Dataset name: OS Culture Codebook
Codebook: Open science practices in ethnic minority and cultural psychology
Metadata for search engines
Temporal Coverage: Winter 2020
Date published: 2021-01-14
|
What is your age?
Distribution of values for age
109 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| age | What is your age? | haven_labelled | 109 | 0.7061995 | 2 | 3.5 | 7 | 3.751908 | 1.149503 | 7 | <U+2582><U+2587><U+2581><U+2585><U+2583><U+2581><U+2582><U+2581> |
| name | value |
|---|---|
| 18-22 | 1 |
| 23-29 | 2 |
| 30-39 | 3 |
| 40-49 | 4 |
| 50-59 | 5 |
| 60-69 | 6 |
| 70+ | 7 |
Gender Coded as Factor
Distribution of values for gender_f
119 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| gender_f | Gender Coded as Factor | haven_labelled | 119 | 0.6792453 | 1 | 1 | 2 | 1.313492 | 0.4648357 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583> |
| name | value |
|---|---|
| female | 1 |
| male | 2 |
Race/Ethnicity Coded as Factor
Distribution of values for race_f
122 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| race_f | Race/Ethnicity Coded as Factor | haven_labelled | 122 | 0.671159 | 1 | 5 | 6 | 3.586345 | 1.732509 | 6 | <U+2583><U+2582><U+2581><U+2583><U+2581><U+2581><U+2587><U+2581> |
| name | value |
|---|---|
| Asian | 1 |
| Black | 2 |
| Hispanic | 3 |
| Native American | 4 |
| Non-Hispanic White | 5 |
| Mixed | 6 |
In which continent do you primarily live and work?
Distribution of values for continent
109 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| continent | In which continent do you primarily live and work? | haven_labelled | 109 | 0.7061995 | 1 | 5 | 6 | 4.885496 | 0.5272821 | 6 | <U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587><U+2581> |
| name | value |
|---|---|
| Africa | 1 |
| Asia | 2 |
| Australia/Oceania | 3 |
| Europe | 4 |
| North America | 5 |
| South America | 6 |
What is your career stage?
Distribution of values for career
110 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| career | What is your career stage? | haven_labelled | 110 | 0.703504 | 2 | 5 | 7 | 4.375479 | 1.148918 | 7 | <U+2582><U+2581><U+2581><U+2585><U+2587><U+2581><U+2581><U+2581> |
| name | value |
|---|---|
| Undergraduate student | 1 |
| Graduate student | 2 |
| Post-doctoral fellow | 3 |
| Assistant professor/lecturer | 4 |
| Associate/full professor | 5 |
| Research scientist | 6 |
| Other | 7 |
What is your career stage? - Text
Distribution of values for career_o
361 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| career_o | What is your career stage? - Text | character | 361 | 0.0269542 | 10 | 0 | 12 | 88 | 0 |
Reliability: .
Missing: 0.
Likert plot of scale lead items
Distribution of scale lead
| Dataframe: | res$dat |
| Items: | lead_1, lead_2 & lead_3 |
| Observations: | 371 |
| Positive correlations: | 3 |
| Number of correlations: | 3 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.53 |
| Omega (hierarchical): | 0.09 |
| Revelle’s Omega (total): | 0.53 |
| Greatest Lower Bound (GLB): | 0.53 |
| Coefficient H: | 0.53 |
| Coefficient Alpha: | 0.51 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.53, 0.785 & 0.685
| PC1 | |
|---|---|
| lead_1 | 0.727 |
| lead_2 | 0.746 |
| lead_3 | 0.667 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| lead_1 | 0.202156334231806 | 0 | 0.161725067385445 | 0.402150553133332 | 0 | 0.0208786164216033 | 0 | NA | 1 | 1 | 1.48928301725181 | 0.219116000942618 | 0.101078167115903 | 371 | 0 | 371 |
| lead_2 | 0.134770889487871 | 0 | 0.116922852771909 | 0.341939837942158 | 0 | 0.017752631844056 | 0 | NA | 1 | 1 | 2.1477969592349 | 2.62716546141488 | 0.0673854447439353 | 371 | 0 | 371 |
| lead_3 | 0.245283018867925 | 0 | 0.185619581845997 | 0.430835910580811 | 0 | 0.0223678859759932 | 0 | NA | 1 | 1 | 1.18884036676685 | -0.589867648258422 | 0.122641509433962 | 371 | 0 | 371 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| lead_1 | Leadership position - Your institution | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.2021563 | 0.4021506 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
| lead_2 | Leadership position - Journal editorialship | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1347709 | 0.3419398 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| lead_3 | Leadership position - Professional societies | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.2452830 | 0.4308359 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
Do you consider any of your work to be in the subfield of cultural/ethnic minority psychology?
Distribution of values for culture
108 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| culture | Do you consider any of your work to be in the subfield of cultural/ethnic minority psychology? | haven_labelled | 108 | 0.7088949 | 0 | 1 | 1 | 0.8707224 | 0.3361466 | 2 | <U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587> |
| name | value |
|---|---|
| No | 0 |
| Yes | 1 |
Which of the following best describes how you would label your political views?
Distribution of values for politics
111 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| politics | Which of the following best describes how you would label your political views? | haven_labelled | 111 | 0.7008086 | 1 | 2 | 7 | 2.161538 | 1.053062 | 7 | <U+2583><U+2587><U+2582><U+2581><U+2581><U+2581><U+2581><U+2581> |
| name | value |
|---|---|
| Extremely liberal | 1 |
| Liberal | 2 |
| Slightly liberal | 3 |
| Moderate | 4 |
| Sligthly conservative | 5 |
| Conservative | 6 |
| Extremely conservative | 7 |
Your current level of stress associated with the COVID-19/coronavirus pandemic
Distribution of values for c19stress
108 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| c19stress | Your current level of stress associated with the COVID-19/coronavirus pandemic | haven_labelled | 108 | 0.7088949 | 1 | 6 | 10 | 6.140684 | 2.161243 | 2 | <U+2582><U+2583><U+2585><U+2585><U+2586><U+2587><U+2586><U+2586> |
| name | value |
|---|---|
| Low stress | 1 |
| High stress | 10 |
Recruitment method
Distribution of values for group
19 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| group | Recruitment method | haven_labelled | 19 | 0.9487871 | 1 | 1 | 2 | 1.448864 | 0.4980862 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2586> |
| name | value |
|---|---|
| Flat | 1 |
| Raffle | 2 |
Reliability: .
Missing: 109.
Likert plot of scale agree items
Distribution of scale agree
| Dataframe: | res$dat |
| Items: | tipi_2 & tipi_7 |
| Observations: | 262 |
| Positive correlations: | 1 |
| Number of correlations: | 1 |
| Percentage positive correlations: | 100 |
| Spearman Brown coefficient: | 0.50 |
| Coefficient Alpha: | 0.49 |
| Pearson Correlation: | 0.33 |
1.333 & 0.667
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_2 | 3.66793893129771 | 4 | 1.10387236407242 | 1.05065330346048 | 2 | 0.0649095778601766 | 1 | 3 | 5 | 5 | -0.320898701284228 | -0.926856876813772 | 0.125954198473282 | 262 | 0 | 262 |
| tipi_7 | 4.08778625954198 | 4 | 0.762378988622737 | 0.8731431661662 | 1 | 0.0539429649539744 | 1 | 3 | 5 | 5 | -1.07637518489251 | 1.45049393172587 | 0.17175572519084 | 262 | 0 | 262 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_2 | I see myself as critical, quarrelsome | haven_labelled | 5. Strongly disagree, 3. Neither agree nor disagree, 1. Strongly agree |
109 | 0.7061995 | 1 | 4 | 5 | 3.667939 | 1.0506533 | 3 | <U+2581><U+2583><U+2581><U+2586><U+2581><U+2587><U+2581><U+2586> |
| tipi_7 | I see myself as sympathetic, warm | haven_labelled | 1. Strongly disagree, 3. Neither agree nor disagree, 5. Strongly agree |
108 | 0.7088949 | 1 | 4 | 5 | 4.087453 | 0.8714921 | 3 | <U+2581><U+2581><U+2581><U+2582><U+2581><U+2587><U+2581><U+2586> |
Reliability: .
Missing: 108.
Likert plot of scale consci items
Distribution of scale consci
| Dataframe: | res$dat |
| Items: | tipi_3 & tipi_8 |
| Observations: | 263 |
| Positive correlations: | 1 |
| Number of correlations: | 1 |
| Percentage positive correlations: | 100 |
| Spearman Brown coefficient: | 0.69 |
| Coefficient Alpha: | 0.69 |
| Pearson Correlation: | 0.53 |
1.526 & 0.474
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_3 | 4.24714828897338 | 4 | 0.812730386323397 | 0.901515605146909 | 1 | 0.0555898336550163 | 1 | 3 | 5 | 5 | -1.42175030435064 | 2.06014744280001 | 0.199619771863118 | 263 | 0 | 263 |
| tipi_8 | 4.13688212927757 | 4 | 0.935390241778655 | 0.967155748459706 | 1 | 0.0596373782865429 | 1 | 3 | 5 | 5 | -0.91536446439323 | -0.0699099394997029 | 0.159695817490494 | 263 | 0 | 263 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_3 | I see myself as dependable, self-disciplined | haven_labelled | 1. Strongly disagree, 3. Neither agree nor disagree, 5. Strongly agree |
108 | 0.7088949 | 1 | 4 | 5 | 4.247148 | 0.9015156 | 3 | <U+2581><U+2581><U+2581><U+2581><U+2581><U+2587><U+2581><U+2587> |
| tipi_8 | I see myself as disorganized, careless | haven_labelled | 5. Strongly disagree, 3. Neither agree nor disagree, 1. Strongly agree |
108 | 0.7088949 | 1 | 4 | 5 | 4.136882 | 0.9671557 | 3 | <U+2581><U+2582><U+2581><U+2582><U+2581><U+2586><U+2581><U+2587> |
Reliability: .
Missing: 108.
Likert plot of scale extra items
Distribution of scale extra
| Dataframe: | res$dat |
| Items: | tipi_1 & tipi_6 |
| Observations: | 263 |
| Positive correlations: | 1 |
| Number of correlations: | 1 |
| Percentage positive correlations: | 100 |
| Spearman Brown coefficient: | 0.81 |
| Coefficient Alpha: | 0.81 |
| Pearson Correlation: | 0.69 |
1.686 & 0.314
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_1 | 3.1787072243346 | 3 | 1.42214030708501 | 1.19253524354 | 2 | 0.0735348733151771 | 1 | 2 | 4 | 5 | -0.200154756935808 | -0.855782690259789 | 0.134980988593156 | 263 | 0 | 263 |
| tipi_6 | 2.95437262357414 | 3 | 1.3719559980263 | 1.17130525399073 | 2 | 0.072225776078475 | 1 | 2 | 4 | 5 | 0.0890981604474295 | -0.888746821318586 | 0.134980988593156 | 263 | 0 | 263 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_1 | I see myself as extraverted, enthusiastic | haven_labelled | 1. Strongly disagree, 3. Neither agree nor disagree, 5. Strongly agree |
108 | 0.7088949 | 1 | 3 | 5 | 3.178707 | 1.192535 | 3 | <U+2583><U+2586><U+2581><U+2587><U+2581><U+2587><U+2581><U+2583> |
| tipi_6 | I see myself as reserved, quiet | haven_labelled | 5. Strongly disagree, 3. Neither agree nor disagree, 1. Strongly agree |
108 | 0.7088949 | 1 | 3 | 5 | 2.954373 | 1.171305 | 3 | <U+2583><U+2587><U+2581><U+2587><U+2581><U+2587><U+2581><U+2583> |
Reliability: .
