open science practices? haven_labelled 114 0.6927224 0 1 2 1.18677 0.6875995 3 <U+2582><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2586>

Value labels

Response choices
name value
No 0
Yes 1
Maybe 2

barrier_o

What are some specific barriers to engaging in open science practices in ethnic minority/cultural psychology?

Distribution

Distribution of values for barrier_o

Distribution of values for barrier_o

203 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
barrier_o What are some specific barriers to engaging in open science practices in ethnic minority/cultural psychology? character 203 0.4528302 165 0 3 637 0

opportunity

Specific opportunities for EMCP researchers to engaging in open science practices?

Distribution

Distribution of values for opportunity

Distribution of values for opportunity

116 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
opportunity Specific opportunities for EMCP researchers to engaging in open science practices? haven_labelled 116 0.6873315 0 1 2 1.364706 0.678936 3 <U+2582><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2587>

Value labels

Response choices
name value
No 0
Yes 1
Maybe 2

opportunity_o

What are some specific opportunities related to open science practices that would improve ethnic minority/cultural psychology?

Distribution

Distribution of values for opportunity_o

Distribution of values for opportunity_o

240 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
opportunity_o What are some specific opportunities related to open science practices that would improve ethnic minority/cultural psychology? character 240 0.3530997 130 0 3 511 0

engagemotiv01

First motivation for engagement in open science practices:

Distribution

Distribution of values for engagemotiv01

Distribution of values for engagemotiv01

170 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
engagemotiv01 First motivation for engagement in open science practices: character 170 0.541779 185 0 5 245 0

engagemotiv02

Second motivation for engagement in open science practices:

Distribution

Distribution of values for engagemotiv02

Distribution of values for engagemotiv02

191 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
engagemotiv02 Second motivation for engagement in open science practices: character 191 0.4851752 175 0 4 138 0

engagemotiv03

Third motivation for engagement in open science practices:

Distribution

Distribution of values for engagemotiv03

Distribution of values for engagemotiv03

225 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
engagemotiv03 Third motivation for engagement in open science practices: character 225 0.393531 140 0 3 201 0

engagebarrier01

First barrier for engagement in open science practices:

Distribution

Distribution of values for engagebarrier01

Distribution of values for engagebarrier01

164 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
engagebarrier01 First barrier for engagement in open science practices: character 164 0.5579515 189 0 3 601 0

engagebarrier02

Second barrier for engagement in open science practices:

Distribution

Distribution of values for engagebarrier02

Distribution of values for engagebarrier02

198 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
engagebarrier02 Second barrier for engagement in open science practices: character 198 0.4663073 171 0 3 623 0

engagebarrier03

Third barrier for engagement in open science practices:

Distribution

Distribution of values for engagebarrier03

Distribution of values for engagebarrier03

250 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
engagebarrier03 Third barrier for engagement in open science practices: character 250 0.3261456 113 0 3 414 0

convomotiv01

First motivation for discussion participation:

Distribution

Distribution of values for convomotiv01

Distribution of values for convomotiv01

216 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
convomotiv01 First motivation for discussion participation: character 216 0.4177898 150 0 3 408 0

convomotiv02

Second motivation for discussion participation:

Distribution

Distribution of values for convomotiv02

Distribution of values for convomotiv02

264 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
convomotiv02 Second motivation for discussion participation: character 264 0.2884097 106 0 3 137 0

convomotiv03

Third motivation for discussion participation:

Distribution

Distribution of values for convomotiv03

Distribution of values for convomotiv03

296 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
convomotiv03 Third motivation for discussion participation: character 296 0.2021563 72 0 2 90 0

convoconcern01

First concern for discussion participation:

Distribution

Distribution of values for convoconcern01

Distribution of values for convoconcern01

224 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
convoconcern01 First concern for discussion participation: character 224 0.3962264 136 0 4 499 0

convoconcern02

Second concern for discussion participation:

Distribution

Distribution of values for convoconcern02

Distribution of values for convoconcern02

288 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
convoconcern02 Second concern for discussion participation: character 288 0.2237197 77 0 2 277 0

convoconcern03

Third concern for discussion participation:

Distribution

Distribution of values for convoconcern03

Distribution of values for convoconcern03

313 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
convoconcern03 Third concern for discussion participation: character 313 0.1563342 49 0 2 134 0

attcheck

Please select occasionally for this question.