Missing: 108.
Likert plot of scale neuro items
Distribution of scale neuro
| Dataframe: | res$dat |
| Items: | tipi_4 & tipi_9 |
| Observations: | 263 |
| Positive correlations: | 1 |
| Number of correlations: | 1 |
| Percentage positive correlations: | 100 |
| Spearman Brown coefficient: | 0.63 |
| Coefficient Alpha: | 0.62 |
| Pearson Correlation: | 0.46 |
1.46 & 0.54
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_4 | 2.56653992395437 | 3 | 1.19307462339999 | 1.09227955368577 | 1 | 0.0673528426435535 | 1 | 2 | 4 | 5 | 0.271221777198003 | -0.654187194849791 | 0.14828897338403 | 263 | 0 | 263 |
| tipi_9 | 2.22053231939163 | 2 | 0.790874524714829 | 0.889311264246006 | 1 | 0.0548372817561063 | 1 | 1 | 3 | 5 | 0.37233823606494 | -0.394597934882847 | 0.133079847908745 | 263 | 0 | 263 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_4 | I see myself as anxious, easily upset | haven_labelled | 1. Strongly disagree, 3. Neither agree nor disagree, 5. Strongly agree |
108 | 0.7088949 | 1 | 3 | 5 | 2.566540 | 1.0922796 | 3 | <U+2585><U+2587><U+2581><U+2587><U+2581><U+2585><U+2581><U+2581> |
| tipi_9 | I see myself as calm, emotionally stable | haven_labelled | 5. Strongly disagree, 3. Neither agree nor disagree, 1. Strongly agree |
108 | 0.7088949 | 1 | 2 | 5 | 2.220532 | 0.8893113 | 3 | <U+2583><U+2587><U+2581><U+2585><U+2581><U+2582><U+2581><U+2581> |
Reliability: .
Missing: 108.
Likert plot of scale open items
Distribution of scale open
| Dataframe: | res$dat |
| Items: | tipi_5 & tipi_10 |
| Observations: | 263 |
| Positive correlations: | 1 |
| Number of correlations: | 1 |
| Percentage positive correlations: | 100 |
| Spearman Brown coefficient: | 0.44 |
| Coefficient Alpha: | 0.44 |
| Pearson Correlation: | 0.29 |
1.286 & 0.714
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_5 | 3.90874524714829 | 4 | 0.76263315241053 | 0.873288699348921 | 2 | 0.0538492880793795 | 1 | 3 | 5 | 5 | -0.687780360944063 | 0.460400222159906 | 0.127376425855513 | 263 | 0 | 263 |
| tipi_10 | 3.69201520912548 | 4 | 0.946768060836502 | 0.973020072165267 | 1 | 0.0599989879774125 | 1 | 3 | 5 | 5 | -0.4514215942755 | -0.332401333606577 | 0.131178707224335 | 263 | 0 | 263 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| tipi_5 | I see myself as open to new experiences, complex | haven_labelled | 1. Strongly disagree, 3. Neither agree nor disagree, 5. Strongly agree |
108 | 0.7088949 | 1 | 4 | 5 | 3.908745 | 0.8732887 | 3 | <U+2581><U+2581><U+2581><U+2583><U+2581><U+2587><U+2581><U+2585> |
| tipi_10 | I see myself as conventional, uncreative | haven_labelled | 5. Strongly disagree, 3. Neither agree nor disagree, 1. Strongly agree |
108 | 0.7088949 | 1 | 4 | 5 | 3.692015 | 0.9730201 | 3 | <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2585> |
Reliability: .
Missing: 107.
Likert plot of scale selfQRP items
Distribution of scale selfQRP
| Dataframe: | res$dat |
| Items: | qrp1_2, qrp2_2, qrp3_2, qrp4_2, qrp5_2, qrp6_2, qrp7_2, qrp8_2, qrp9_2 & qrp10_2 |
| Observations: | 264 |
| Positive correlations: | 45 |
| Number of correlations: | 45 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.70 |
| Omega (hierarchical): | 0.45 |
| Revelle’s Omega (total): | 0.70 |
| Greatest Lower Bound (GLB): | 0.73 |
| Coefficient H: | 0.70 |
| Coefficient Alpha: | 0.65 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.518, 1.186, 1.057, 1.008, 0.931, 0.809, 0.746, 0.674, 0.574 & 0.497
| TC1 | TC4 | TC2 | TC3 | |
|---|---|---|---|---|
| qrp1_2 | 0.753 | 0.064 | -0.048 | 0.004 |
| qrp2_2 | 0.771 | -0.058 | -0.103 | 0.030 |
| qrp3_2 | 0.218 | 0.483 | 0.302 | -0.050 |
| qrp4_2 | 0.457 | 0.429 | 0.158 | -0.250 |
| qrp5_2 | -0.026 | -0.096 | 0.859 | -0.091 |
| qrp6_2 | 0.484 | -0.141 | 0.302 | 0.358 |
| qrp7_2 | 0.019 | 0.018 | -0.064 | 0.889 |
| qrp8_2 | 0.307 | 0.435 | 0.101 | 0.266 |
| qrp9_2 | -0.078 | 0.825 | -0.147 | 0.032 |
| qrp10_2 | -0.267 | 0.265 | 0.482 | 0.295 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| qrp1_2 | 2.40151515151515 | 3 | 1.1917847678304 | 1.09168895195948 | 2 | 0.067188810391179 | 1 | 1 | 4 | 5 | -0.0902296317028737 | -1.09776307620976 | 0.162878787878788 | 264 | 0 | 264 |
| qrp2_2 | 1.88636363636364 | 1 | 1.12011752506049 | 1.05835604834124 | 2 | 0.0651373119886591 | 1 | NA | 3 | 5 | 0.616689494081706 | -1.01964843779976 | 0.162878787878788 | 264 | 0 | 264 |
| qrp3_2 | 1.82575757575758 | 1 | 1.04937204747091 | 1.02438862131073 | 2 | 0.0630467613697007 | 1 | NA | 3 | 5 | 0.740130666834008 | -0.850621906471039 | 0.134469696969697 | 264 | 0 | 264 |
| qrp4_2 | 2.23484848484848 | 3 | 1.35908514805853 | 1.16579807344949 | 2 | 0.0717499115208654 | 1 | 1 | 4 | 5 | 0.287146673041679 | -1.06886637655915 | 0.195075757575758 | 264 | 0 | 264 |
| qrp5_2 | 1.76136363636364 | 1 | 1.28504147943311 | 1.13359670052145 | 2 | 0.0697680540182186 | 1 | NA | 3 | 5 | 1.22178501708444 | 0.348458167837494 | 0.0984848484848485 | 264 | 0 | 264 |
| qrp6_2 | 1.44318181818182 | 1 | 0.635542689249914 | 0.797209313323617 | 1 | 0.049064841499807 | 1 | NA | 3 | 4 | 1.38979430111458 | 0.182452416750788 | 0.0909090909090909 | 264 | 0 | 264 |
| qrp7_2 | 1.35606060606061 | 1 | 0.579963129392787 | 0.76155310346212 | 0 | 0.0468703534825452 | 1 | NA | 3 | 4 | 2.00514235736426 | 2.80024862855935 | 0.053030303030303 | 264 | 0 | 264 |
| qrp8_2 | 2.11363636363636 | 2 | 1.05167646042171 | 1.02551277925812 | 2 | 0.0631159485086205 | 1 | 1 | 3 | 4 | 0.0899480206909443 | -1.53265504600842 | 0.208333333333333 | 264 | 0 | 264 |
| qrp9_2 | 1.28787878787879 | 1 | 0.426316395898145 | 0.652929089486864 | 0 | 0.0401850075643581 | 1 | NA | 2 | 5 | 2.35187182485643 | 5.43439367997153 | 0.0492424242424242 | 264 | 0 | 264 |
| qrp10_2 | 1.08712121212121 | 1 | 0.133065445327803 | 0.364781366475596 | 0 | 0.0224507411404797 | 1 | NA | 2 | 3 | 4.39478830941166 | 18.9323823092036 | 0.0170454545454545 | 264 | 0 | 264 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| qrp1_2 | Not reporting nonsignificance | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
93 | 0.7493261 | 1 | 3 | 5 | 2.392086 | 1.0985100 | 5 | <U+2586><U+2582><U+2581><U+2587><U+2581><U+2582><U+2581><U+2581> |
| qrp2_2 | Not reporting nonsignificance (covariate) | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
90 | 0.7574124 | 1 | 1 | 5 | 1.886121 | 1.0595752 | 5 | <U+2587><U+2581><U+2581><U+2585><U+2581><U+2581><U+2581><U+2581> |
| qrp3_2 | HARKing | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
85 | 0.7708895 | 1 | 1 | 5 | 1.825175 | 1.0416902 | 5 | <U+2587><U+2582><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581> |
| qrp4_2 | Not reporting alternative models | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
90 | 0.7574124 | 1 | 2 | 5 | 2.213523 | 1.1667853 | 5 | <U+2587><U+2582><U+2581><U+2587><U+2581><U+2582><U+2581><U+2581> |
| qrp5_2 | Rounding p-value | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
89 | 0.7601078 | 1 | 1 | 5 | 1.776596 | 1.1458195 | 5 | <U+2587><U+2581><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581> |
| qrp6_2 | Excluding data | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
85 | 0.7708895 | 1 | 1 | 4 | 1.454546 | 0.8184476 | 5 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2582><U+2581><U+2581> |
| qrp7_2 | Increasing sample | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
84 | 0.7735849 | 1 | 1 | 4 | 1.344948 | 0.7452652 | 5 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| qrp8_2 | Changing analysis | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
90 | 0.7574124 | 1 | 2 | 4 | 2.113879 | 1.0322581 | 5 | <U+2587><U+2581><U+2582><U+2581><U+2581><U+2587><U+2581><U+2581> |
| qrp9_2 | Not reporting problems | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
87 | 0.7654987 | 1 | 1 | 5 | 1.292253 | 0.6796979 | 5 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| qrp10_2 | Imputing data | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
88 | 0.7628032 | 1 | 1 | 3 | 1.102474 | 0.4040060 | 5 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 128.
Distribution of scale peerQRP
| Dataframe: | res$dat |
| Items: | qrp1_1, qrp2_1, qrp3_1, qrp4_1, qrp5_1, qrp6_1, qrp7_1, qrp8_1, qrp9_1 & qrp10_1 |
| Observations: | 243 |
| Positive correlations: | 45 |
| Number of correlations: | 45 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.89 |
| Omega (hierarchical): | 0.71 |
| Revelle’s Omega (total): | 0.89 |
| Greatest Lower Bound (GLB): | 0.90 |
| Coefficient H: | 0.86 |
| Coefficient Alpha: | 0.85 |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 67 and the highest range is 101. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
4.396, 1.136, 0.911, 0.712, 0.585, 0.543, 0.488, 0.471, 0.391 & 0.368
| TC1 | TC2 | |
|---|---|---|
| qrp1_1 | -0.073 | 0.857 |
| qrp2_1 | 0.074 | 0.752 |
| qrp3_1 | 0.490 | 0.337 |
| qrp4_1 | 0.059 | 0.772 |
| qrp5_1 | 0.378 | 0.266 |
| qrp6_1 | 0.680 | 0.122 |
| qrp7_1 | 0.746 | -0.015 |
| qrp8_1 | 0.544 | 0.310 |
| qrp9_1 | 0.667 | 0.112 |
| qrp10_1 | 0.852 | -0.191 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| qrp1_1 | 58.8353909465021 | 66 | 791.931469577934 | 28.1412769713447 | 45 | 1.80526375941619 | 0 | 35 | 80 | 100 | -0.383692539014826 | -0.965469480090109 | 0.0448102423411065 | 243 | 0 | 243 |
| qrp2_1 | 48.3991769547325 | 50 | 728.984627418971 | 26.9997153210728 | 44 | 1.73203254540718 | 0 | 20 | 71 | 100 | 0.00664065337977772 | -0.971616549699875 | 0.0385802469135802 | 243 | 0 | 243 |
| qrp3_1 | 45.6502057613169 | 50 | 778.459783015339 | 27.9008921544695 | 50 | 1.78984306622374 | 0 | 20 | 70 | 100 | 0.0166501449020511 | -1.06494474387619 | 0.0401234567901235 | 243 | 0 | 243 |
| qrp4_1 | 53.5061728395062 | 60 | 793.341903887358 | 28.1663257079683 | 50 | 1.8068706366198 | 0 | 30 | 81 | 100 | -0.107678370123019 | -1.07506403932118 | 0.0380658436213992 | 243 | 0 | 243 |
| qrp5_1 | 45.40329218107 | 42 | 916.489575893616 | 30.2735788418485 | 51 | 1.94205098818606 | 0 | 20 | 71 | 100 | 0.195858491488025 | -1.21244239297868 | 0.0390946502057613 | 243 | 0 | 243 |
| qrp6_1 | 35.1975308641975 | 30 | 611.853382307928 | 24.7356702417365 | 38 | 1.58679398585026 | 0 | 10 | 54 | 100 | 0.432602438942964 | -0.796839607407768 | 0.0495884773662552 | 243 | 0 | 243 |
| qrp7_1 | 35.6460905349794 | 30 | 627.34530490086 | 25.046862176745 | 41 | 1.6067569577888 | 0 | 14 | 60 | 100 | 0.567056519910227 | -0.65726469579524 | 0.0450617283950617 | 243 | 0 | 243 |
| qrp8_1 | 49.2921810699589 | 50 | 781.860558446417 | 27.9617695871777 | 46 | 1.79374835535282 | 0 | 20 | 71 | 100 | -0.103751993128007 | -1.14185416428924 | 0.0417695473251029 | 243 | 0 | 243 |
| qrp9_1 | 33.6296296296296 | 29 | 619.870523415978 | 24.897199107851 | 40 | 1.59715606744283 | 0 | 11 | 51 | 100 | 0.688665139079811 | -0.346182804582853 | 0.0487654320987654 | 243 | 0 | 243 |
| qrp10_1 | 19.9382716049383 | 10 | 422.835016835017 | 20.5629525320421 | 25 | 1.31911401996756 | 0 | 2.5 | 30 | 100 | 1.41333458385419 | 1.66829324729269 | 0.0742798353909465 | 243 | 0 | 243 |
Scatterplot
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| qrp1_1 | Not reporting nonsignificance | numeric | 97 | 0.7385445 | 0 | 64 | 100 | 58.07664 | 28.56311 | <U+2585><U+2583><U+2585><U+2587><U+2586> |
| qrp2_1 | Not reporting nonsignificance (covariate) | numeric | 96 | 0.7412399 | 0 | 50 | 100 | 48.52364 | 27.42732 | <U+2587><U+2586><U+2587><U+2587><U+2585> |
| qrp3_1 | HARKing | numeric | 92 | 0.7520216 | 0 | 50 | 100 | 45.64158 | 28.17291 | <U+2587><U+2585><U+2586><U+2586><U+2583> |
| qrp4_1 | Not reporting alternative models | numeric | 96 | 0.7412399 | 0 | 54 | 100 | 52.28727 | 28.51228 | <U+2587><U+2587><U+2587><U+2587><U+2587> |
| qrp5_1 | Rounding p-value | numeric | 101 | 0.7277628 | 0 | 42 | 100 | 45.55926 | 30.24919 | <U+2587><U+2586><U+2585><U+2583><U+2585> |
| qrp6_1 | Excluding data | numeric | 91 | 0.7547170 | 0 | 30 | 100 | 35.52857 | 25.35156 | <U+2587><U+2585><U+2583><U+2582><U+2581> |
| qrp7_1 | Increasing sample | numeric | 93 | 0.7493261 | 0 | 30 | 100 | 35.10791 | 25.36170 | <U+2587><U+2585><U+2583><U+2582><U+2581> |
| qrp8_1 | Changing analysis | numeric | 93 | 0.7493261 | 0 | 51 | 100 | 49.72662 | 27.92300 | <U+2587><U+2585><U+2586><U+2587><U+2585> |
| qrp9_1 | Not reporting problems | numeric | 96 | 0.7412399 | 0 | 29 | 100 | 33.54909 | 24.84963 | <U+2587><U+2585><U+2583><U+2582><U+2581> |
| qrp10_1 | Imputing data | numeric | 91 | 0.7547170 | 0 | 11 | 100 | 20.47500 | 20.49214 | <U+2587><U+2583><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 117.
Likert plot of scale opinionQRP items
Distribution of scale opinionQRP
| Dataframe: | res$dat |
| Items: | qrp1_3, qrp2_3, qrp3_3, qrp4_3, qrp5_3, qrp6_3, qrp7_3, qrp8_3, qrp9_3 & qrp10_3 |
| Observations: | 254 |
| Positive correlations: | 45 |
| Number of correlations: | 45 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.76 |
| Omega (hierarchical): | 0.54 |
| Revelle’s Omega (total): | 0.76 |
| Greatest Lower Bound (GLB): | 0.79 |
| Coefficient H: | 0.73 |
| Coefficient Alpha: | 0.71 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.852, 1.091, 1.022, 0.904, 0.841, 0.783, 0.746, 0.641, 0.597 & 0.523
| TC1 | TC2 | TC3 | |
|---|---|---|---|
| qrp1_3 | 0.673 | -0.009 | 0.100 |
| qrp2_3 | 0.682 | -0.216 | 0.150 |
| qrp3_3 | 0.413 | 0.487 | -0.042 |
| qrp4_3 | 0.660 | 0.163 | -0.119 |
| qrp5_3 | -0.119 | 0.560 | 0.499 |
| qrp6_3 | 0.063 | 0.008 | 0.797 |
| qrp7_3 | 0.370 | -0.136 | 0.445 |
| qrp8_3 | 0.415 | 0.169 | 0.356 |
| qrp9_3 | 0.443 | 0.342 | -0.246 |
| qrp10_3 | 0.009 | 0.757 | -0.013 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| qrp1_3 | 1.86614173228346 | 2 | 0.42469888892347 | 0.651689257946968 | 1 | 0.0408906208045004 | 1 | 1 | 3 | 3 | 0.140459016569553 | -0.666462271764254 | 0.143700787401575 | 254 | 0 | 254 |
| qrp2_3 | 1.72834645669291 | 2 | 0.475319784631664 | 0.689434394726332 | 1 | 0.043258961323295 | 1 | 1 | 3 | 4 | 0.706281802691002 | 0.466370400179342 | 0.196850393700787 | 254 | 0 | 254 |
| qrp3_3 | 1.5748031496063 | 1 | 0.63272229311257 | 0.795438428234751 | 1 | 0.0499102459425867 | 1 | NA | 2 | 4 | 1.29597320201262 | 0.993001988781937 | 0.141732283464567 | 254 | 0 | 254 |
| qrp4_3 | 1.97637795275591 | 2 | 0.600230307179982 | 0.774745317623787 | 1 | 0.0486118447046651 | 1 | 1 | 3 | 4 | 0.349239026068767 | -0.481877244243003 | 0.143700787401575 | 254 | 0 | 254 |
| qrp5_3 | 1.55905511811024 | 1 | 0.642743767700974 | 0.801713020787971 | 1 | 0.0503039488948262 | 1 | NA | 2 | 4 | 1.19749543629212 | 0.352776737399655 | 0.112204724409449 | 254 | 0 | 254 |
| qrp6_3 | 1.40157480314961 | 1 | 0.328218854066167 | 0.572903878557448 | 1 | 0.0359471864387037 | 1 | NA | 2 | 4 | 1.21849422319138 | 1.19709684040793 | 0.163385826771654 | 254 | 0 | 254 |
| qrp7_3 | 1.72047244094488 | 2 | 0.526298590146587 | 0.725464396195008 | 1 | 0.0455196846813607 | 1 | 1 | 3 | 4 | 0.732571879238658 | 0.113386796314962 | 0.21259842519685 | 254 | 0 | 254 |
| qrp8_3 | 1.84251968503937 | 2 | 0.417789673524011 | 0.646366516400727 | 1 | 0.0405566422962565 | 1 | 1 | 3 | 3 | 0.16123959646035 | -0.647534901540905 | 0.149606299212598 | 254 | 0 | 254 |
| qrp9_3 | 1.20866141732283 | 1 | 0.229015592418537 | 0.478555735958244 | 0 | 0.0300272574609164 | 1 | NA | 2 | 4 | 2.48721103833651 | 6.86299538770684 | 0.078740157480315 | 254 | 0 | 254 |
| qrp10_3 | 1.13779527559055 | 1 | 0.14299274843609 | 0.378143819777727 | 0 | 0.0237268534896652 | 1 | NA | 2 | 3 | 2.75413052309218 | 7.29373738855994 | 0.0570866141732283 | 254 | 0 | 254 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| qrp1_3 | Not reporting nonsignificance | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
99 | 0.7331536 | 1 | 2 | 3 | 1.852941 | 0.6489209 | 4 | <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582> |
| qrp2_3 | Not reporting nonsignificance (covariate) | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
93 | 0.7493261 | 1 | 2 | 4 | 1.730216 | 0.6923152 | 4 | <U+2586><U+2581><U+2587><U+2581><U+2581><U+2582><U+2581><U+2581> |
| qrp3_3 | HARKing | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
87 | 0.7654987 | 1 | 1 | 4 | 1.570423 | 0.7966173 | 4 | <U+2587><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581><U+2581> |
| qrp4_3 | Not reporting alternative models | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
92 | 0.7520216 | 1 | 2 | 4 | 1.953405 | 0.7736540 | 4 | <U+2585><U+2581><U+2587><U+2581><U+2581><U+2583><U+2581><U+2581> |
| qrp5_3 | Rounding p-value | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
96 | 0.7412399 | 1 | 1 | 4 | 1.563636 | 0.8096957 | 4 | <U+2587><U+2581><U+2583><U+2581><U+2581><U+2582><U+2581><U+2581> |
| qrp6_3 | Excluding data | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
88 | 0.7628032 | 1 | 1 | 4 | 1.406360 | 0.5781744 | 4 | <U+2587><U+2581><U+2585><U+2581><U+2581><U+2581><U+2581><U+2581> |
| qrp7_3 | Increasing sample | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
90 | 0.7574124 | 1 | 2 | 4 | 1.693950 | 0.7163392 | 4 | <U+2587><U+2581><U+2587><U+2581><U+2581><U+2582><U+2581><U+2581> |
| qrp8_3 | Changing analysis | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
93 | 0.7493261 | 1 | 2 | 3 | 1.830935 | 0.6610733 | 4 | <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582> |
| qrp9_3 | Not reporting problems | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
88 | 0.7628032 | 1 | 1 | 4 | 1.204947 | 0.4914628 | 4 | <U+2587><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581><U+2581> |
| qrp10_3 | Imputing data | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
90 | 0.7574124 | 1 | 1 | 3 | 1.145908 | 0.3827429 | 4 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 88.