Distribution

Distribution of values for attcheck

Distribution of values for attcheck

100 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
attcheck Please select occasionally for this question. haven_labelled 100 0.7304582 0 1 1 0.8118081 0.3915885 2 <U+2582><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587>

Value labels

Response choices
name value
Incorrect 0
Correct 1

experience_19

Please choose 3

Distribution

Distribution of values for experience_19

Distribution of values for experience_19

128 missing values.

Summary statistics

name label data_type n_missing complete_rate min median max mean sd n_value_labels hist
experience_19 Please choose 3 haven_labelled 128 0.6549865 0 1 1 0.7201646 0.4498448 2 <U+2583><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587>

Value labels

Response choices
name value
Incorrect 0
Correct 1

qrp1_4

Why do you think this practice should or should not be used? - Not reporting nonsignificance

Distribution

Distribution of values for qrp1_4

Distribution of values for qrp1_4

218 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp1_4 Why do you think this practice should or should not be used? - Not reporting nonsignificance character 218 0.4123989 153 0 3 1099 0

qrp2_4

Why do you think this practice should or should not be used? - Not reporting nonsignificance (covariate)

Distribution

Distribution of values for qrp2_4

Distribution of values for qrp2_4

230 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp2_4 Why do you think this practice should or should not be used? - Not reporting nonsignificance (covariate) character 230 0.3800539 141 0 9 601 0

qrp3_4

Why do you think this practice should or should not be used? - HARKing

Distribution

Distribution of values for qrp3_4

Distribution of values for qrp3_4

227 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp3_4 Why do you think this practice should or should not be used? - HARKing character 227 0.3881402 144 0 9 449 0

qrp4_4

Why do you think this practice should or should not be used? - Not reporting alternative models

Distribution

Distribution of values for qrp4_4

Distribution of values for qrp4_4

235 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp4_4 Why do you think this practice should or should not be used? - Not reporting alternative models character 235 0.3665768 136 0 12 1508 0

qrp5_4

Why do you think this practice should or should not be used? - Rounding p-value

Distribution

Distribution of values for qrp5_4

Distribution of values for qrp5_4

227 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp5_4 Why do you think this practice should or should not be used? - Rounding p-value character 227 0.3881402 144 0 9 715 0

qrp6_4

Why do you think this practice should or should not be used? - Excluding data

Distribution

Distribution of values for qrp6_4

Distribution of values for qrp6_4

238 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp6_4 Why do you think this practice should or should not be used? - Excluding data character 238 0.3584906 133 0 9 822 0

qrp7_4

Why do you think this practice should or should not be used? - Increasing sample

Distribution

Distribution of values for qrp7_4

Distribution of values for qrp7_4

221 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp7_4 Why do you think this practice should or should not be used? - Increasing sample character 221 0.4043127 150 0 9 922 0

qrp8_4

Why do you think this practice should or should not be used? - Changing analysis

Distribution

Distribution of values for qrp8_4

Distribution of values for qrp8_4

243 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp8_4 Why do you think this practice should or should not be used? - Changing analysis character 243 0.3450135 128 0 9 759 0

qrp9_4

Why do you think this practice should or should not be used? - Not reporting problems

Distribution

Distribution of values for qrp9_4

Distribution of values for qrp9_4

243 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp9_4 Why do you think this practice should or should not be used? - Not reporting problems character 243 0.3450135 127 0 6 590 0

qrp10_4

Why do you think this practice should or should not be used? - Imputing data

Distribution

Distribution of values for qrp10_4

Distribution of values for qrp10_4

241 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
qrp10_4 Why do you think this practice should or should not be used? - Imputing data character 241 0.3504043 129 0 5 406 0

prrp1_7

Why do you think this practice should or should not be used? - Posting data

Distribution

Distribution of values for prrp1_7

Distribution of values for prrp1_7

241 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
prrp1_7 Why do you think this practice should or should not be used? - Posting data character 241 0.3504043 130 0 7 698 0

prrp2_7

Why do you think this practice should or should not be used? - Posting instruments

Distribution

Distribution of values for prrp2_7

Distribution of values for prrp2_7

242 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
prrp2_7 Why do you think this practice should or should not be used? - Posting instruments character 242 0.3477089 129 0 15 1103 0

prrp3_7

Why do you think this practice should or should not be used? - Preregistration

Distribution

Distribution of values for prrp3_7

Distribution of values for prrp3_7

242 missing values.

Summary statistics

name label data_type n_missing complete_rate n_unique empty min max whitespace
prrp3_7 Why do you think this practice should or should not be used? - Preregistration character 242 0.3477089 129 0 22 604 0

Missingness report