Likert plot of scale awarePRRP items
Distribution of scale awarePRRP
| Dataframe: | res$dat |
| Items: | prrp1_2, prrp2_2 & prrp3_2 |
| Observations: | 283 |
| Positive correlations: | 3 |
| Number of correlations: | 3 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.58 |
| Omega (hierarchical): | 0.05 |
| Revelle’s Omega (total): | 0.58 |
| Greatest Lower Bound (GLB): | 0.60 |
| Coefficient H: | 0.62 |
| Coefficient Alpha: | 0.55 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.591, 0.814 & 0.595
| PC1 | |
|---|---|
| prrp1_2 | 0.759 |
| prrp2_2 | 0.624 |
| prrp3_2 | 0.791 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_2 | 0.858657243816254 | 1 | 0.121795353732802 | 0.348991910698231 | 0 | 0.0207454157508162 | 0 | 0 | NA | 1 | -2.07001912273632 | 2.30119229634651 | 0.0706713780918728 | 283 | 0 | 283 |
| prrp2_2 | 0.840989399293286 | 1 | 0.134200436057439 | 0.366333776844887 | 0 | 0.0217762826909341 | 0 | 0 | NA | 1 | -1.87488237128716 | 1.52591792588922 | 0.0795053003533569 | 283 | 0 | 283 |
| prrp3_2 | 0.76678445229682 | 1 | 0.179460190963085 | 0.423627419984927 | 0 | 0.0251820362639639 | 0 | 0 | NA | 1 | -1.26848858853807 | -0.393769718154322 | 0.11660777385159 | 283 | 0 | 283 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_2 | Posting data | haven_labelled | 0. No, 1. Yes |
85 | 0.7708895 | 0 | 1 | 1 | 0.8601399 | 0.3474498 | 2 | <U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587> |
| prrp2_2 | Posting instruments | haven_labelled | 0. No, 1. Yes |
84 | 0.7735849 | 0 | 1 | 1 | 0.8432056 | 0.3642420 | 2 | <U+2582><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587> |
| prrp3_2 | Preregistration | haven_labelled | 0. No, 1. Yes |
82 | 0.7789757 | 0 | 1 | 1 | 0.7681661 | 0.4227355 | 2 | <U+2582><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587> |
Reliability: .
Missing: 90.
Likert plot of scale selfPRRP items
Distribution of scale selfPRRP
| Dataframe: | res$dat |
| Items: | prrp1_3, prrp2_3 & prrp3_3 |
| Observations: | 281 |
| Positive correlations: | 3 |
| Number of correlations: | 3 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.67 |
| Omega (hierarchical): | 0.01 |
| Revelle’s Omega (total): | 0.67 |
| Greatest Lower Bound (GLB): | 0.70 |
| Coefficient H: | 0.76 |
| Coefficient Alpha: | 0.62 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.733, 0.778 & 0.489
| PC1 | |
|---|---|
| prrp1_3 | 0.835 |
| prrp2_3 | 0.782 |
| prrp3_3 | 0.652 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_3 | 1.74021352313167 | 1 | 1.1644128113879 | 1.07907961309067 | 2 | 0.0643724928375517 | 1 | NA | 3 | 5 | 1.21960536779836 | 0.472512956845054 | 0.103202846975089 | 281 | 0 | 281 |
| prrp2_3 | 2.20640569395018 | 2 | 1.52153024911032 | 1.23350324244013 | 2 | 0.0735846342343997 | 1 | 1 | 3 | 5 | 0.463281109624557 | -0.956648885139312 | 0.169039145907473 | 281 | 0 | 281 |
| prrp3_3 | 1.81850533807829 | 1 | 1.37051347229283 | 1.17068931501609 | 2 | 0.0698374694801498 | 1 | NA | 3 | 5 | 1.16494896010288 | 0.180802712318851 | 0.0907473309608541 | 281 | 0 | 281 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_3 | Posting data | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
85 | 0.7708895 | 1 | 1 | 5 | 1.727273 | 1.073978 | 5 | <U+2587><U+2581><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581> |
| prrp2_3 | Posting instruments | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
86 | 0.7681941 | 1 | 2 | 5 | 2.203509 | 1.230762 | 5 | <U+2587><U+2581><U+2581><U+2586><U+2581><U+2582><U+2581><U+2581> |
| prrp3_3 | Preregistration | haven_labelled | 1. Never, 2. Once, 3. Occasionally, 4. Frequently, 5. Almost always |
82 | 0.7789757 | 1 | 1 | 5 | 1.826990 | 1.174600 | 5 | <U+2587><U+2581><U+2581><U+2582><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 105.
Distribution of scale peerPRRP
| Dataframe: | res$dat |
| Items: | prrp1_1, prrp2_1 & prrp3_1 |
| Observations: | 266 |
| Positive correlations: | 3 |
| Number of correlations: | 3 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.68 |
| Omega (hierarchical): | 0.05 |
| Revelle’s Omega (total): | 0.68 |
| Greatest Lower Bound (GLB): | 0.68 |
| Coefficient H: | 0.68 |
| Coefficient Alpha: | 0.67 |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 65 and the highest range is 101. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.815, 0.629 & 0.555
| PC1 | |
|---|---|
| prrp1_1 | 0.780 |
| prrp2_1 | 0.797 |
| prrp3_1 | 0.756 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_1 | 25.2556390977444 | 20 | 344.7721378919 | 18.5680407661094 | 20 | 1.13847962508622 | 0 | 10 | 32 | 100 | 1.34809502429879 | 2.0002195023154 | 0.0644736842105263 | 266 | 0 | 266 |
| prrp2_1 | 37.7406015037594 | 30 | 528.094722655696 | 22.9803116309526 | 33 | 1.4090133094561 | 0 | 19 | 60 | 100 | 0.624775740992544 | -0.491566041933891 | 0.057758031442242 | 266 | 0 | 266 |
| prrp3_1 | 28.1691729323308 | 25 | 484.405234785076 | 22.0092079545148 | 30 | 1.34947112278184 | 0 | 10 | 40 | 100 | 1.23405841224116 | 1.4537137416041 | 0.0567669172932331 | 266 | 0 | 266 |
Scatterplot
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_1 | Posting data | numeric | 93 | 0.7493261 | 0 | 20 | 100 | 25.32374 | 18.29471 | <U+2587><U+2585><U+2581><U+2581><U+2581> |
| prrp2_1 | Posting instruments | numeric | 98 | 0.7358491 | 0 | 30 | 100 | 37.83883 | 23.00806 | <U+2586><U+2587><U+2583><U+2583><U+2581> |
| prrp3_1 | Preregistration | numeric | 90 | 0.7574124 | 0 | 25 | 100 | 28.13879 | 21.85321 | <U+2587><U+2586><U+2582><U+2581><U+2581> |
Reliability: .
Missing: 96.
Likert plot of scale recentPRRP items
Distribution of scale recentPRRP
| Dataframe: | res$dat |
| Items: | prrp1_4, prrp2_4 & prrp3_4 |
| Observations: | 275 |
| Positive correlations: | 3 |
| Number of correlations: | 3 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.54 |
| Omega (hierarchical): | 0.09 |
| Revelle’s Omega (total): | 0.54 |
| Greatest Lower Bound (GLB): | 0.54 |
| Coefficient H: | 0.54 |
| Coefficient Alpha: | 0.53 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.551, 0.767 & 0.682
| PC1 | |
|---|---|
| prrp1_4 | 0.745 |
| prrp2_4 | 0.731 |
| prrp3_4 | 0.680 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_4 | 0.149090909090909 | 0 | 0.127325812873258 | 0.35682742729961 | 0 | 0.0215175034774659 | 0 | NA | 1 | 1 | 1.98123701507426 | 1.93935177380713 | 0.0745454545454545 | 275 | 0 | 275 |
| prrp2_4 | 0.272727272727273 | 0 | 0.19907100199071 | 0.446173735209403 | 1 | 0.026905288563654 | 0 | NA | 1 | 1 | 1.0262268299154 | -0.9538488472312 | 0.136363636363636 | 275 | 0 | 275 |
| prrp3_4 | 0.16 | 0 | 0.134890510948905 | 0.367274435468772 | 0 | 0.0221474817734457 | 0 | NA | 1 | 1 | 1.86504046791987 | 1.48915335364915 | 0.08 | 275 | 0 | 275 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_4 | Posting data | haven_labelled | 0. No, 1. Yes |
91 | 0.7547170 | 0 | 0 | 1 | 0.1500000 | 0.3577108 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
| prrp2_4 | Posting instruments | haven_labelled | 0. No, 1. Yes |
89 | 0.7601078 | 0 | 0 | 1 | 0.2695035 | 0.4444907 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583> |
| prrp3_4 | Preregistration | haven_labelled | 0. No, 1. Yes |
88 | 0.7628032 | 0 | 0 | 1 | 0.1660777 | 0.3728097 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
Reliability: .
Missing: 101.
Likert plot of scale opinionPRRP items
Distribution of scale opinionPRRP
| Dataframe: | res$dat |
| Items: | prrp1_6, prrp2_6 & prrp3_6 |
| Observations: | 270 |
| Positive correlations: | 3 |
| Number of correlations: | 3 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.64 |
| Omega (hierarchical): | 0.14 |
| Revelle’s Omega (total): | 0.64 |
| Greatest Lower Bound (GLB): | 0.64 |
| Coefficient H: | 0.65 |
| Coefficient Alpha: | 0.64 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.735, 0.701 & 0.564
| PC1 | |
|---|---|
| prrp1_6 | 0.784 |
| prrp2_6 | 0.709 |
| prrp3_6 | 0.786 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_6 | 2.81851851851852 | 3 | 0.453930882555418 | 0.673743929512851 | 1 | 0.0410027497973732 | 1 | 2 | 4 | 4 | -0.207023227548719 | 0.0342865497252829 | 0.133333333333333 | 270 | 0 | 270 |
| prrp2_6 | 3.1037037037037 | 3 | 0.383257607049429 | 0.619078029855226 | 0 | 0.0376758890897294 | 1 | 2 | 4 | 4 | -0.353194400105707 | 0.708350738160816 | 0.118518518518519 | 270 | 0 | 270 |
| prrp3_6 | 2.85185185185185 | 3 | 0.498416632245629 | 0.705986283326828 | 1 | 0.0429649569630375 | 1 | 2 | 4 | 4 | -0.293056271970838 | 0.0557020430614203 | 0.122222222222222 | 270 | 0 | 270 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_6 | Posting data | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
93 | 0.7493261 | 1 | 3 | 4 | 2.809353 | 0.6821491 | 4 | <U+2581><U+2581><U+2583><U+2581><U+2581><U+2587><U+2581><U+2582> |
| prrp2_6 | Posting instruments | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
90 | 0.7574124 | 1 | 3 | 4 | 3.099644 | 0.6245283 | 4 | <U+2581><U+2581><U+2582><U+2581><U+2581><U+2587><U+2581><U+2583> |
| prrp3_6 | Preregistration | haven_labelled | 1. It should never be used, 2. It should only be used rarely, 3. It should be used often, 4. It should be used almost always |
90 | 0.7574124 | 1 | 3 | 4 | 2.846975 | 0.6980072 | 4 | <U+2581><U+2581><U+2583><U+2581><U+2581><U+2587><U+2581><U+2582> |
Reliability: .
Missing: 0.
Likert plot of scale prrp1_5 items
Distribution of scale prrp1_5
| Dataframe: | res$dat |
| Items: | prrp1_5_1, prrp1_5_2, prrp1_5_3, prrp1_5_4, prrp1_5_5, prrp1_5_6, prrp1_5_7, prrp1_5_8, prrp1_5_9 & prrp1_5_10 |
| Observations: | 371 |
| Positive correlations: | 20 |
| Number of correlations: | 45 |
| Percentage positive correlations: | 44 |
| Omega (total): | 0.43 |
| Omega (hierarchical): | 0.13 |
| Revelle’s Omega (total): | 0.43 |
| Greatest Lower Bound (GLB): | 0.36 |
| Coefficient H: | 0.51 |
| Coefficient Alpha: | 0.12 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.57, 1.221, 1.106, 1.078, 1.056, 0.911, 0.834, 0.791, 0.76 & 0.673
| TC1 | TC2 | TC4 | TC3 | TC5 | |
|---|---|---|---|---|---|
| prrp1_5_1 | -0.035 | 0.774 | 0.093 | -0.023 | -0.101 |
| prrp1_5_2 | 0.729 | 0.063 | -0.081 | -0.037 | -0.043 |
| prrp1_5_3 | 0.597 | -0.212 | 0.256 | -0.221 | 0.096 |
| prrp1_5_4 | 0.116 | 0.688 | -0.041 | -0.059 | 0.211 |
| prrp1_5_5 | -0.086 | 0.050 | 0.866 | -0.091 | 0.080 |
| prrp1_5_6 | -0.052 | -0.066 | -0.151 | -0.181 | -0.835 |
| prrp1_5_7 | 0.695 | 0.130 | -0.231 | 0.059 | 0.026 |
| prrp1_5_8 | 0.322 | -0.233 | 0.291 | 0.360 | -0.065 |
| prrp1_5_9 | -0.073 | -0.048 | -0.117 | 0.851 | 0.120 |
| prrp1_5_10 | -0.140 | -0.166 | -0.309 | -0.377 | 0.544 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_5_1 | 0.207547169811321 | 0 | 0.164915859255482 | 0.406098336927747 | 0 | 0.0210835751439445 | 0 | NA | 1 | 1 | 1.44811201446372 | 0.0975250153404984 | 0.10377358490566 | 371 | 0 | 371 |
| prrp1_5_2 | 0.134770889487871 | 0 | 0.116922852771909 | 0.341939837942158 | 0 | 0.017752631844056 | 0 | NA | 1 | 1 | 2.1477969592349 | 2.62716546141488 | 0.0673854447439353 | 371 | 0 | 371 |
| prrp1_5_3 | 0.0619946091644205 | 0 | 0.0583084432141036 | 0.241471412829974 | 0 | 0.0125365711074582 | 0 | NA | 1 | 1 | 3.64746616282997 | 11.3652493521709 | 0.0309973045822102 | 371 | 0 | 371 |
| prrp1_5_4 | 0.107816711590297 | 0 | 0.0964522473956436 | 0.310567621293083 | 0 | 0.0161238675103804 | 0 | NA | 1 | 1 | 2.53927915246079 | 4.47201773763107 | 0.0539083557951483 | 371 | 0 | 371 |
| prrp1_5_5 | 0.0350404312668464 | 0 | 0.0339039848473811 | 0.184130347437301 | 0 | 0.00955957132413879 | 0 | NA | 1 | 1 | 5.07770371699247 | 23.9119531836375 | 0.0175202156334232 | 371 | 0 | 371 |
| prrp1_5_6 | 0.0404312668463612 | 0 | 0.0389014351278502 | 0.197234467393126 | 0 | 0.0102399033340506 | 0 | NA | 1 | 1 | 4.68538411874261 | 20.0609420157465 | 0.0202156334231806 | 371 | 0 | 371 |
| prrp1_5_7 | 0.0485175202156334 | 0 | 0.0462883368543746 | 0.215147244589315 | 0 | 0.0111698883886798 | 0 | NA | 1 | 1 | 4.21971046073008 | 15.8915974695732 | 0.0242587601078167 | 371 | 0 | 371 |
| prrp1_5_8 | 0.132075471698113 | 0 | 0.11494135645079 | 0.339030022934239 | 0 | 0.0176015617760558 | 0 | NA | 1 | 1 | 2.18221794037836 | 2.77701665755518 | 0.0660377358490566 | 371 | 0 | 371 |
| prrp1_5_9 | 0.0646900269541779 | 0 | 0.0606687550083777 | 0.2463102819786 | 0 | 0.0127877926762993 | 0 | NA | 1 | 1 | 3.55380516946338 | 10.6871153635888 | 0.032345013477089 | 371 | 0 | 371 |
| prrp1_5_10 | 0.118598382749326 | 0 | 0.104815327456837 | 0.323751953595398 | 0 | 0.0168083639378259 | 0 | NA | 1 | 1 | 2.36890514747336 | 3.63125825908692 | 0.0592991913746631 | 371 | 0 | 371 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp1_5_1 | Posting data - The data were propritary or access was restricted | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.2075472 | 0.4060983 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
| prrp1_5_2 | Posting data - It was too time-consuming | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1347709 | 0.3419398 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_3 | Posting data - I didn’t want to be scooped | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0619946 | 0.2414714 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_4 | Posting data - The data were too difficult to deidentify | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1078167 | 0.3105676 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_5 | Posting data - I didn’t perceive my field to be in favor of this | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0350404 | 0.1841303 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_6 | Posting data - The data were already publicly available | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0404313 | 0.1972345 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_7 | Posting data - I was nervous that someone would discover a mistake | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0485175 | 0.2151472 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_8 | Posting data - I was unfamiliar with the practice | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1320755 | 0.3390300 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_9 | Posting data - I am planning to but haven’t done it yet | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0646900 | 0.2463103 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp1_5_10 | Posting data - Other reason | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1185984 | 0.3237520 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 0.
Likert plot of scale prrp2_5 items
Distribution of scale prrp2_5
| Dataframe: | res$dat |
| Items: | prrp2_5_1, prrp2_5_2, prrp2_5_3, prrp2_5_4, prrp2_5_5, prrp2_5_6, prrp2_5_7, prrp2_5_8 & prrp2_5_9 |
| Observations: | 371 |
| Positive correlations: | 21 |
| Number of correlations: | 36 |
| Percentage positive correlations: | 58 |
| Omega (total): | 0.50 |
| Omega (hierarchical): | 0.18 |
| Revelle’s Omega (total): | 0.50 |
| Greatest Lower Bound (GLB): | 0.46 |
| Coefficient H: | 0.51 |
| Coefficient Alpha: | 0.19 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.621, 1.204, 1.152, 1.059, 0.907, 0.888, 0.811, 0.748 & 0.61
| TC1 | TC2 | TC3 | TC4 | |
|---|---|---|---|---|
| prrp2_5_1 | 0.416 | -0.249 | 0.408 | 0.241 |
| prrp2_5_2 | 0.323 | 0.440 | 0.326 | -0.190 |
| prrp2_5_3 | 0.767 | 0.107 | -0.103 | 0.029 |
| prrp2_5_4 | 0.737 | -0.038 | 0.006 | -0.025 |
| prrp2_5_5 | 0.020 | 0.710 | 0.071 | -0.183 |
| prrp2_5_6 | -0.033 | -0.059 | 0.790 | -0.126 |
| prrp2_5_7 | 0.027 | 0.637 | -0.238 | 0.283 |
| prrp2_5_8 | 0.040 | -0.061 | -0.075 | 0.812 |
| prrp2_5_9 | 0.179 | -0.263 | -0.505 | -0.454 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp2_5_1 | 0.175202156334232 | 0 | 0.144896918481824 | 0.380653278564397 | 0 | 0.019762533535884 | 0 | NA | 1 | 1 | 1.71577802673469 | 0.948980971874117 | 0.0876010781671159 | 371 | 0 | 371 |
| prrp2_5_2 | 0.0970350404312668 | 0 | 0.0878560501202011 | 0.296405212707538 | 0 | 0.0153885918924315 | 0 | NA | 1 | 1 | 2.7337511900661 | 5.50303280639339 | 0.0485175202156334 | 371 | 0 | 371 |
| prrp2_5_3 | 0.0296495956873315 | 0 | 0.0288482552633496 | 0.169847741413743 | 0 | 0.00881805536613915 | 0 | NA | 1 | 1 | 5.5685136000169 | 29.1655435139661 | 0.0148247978436658 | 371 | 0 | 371 |
| prrp2_5_4 | 0.0215633423180593 | 0 | 0.021155387193123 | 0.1454489160947 | 0 | 0.0075513314713069 | 0 | NA | 1 | 1 | 6.61441588172319 | 41.9767614324095 | 0.0107816711590297 | 371 | 0 | 371 |
| prrp2_5_5 | 0.0431266846361186 | 0 | 0.0413783055292489 | 0.203416581254452 | 0 | 0.0105608626936229 | 0 | NA | 1 | 1 | 4.51634365953029 | 18.4970469023046 | 0.0215633423180593 | 371 | 0 | 371 |
| prrp2_5_6 | 0.207547169811321 | 0 | 0.164915859255482 | 0.406098336927747 | 0 | 0.0210835751439445 | 0 | NA | 1 | 1 | 1.44811201446372 | 0.0975250153404984 | 0.10377358490566 | 371 | 0 | 371 |
| prrp2_5_7 | 0.113207547169811 | 0 | 0.100662927078021 | 0.317274214328901 | 0 | 0.0164720564719513 | 0 | NA | 1 | 1 | 2.45143709337658 | 4.03124678795354 | 0.0566037735849057 | 371 | 0 | 371 |
| prrp2_5_8 | 0.0377358490566038 | 0 | 0.0364099949005609 | 0.190814032242288 | 0 | 0.00990657094962473 | 0 | NA | 1 | 1 | 4.87144097564409 | 21.8486924639067 | 0.0188679245283019 | 371 | 0 | 371 |
| prrp2_5_9 | 0.0889487870619946 | 0 | 0.0812559189917681 | 0.285054238684093 | 0 | 0.0147992786842298 | 0 | NA | 1 | 1 | 2.89965260435462 | 6.44268806394592 | 0.0444743935309973 | 371 | 0 | 371 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp2_5_1 | Posting instruments - The materials were proprietary or access was restricted | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1752022 | 0.3806533 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
| prrp2_5_2 | Posting instruments - It was too time-consuming | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0970350 | 0.2964052 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp2_5_3 | Posting instruments - I didn’t want to be scooped | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0296496 | 0.1698477 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp2_5_4 | Posting instruments - Materials were too difficult to deidentify | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0215633 | 0.1454489 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp2_5_5 | Posting instruments - I didn’t perceive my field to be in favor of this | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0431267 | 0.2034166 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp2_5_6 | Posting instruments - The materials were already publicly available | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.2075472 | 0.4060983 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
| prrp2_5_7 | Posting instruments - I was unfamiliar with the practice | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1132075 | 0.3172742 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp2_5_8 | Posting instruments - I am planning to but haven’t done it yet | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0377358 | 0.1908140 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp2_5_9 | Posting instruments - Other reason | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0889488 | 0.2850542 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 0.
Likert plot of scale prrp3_5 items
Distribution of scale prrp3_5
| Dataframe: | res$dat |
| Items: | prrp3_5_1, prrp3_5_2, prrp3_5_3, prrp3_5_4, prrp3_5_5 & prrp3_5_6 |
| Observations: | 371 |
| Positive correlations: | 4 |
| Number of correlations: | 15 |
| Percentage positive correlations: | 27 |
| Omega (total): | 0.61 |
| Omega (hierarchical): | 0.29 |
| Revelle’s Omega (total): | 0.61 |
| Greatest Lower Bound (GLB): | 0.31 |
| Coefficient H: | 0.63 |
| Coefficient Alpha: | -0.23 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
1.412, 1.17, 1.093, 0.925, 0.748 & 0.652
| TC1 | TC2 | TC3 | |
|---|---|---|---|
| prrp3_5_1 | 0.544 | 0.033 | 0.344 |
| prrp3_5_2 | 0.772 | -0.031 | 0.139 |
| prrp3_5_3 | 0.662 | 0.033 | -0.202 |
| prrp3_5_4 | -0.068 | -0.003 | -0.865 |
| prrp3_5_5 | -0.184 | 0.767 | 0.304 |
| prrp3_5_6 | -0.189 | -0.766 | 0.296 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp3_5_1 | 0.134770889487871 | 0 | 0.116922852771909 | 0.341939837942158 | 0 | 0.017752631844056 | 0 | NA | 1 | 1 | 2.1477969592349 | 2.62716546141488 | 0.0673854447439353 | 371 | 0 | 371 |
| prrp3_5_2 | 0.0566037735849057 | 0 | 0.0535441101478837 | 0.231396002877932 | 0 | 0.0120134818861701 | 0 | NA | 1 | 1 | 3.85313015307142 | 12.9162130316955 | 0.0283018867924528 | 371 | 0 | 371 |
| prrp3_5_3 | 0.0835579514824798 | 0 | 0.0767829824433598 | 0.27709742410091 | 0 | 0.0143861814540365 | 0 | NA | 1 | 1 | 3.02203593808503 | 7.17133210654357 | 0.0417789757412399 | 371 | 0 | 371 |
| prrp3_5_4 | 0.0296495956873315 | 0 | 0.0288482552633496 | 0.169847741413743 | 0 | 0.00881805536613915 | 0 | NA | 1 | 1 | 5.5685136000169 | 29.1655435139661 | 0.0148247978436658 | 371 | 0 | 371 |
| prrp3_5_5 | 0.280323450134771 | 0 | 0.202287462664821 | 0.44976378540832 | 1 | 0.0233505722737505 | 0 | NA | 1 | 1 | 0.982147588746264 | -1.04102734300332 | 0.140161725067385 | 371 | 0 | 371 |
| prrp3_5_6 | 0.175202156334232 | 0 | 0.144896918481824 | 0.380653278564397 | 0 | 0.019762533535884 | 0 | NA | 1 | 1 | 1.71577802673469 | 0.948980971874117 | 0.0876010781671159 | 371 | 0 | 371 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| prrp3_5_1 | Preregistration - It was too time-consuming | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1347709 | 0.3419398 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp3_5_2 | Preregistration - I didn’t want to be scooped | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0566038 | 0.2313960 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp3_5_3 | Preregistration - I didn’t perceive my field to be in favor of this | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0835580 | 0.2770974 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp3_5_4 | Preregistration - The materials were already publicly available | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0296496 | 0.1698477 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| prrp3_5_5 | Preregistration - I was unfamiliar with the practice | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.2803235 | 0.4497638 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583> |
| prrp3_5_6 | Preregistration - Other reason | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1752022 | 0.3806533 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
If answered “No” above. Why not? - Text - Posting data
Distribution of values for prrp1_5_o
328 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| prrp1_5_o | If answered “No” above. Why not? - Text - Posting data | character | 328 | 0.115903 | 43 | 0 | 3 | 265 | 0 |
If answered “No” above. Why not? - Text - Posting instruments
Distribution of values for prrp2_5_o
340 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| prrp2_5_o | If answered “No” above. Why not? - Text - Posting instruments | character | 340 | 0.083558 | 31 | 0 | 3 | 138 | 0 |
If answered “No” above. Why not? - Text - Preregistration
Distribution of values for prrp3_5_o
307 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| prrp3_5_o | If answered “No” above. Why not? - Text - Preregistration | character | 307 | 0.1725067 | 64 | 0 | 5 | 600 | 0 |
Reliability: .
Missing: 105.
Likert plot of scale participate items
Distribution of scale participate
| Dataframe: | res$dat |
| Items: | participate_1, participate_2, participate_3 & participate_4 |
| Observations: | 266 |
| Positive correlations: | 6 |
| Number of correlations: | 6 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.88 |
| Omega (hierarchical): | 0.83 |
| Revelle’s Omega (total): | 0.88 |
| Greatest Lower Bound (GLB): | 0.88 |
| Coefficient H: | 0.88 |
| Coefficient Alpha: | 0.84 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.772, 0.623, 0.342 & 0.263
| PC1 | |
|---|---|
| participate_1 | 0.772 |
| participate_2 | 0.881 |
| participate_3 | 0.769 |
| participate_4 | 0.899 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| participate_1 | 3.19548872180451 | 3 | 3.44088523194779 | 1.854962326288 | 4 | 0.113735037550972 | 1 | 1 | 5 | 7 | 0.347442763159845 | -1.07276670868598 | 0.0864661654135338 | 266 | 0 | 266 |
| participate_2 | 3.6203007518797 | 4 | 2.7571712299617 | 1.66047319459294 | 3 | 0.101810143776521 | 1 | 2 | 5 | 7 | 0.0812584044844383 | -0.942264699674576 | 0.0977443609022556 | 266 | 0 | 266 |
| participate_3 | 2.62406015037594 | 2 | 3.02040005674564 | 1.73792981928087 | 3 | 0.10655931414651 | 1 | 1 | 4 | 7 | 0.748119486530506 | -0.636425559676063 | 0.0845864661654135 | 266 | 0 | 266 |
| participate_4 | 3.21804511278195 | 3 | 2.35982408852319 | 1.53617189419778 | 2 | 0.0941887420543795 | 1 | 2 | 5 | 7 | 0.327425805096657 | -0.750513835678495 | 0.112781954887218 | 266 | 0 | 266 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| participate_1 | In your department | haven_labelled | 1. Not at all, 7. Extremely |
105 | 0.7169811 | 1 | 3 | 7 | 3.195489 | 1.854962 | 2 | <U+2587><U+2585><U+2583><U+2585><U+2581><U+2585><U+2582><U+2582> |
| participate_2 | At conference or other professional gatherings outside of your department | haven_labelled | 1. Not at all, 7. Extremely |
105 | 0.7169811 | 1 | 4 | 7 | 3.620301 | 1.660473 | 2 | <U+2585><U+2587><U+2587><U+2587><U+2581><U+2587><U+2585><U+2582> |
| participate_3 | Online | haven_labelled | 1. Not at all, 7. Extremely |
105 | 0.7169811 | 1 | 2 | 7 | 2.624060 | 1.737930 | 2 | <U+2587><U+2583><U+2582><U+2582><U+2581><U+2582><U+2581><U+2581> |
| participate_4 | In general | haven_labelled | 1. Not at all, 7. Extremely |
105 | 0.7169811 | 1 | 3 | 7 | 3.218045 | 1.536172 | 2 | <U+2585><U+2587><U+2587><U+2586><U+2581><U+2585><U+2583><U+2581> |
Reliability: .
Missing: 107.
Likert plot of scale comfort items
Distribution of scale comfort
| Dataframe: | res$dat |
| Items: | comfort_1, comfort_2, comfort_3 & comfort_4 |
| Observations: | 264 |
| Positive correlations: | 6 |
| Number of correlations: | 6 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.93 |
| Omega (hierarchical): | 0.87 |
| Revelle’s Omega (total): | 0.93 |
| Greatest Lower Bound (GLB): | 0.94 |
| Coefficient H: | 0.95 |
| Coefficient Alpha: | 0.89 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.086, 0.544, 0.229 & 0.14
| PC1 | |
|---|---|
| comfort_1 | 0.850 |
| comfort_2 | 0.920 |
| comfort_3 | 0.787 |
| comfort_4 | 0.948 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| comfort_1 | 5.03030303030303 | 5 | 2.99527595345086 | 1.73068655551803 | 2 | 0.1065163942683 | 1 | 3 | 7 | 7 | -0.681152422451347 | -0.48702842675317 | 0.115530303030303 | 264 | 0 | 264 |
| comfort_2 | 4.84848484848485 | 5 | 2.72980758151861 | 1.6522129346784 | 2 | 0.101686676772452 | 1 | 3 | 6 | 7 | -0.530703639948529 | -0.525516358744471 | 0.111742424242424 | 264 | 0 | 264 |
| comfort_3 | 4.20075757575758 | 4 | 3.82646330222376 | 1.95613478631299 | 3 | 0.120391773701902 | 1 | 2 | 6 | 7 | -0.176713869456117 | -1.20281661867317 | 0.0732323232323232 | 264 | 0 | 264 |
| comfort_4 | 4.70833333333333 | 5 | 2.66365652724968 | 1.63207123841139 | 2 | 0.100447041060272 | 1 | 3 | 6 | 7 | -0.457820025500902 | -0.608168783793895 | 0.109848484848485 | 264 | 0 | 264 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| comfort_1 | With other psychology researchers in your department | haven_labelled | 1. Not at all, 7. Extremely |
105 | 0.7169811 | 1 | 5 | 7 | 5.037594 | 1.726185 | 2 | <U+2581><U+2582><U+2583><U+2583><U+2581><U+2587><U+2587><U+2587> |
| comfort_2 | With other psychology researchers at conferences or other professional gatherings outside of your department | haven_labelled | 1. Not at all, 7. Extremely |
105 | 0.7169811 | 1 | 5 | 7 | 4.853383 | 1.647505 | 2 | <U+2581><U+2582><U+2585><U+2585><U+2581><U+2587><U+2587><U+2586> |
| comfort_3 | With other psychology researchers online | haven_labelled | 1. Not at all, 7. Extremely |
106 | 0.7142857 | 1 | 4 | 7 | 4.200000 | 1.952465 | 2 | <U+2585><U+2585><U+2586><U+2586><U+2581><U+2585><U+2587><U+2585> |
| comfort_4 | With other psychology researchers in general | haven_labelled | 1. Not at all, 7. Extremely |
106 | 0.7142857 | 1 | 5 | 7 | 4.713208 | 1.630909 | 2 | <U+2581><U+2582><U+2585><U+2586><U+2581><U+2587><U+2587><U+2585> |
Reliability: .
Missing: 169.
Likert plot of scale positive items
Distribution of scale positive
| Dataframe: | res$dat |
| Items: | experience_1, experience_2, experience_3, experience_4, experience_5, experience_8, experience_12, experience_13, experience_14, experience_15, experience_17 & experience_18 |
| Observations: | 202 |
| Positive correlations: | 58 |
| Number of correlations: | 66 |
| Percentage positive correlations: | 88 |
| Omega (total): | 0.92 |
| Omega (hierarchical): | 0.85 |
| Revelle’s Omega (total): | 0.92 |
| Greatest Lower Bound (GLB): | 0.92 |
| Coefficient H: | 0.93 |
| Coefficient Alpha: | 0.88 |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 11 and the highest range is 11. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
6.124, 1.188, 0.824, 0.702, 0.69, 0.524, 0.418, 0.4, 0.361, 0.316, 0.238 & 0.214
| TC1 | TC2 | |
|---|---|---|
| experience_1 | 0.813 | -0.070 |
| experience_2 | 0.841 | -0.049 |
| experience_3 | 0.781 | -0.041 |
| experience_4 | 0.750 | 0.248 |
| experience_5 | 0.004 | 0.867 |
| experience_8 | 0.498 | 0.081 |
| experience_12 | 0.784 | -0.230 |
| experience_13 | 0.803 | 0.249 |
| experience_14 | 0.778 | -0.163 |
| experience_15 | 0.614 | 0.206 |
| experience_17 | 0.668 | -0.404 |
| experience_18 | 0.794 | 0.163 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| experience_1 | 5.2970297029703 | 5 | 5.19491650657603 | 2.27923594798258 | 3 | 0.160366481686156 | 0 | 3 | 7 | 10 | 0.00519892473665971 | -0.462694819844098 | 0.0693069306930693 | 202 | 0 | 202 |
| experience_2 | 5.12871287128713 | 5 | 4.63011674301759 | 2.1517706065047 | 2 | 0.151398051555951 | 0 | 3 | 7 | 10 | -0.247029645366685 | 0.0796759268004615 | 0.0965346534653465 | 202 | 0 | 202 |
| experience_3 | 5.47029702970297 | 5 | 4.74786956307571 | 2.17896066120426 | 3 | 0.153311137128721 | 0 | 3 | 7 | 10 | 0.0172640163242719 | -0.367607196381161 | 0.0816831683168317 | 202 | 0 | 202 |
| experience_4 | 5.07920792079208 | 5 | 6.72006305108123 | 2.59230844057593 | 3 | 0.182394185397284 | 0 | 2 | 7 | 10 | -0.138185079780887 | -0.473587719563758 | 0.0767326732673267 | 202 | 0 | 202 |
| experience_5 | 4.93069306930693 | 5 | 8.1941776267179 | 2.86254740165432 | 4 | 0.201408132347806 | 0 | 2 | 7 | 10 | -0.297231141797095 | -0.91875742184187 | 0.0668316831683168 | 202 | 0 | 202 |
| experience_8 | 5.36138613861386 | 6 | 5.56526772080193 | 2.35908196568113 | 3 | 0.165984427887075 | 0 | 3 | 7 | 10 | -0.162008621445725 | -0.451448332004855 | 0.0792079207920792 | 202 | 0 | 202 |
| experience_12 | 5.03960396039604 | 5 | 4.58548839958623 | 2.14137535233462 | 3 | 0.15066664402486 | 0 | 3 | 7 | 10 | 0.0125276015260756 | -0.146898603219973 | 0.0792079207920792 | 202 | 0 | 202 |
| experience_13 | 5.53465346534653 | 6 | 5.08585783951529 | 2.25518465752038 | 3 | 0.158674238794476 | 0 | 4 | 8 | 10 | -0.22980080909168 | -0.27012306619847 | 0.0816831683168317 | 202 | 0 | 202 |
| experience_14 | 4.81188118811881 | 5 | 4.2828432096941 | 2.06950313111483 | 3 | 0.145609732186405 | 0 | 3 | 7 | 10 | 0.295466331263207 | -0.175594503186639 | 0.0891089108910891 | 202 | 0 | 202 |
| experience_15 | 3.65346534653465 | 3 | 5.73006255849466 | 2.39375490777453 | 3 | 0.168424007579625 | 0 | 1 | 5 | 10 | 0.339145224331557 | -0.548920871484198 | 0.0829207920792079 | 202 | 0 | 202 |
| experience_17 | 5.54455445544554 | 6 | 4.44825378060194 | 2.10908837666939 | 3 | 0.148394940344378 | 1 | 4 | 7 | 10 | 0.0239541171745921 | -0.355290688181978 | 0.0841584158415842 | 202 | 0 | 202 |
| experience_18 | 5.44059405940594 | 6 | 4.91436382444215 | 2.21683644512674 | 3 | 0.15597606798598 | 0 | 4 | 8 | 10 | -0.18999117175152 | -0.425621422397793 | 0.0841584158415842 | 202 | 0 | 202 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| experience_1 | Collaborative | haven_labelled | 0. Not at all, 10. Extremely |
151 | 0.5929919 | 0 | 5 | 10 | 5.313636 | 2.290898 | 2 | <U+2581><U+2582><U+2582><U+2587><U+2583><U+2583><U+2582><U+2582> |
| experience_2 | Supportive | haven_labelled | 0. Not at all, 10. Extremely |
154 | 0.5849057 | 0 | 5 | 10 | 5.092166 | 2.217519 | 2 | <U+2582><U+2581><U+2582><U+2587><U+2585><U+2583><U+2582><U+2582> |
| experience_3 | Open | haven_labelled | 0. Not at all, 10. Extremely |
150 | 0.5956873 | 0 | 5 | 10 | 5.502262 | 2.185956 | 2 | <U+2581><U+2581><U+2582><U+2587><U+2583><U+2583><U+2582><U+2582> |
| experience_4 | Exciting | haven_labelled | 0. Not at all, 10. Extremely |
153 | 0.5876011 | 0 | 5 | 10 | 5.105505 | 2.601465 | 2 | <U+2582><U+2582><U+2582><U+2587><U+2583><U+2583><U+2582><U+2583> |
| experience_5 | Competitive | haven_labelled | 0. Not at all, 10. Extremely |
158 | 0.5741240 | 0 | 5 | 10 | 5.009390 | 2.908982 | 2 | <U+2587><U+2582><U+2583><U+2587><U+2585><U+2587><U+2582><U+2585> |
| experience_8 | Easy to follow | haven_labelled | 0. Not at all, 10. Extremely |
153 | 0.5876011 | 0 | 6 | 10 | 5.357798 | 2.330020 | 2 | <U+2582><U+2583><U+2585><U+2587><U+2586><U+2586><U+2583><U+2582> |
| experience_12 | Friendly | haven_labelled | 0. Not at all, 10. Extremely |
152 | 0.5902965 | 0 | 5 | 10 | 5.105023 | 2.167932 | 2 | <U+2581><U+2581><U+2583><U+2587><U+2583><U+2583><U+2582><U+2582> |
| experience_13 | Helpful | haven_labelled | 0. Not at all, 10. Extremely |
152 | 0.5902965 | 0 | 6 | 10 | 5.511416 | 2.232703 | 2 | <U+2581><U+2582><U+2582><U+2587><U+2586><U+2585><U+2583><U+2582> |
| experience_14 | Comfortable | haven_labelled | 0. Not at all, 10. Extremely |
151 | 0.5929919 | 0 | 5 | 10 | 4.827273 | 2.121252 | 2 | <U+2581><U+2582><U+2583><U+2587><U+2583><U+2583><U+2581><U+2581> |
| experience_15 | Diverse | haven_labelled | 0. Not at all, 10. Extremely |
157 | 0.5768194 | 0 | 3 | 10 | 3.672897 | 2.440948 | 2 | <U+2587><U+2583><U+2585><U+2587><U+2582><U+2582><U+2581><U+2581> |
| experience_17 | Respectful | haven_labelled | 0. Not at all, 10. Extremely |
150 | 0.5956873 | 1 | 6 | 10 | 5.502262 | 2.092464 | 2 | <U+2583><U+2583><U+2583><U+2586><U+2587><U+2586><U+2582><U+2583> |
| experience_18 | Productive | haven_labelled | 0. Not at all, 10. Extremely |
153 | 0.5876011 | 0 | 6 | 10 | 5.454128 | 2.214366 | 2 | <U+2582><U+2582><U+2583><U+2587><U+2586><U+2585><U+2583><U+2582> |
Reliability: .
Missing: 173.
Likert plot of scale negative items
Distribution of scale negative
| Dataframe: | res$dat |
| Items: | experience_6, experience_7, experience_9, experience_10, experience_11 & experience_16 |
| Observations: | 198 |
| Positive correlations: | 15 |
| Number of correlations: | 15 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.91 |
| Omega (hierarchical): | 0.75 |
| Revelle’s Omega (total): | 0.91 |
| Greatest Lower Bound (GLB): | 0.86 |
| Coefficient H: | 0.91 |
| Coefficient Alpha: | 0.82 |
(Estimates assuming ordinal level not computed, as at least one item seems to have more than 8 levels; the highest number of distinct levels is 11 and the highest range is 11. This last number needs to be lower than 9 for the polychoric function to work. If this is unexpected, you may want to check for outliers.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.252, 0.983, 0.688, 0.528, 0.356 & 0.192
| PC1 | |
|---|---|
| experience_6 | 0.827 |
| experience_7 | 0.870 |
| experience_9 | 0.466 |
| experience_10 | 0.667 |
| experience_11 | 0.794 |
| experience_16 | 0.720 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| experience_6 | 3.65151515151515 | 3 | 7.09113982464236 | 2.66291941760211 | 3 | 0.189245442476678 | 0 | 1 | 5 | 10 | 0.282378729084326 | -0.825604003439775 | 0.0833333333333333 | 198 | 0 | 198 |
| experience_7 | 3.84343434343434 | 4 | 8.21394144490591 | 2.86599746072915 | 5 | 0.203677570566938 | 0 | 1 | 6 | 10 | 0.256994179467568 | -0.991125445055775 | 0.071969696969697 | 198 | 0 | 198 |
| experience_9 | 3.65151515151515 | 3 | 6.13682510383018 | 2.47726161392578 | 4 | 0.176051316896411 | 0 | 1 | 6 | 10 | 0.367425585666395 | -0.610690002866982 | 0.0732323232323232 | 198 | 0 | 198 |
| experience_10 | 5.38888888888889 | 6 | 7.99520586576424 | 2.82757950653279 | 4 | 0.200947325448412 | 0 | 3 | 8 | 10 | -0.331217822922146 | -0.63195577911501 | 0.0757575757575758 | 198 | 0 | 198 |
| experience_11 | 5.2979797979798 | 6 | 8.42344767471671 | 2.90231763849457 | 5 | 0.206258733206189 | 0 | 3 | 8 | 10 | -0.372869193717614 | -0.834944995422701 | 0.0656565656565657 | 198 | 0 | 198 |
| experience_16 | 4.71717171717172 | 5 | 6.57950058965287 | 2.56505372061734 | 4 | 0.18229043024208 | 0 | 2 | 7 | 10 | -0.0406384777760869 | -0.528260998578667 | 0.0782828282828283 | 198 | 0 | 198 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| experience_6 | Hostile | haven_labelled | 0. Not at all, 10. Extremely |
156 | 0.5795148 | 0 | 3 | 10 | 3.553488 | 2.636139 | 2 | <U+2587><U+2585><U+2585><U+2587><U+2582><U+2582><U+2582><U+2581> |
| experience_7 | Aggressive | haven_labelled | 0. Not at all, 10. Extremely |
157 | 0.5768194 | 0 | 3 | 10 | 3.733645 | 2.824954 | 2 | <U+2587><U+2583><U+2583><U+2586><U+2583><U+2582><U+2582><U+2581> |
| experience_9 | Difficult to follow | haven_labelled | 0. Not at all, 10. Extremely |
158 | 0.5741240 | 0 | 3 | 10 | 3.666667 | 2.468035 | 2 | <U+2587><U+2585><U+2586><U+2587><U+2585><U+2582><U+2582><U+2581> |
| experience_10 | Status-oriented | haven_labelled | 0. Not at all, 10. Extremely |
164 | 0.5579515 | 0 | 6 | 10 | 5.415459 | 2.842355 | 2 | <U+2585><U+2582><U+2583><U+2587><U+2586><U+2585><U+2585><U+2585> |
| experience_11 | Cliquey | haven_labelled | 0. Not at all, 10. Extremely |
161 | 0.5660377 | 0 | 6 | 10 | 5.233333 | 2.894944 | 2 | <U+2586><U+2582><U+2583><U+2587><U+2585><U+2586><U+2585><U+2585> |
| experience_16 | Stressful | haven_labelled | 0. Not at all, 10. Extremely |
157 | 0.5768194 | 0 | 5 | 10 | 4.616822 | 2.558773 | 2 | <U+2583><U+2583><U+2583><U+2587><U+2585><U+2585><U+2581><U+2582> |
Reliability: .
Missing: 115.
Likert plot of scale entity items
Distribution of scale entity
| Dataframe: | res$dat |
| Items: | entity_1 & entity_2 |
| Observations: | 256 |
| Positive correlations: | 1 |
| Number of correlations: | 1 |
| Percentage positive correlations: | 100 |
| Spearman Brown coefficient: | 0.27 |
| Coefficient Alpha: | 0.27 |
| Pearson Correlation: | 0.16 |
1.157 & 0.843
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| entity_1 | 4.9296875 | 5 | 2.53621323529412 | 1.59254928818361 | 2 | 0.0995343305114755 | 1 | 3.5 | 6 | 7 | -0.565109033169177 | -0.30273311971762 | 0.099609375 | 256 | 0 | 256 |
| entity_2 | 3.32421875 | 3 | 2.13368566176471 | 1.46071409309444 | 2 | 0.0912946308184024 | 1 | 2 | 4 | 7 | 0.450272711171177 | -0.0578615779584348 | 0.1171875 | 256 | 0 | 256 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| entity_1 | Within an entitative group? | haven_labelled | 1. Not at all, 7. Extremely |
114 | 0.6927224 | 1 | 5 | 7 | 4.937743 | 1.594674 | 2 | <U+2581><U+2582><U+2582><U+2586><U+2581><U+2587><U+2586><U+2586> |
| entity_2 | Between entitative groups? | haven_labelled | 1. Not at all, 7. Extremely |
115 | 0.6900270 | 1 | 3 | 7 | 3.324219 | 1.460714 | 2 | <U+2583><U+2586><U+2587><U+2587><U+2581><U+2583><U+2581><U+2581> |
Reliability: .
Missing: 99.
Likert plot of scale repConf items
Distribution of scale repConf
| Dataframe: | res$dat |
| Items: | rep_1_1, rep_1_2, rep_1_3 & rep_1_4 |
| Observations: | 272 |
| Positive correlations: | 6 |
| Number of correlations: | 6 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.88 |
| Omega (hierarchical): | 0.69 |
| Revelle’s Omega (total): | 0.88 |
| Greatest Lower Bound (GLB): | 0.88 |
| Coefficient H: | 0.87 |
| Coefficient Alpha: | 0.81 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.568, 0.831, 0.332 & 0.269
| PC1 | |
|---|---|
| rep_1_1 | 0.864 |
| rep_1_2 | 0.742 |
| rep_1_3 | 0.831 |
| rep_1_4 | 0.762 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| rep_1_1 | 3.55882352941176 | 4 | 0.705014108964619 | 0.839651182911463 | 1 | 0.050911331114982 | 1 | 3 | 5 | 5 | -0.56373919298193 | -0.0569978761336583 | 0.130514705882353 | 272 | 0 | 272 |
| rep_1_2 | 3.49632352941176 | 4 | 0.737993813761667 | 0.859065663242145 | 1 | 0.0520885068954214 | 1 | 3 | 5 | 5 | -0.445884675463495 | -0.138973765821954 | 0.152573529411765 | 272 | 0 | 272 |
| rep_1_3 | 3.55147058823529 | 4 | 0.661547644888214 | 0.81335579231245 | 1 | 0.0493169388663555 | 1 | 3 | 5 | 5 | -0.457491402332683 | 0.0334593430608312 | 0.15625 | 272 | 0 | 272 |
| rep_1_4 | 3.49264705882353 | 4 | 0.693672672020838 | 0.832870141150971 | 1 | 0.0505001700645374 | 1 | 3 | 5 | 5 | -0.478413456548778 | -0.00121511859451121 | 0.159926470588235 | 272 | 0 | 272 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| rep_1_1 | Influential research findings | haven_labelled | 1. Very low confidence, 2. Low confidence, 3. Neither high nor low confidence, 4. Moderate confidence, 5. High confidence |
98 | 0.7358491 | 1 | 4 | 5 | 3.560440 | 0.8385315 | 5 | <U+2581><U+2582><U+2581><U+2583><U+2581><U+2587><U+2581><U+2581> |
| rep_1_2 | Canonical research findings | haven_labelled | 1. Very low confidence, 2. Low confidence, 3. Neither high nor low confidence, 4. Moderate confidence, 5. High confidence |
99 | 0.7331536 | 1 | 4 | 5 | 3.496323 | 0.8590657 | 5 | <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2582> |
| rep_1_3 | Recent research findings | haven_labelled | 1. Very low confidence, 2. Low confidence, 3. Neither high nor low confidence, 4. Moderate confidence, 5. High confidence |
98 | 0.7358491 | 1 | 4 | 5 | 3.553114 | 0.8123130 | 5 | <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2582> |
| rep_1_4 | Latest issues of your field’s top journal | haven_labelled | 1. Very low confidence, 2. Low confidence, 3. Neither high nor low confidence, 4. Moderate confidence, 5. High confidence |
98 | 0.7358491 | 1 | 4 | 5 | 3.494505 | 0.8319046 | 5 | <U+2581><U+2582><U+2581><U+2585><U+2581><U+2587><U+2581><U+2581> |
Reliability: .
Missing: 108.
Likert plot of scale integrity items
Distribution of scale integrity
| Dataframe: | res$dat |
| Items: | int_1_1, int_1_2, int_1_3, int_1_4, int_1_5, int_2_1, int_2_2, int_2_3, int_2_4 & int_2_5 |
| Observations: | 263 |
| Positive correlations: | 45 |
| Number of correlations: | 45 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.92 |
| Omega (hierarchical): | 0.70 |
| Revelle’s Omega (total): | 0.92 |
| Greatest Lower Bound (GLB): | 0.95 |
| Coefficient H: | 0.90 |
| Coefficient Alpha: | 0.89 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
5.138, 1.328, 0.807, 0.724, 0.514, 0.476, 0.33, 0.249, 0.245 & 0.188
| TC1 | TC2 | |
|---|---|---|
| int_1_1 | 0.783 | 0.052 |
| int_1_2 | 0.869 | 0.029 |
| int_1_3 | 0.646 | 0.141 |
| int_1_4 | 0.865 | -0.010 |
| int_1_5 | 0.755 | -0.044 |
| int_2_1 | 0.270 | 0.540 |
| int_2_2 | 0.148 | 0.758 |
| int_2_3 | 0.133 | 0.762 |
| int_2_4 | 0.114 | 0.783 |
| int_2_5 | -0.260 | 0.859 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| int_1_1 | 1.79087452471483 | 2 | 0.372130148317998 | 0.610024711235535 | 1 | 0.0376157351347309 | 1 | 1 | 3 | 3 | 0.145252021672122 | -0.494228434941472 | 0.155893536121673 | 263 | 0 | 263 |
| int_1_2 | 1.61977186311787 | 2 | 0.389225901953386 | 0.62387971753647 | 1 | 0.038470071422601 | 1 | 1 | 3 | 3 | 0.487523901306244 | -0.640981000515971 | 0.228136882129278 | 263 | 0 | 263 |
| int_1_3 | 1.66159695817491 | 2 | 0.407947058311323 | 0.63870733384808 | 1 | 0.0393843814129738 | 1 | 1 | 3 | 3 | 0.43838954422186 | -0.680698517561674 | 0.214828897338403 | 263 | 0 | 263 |
| int_1_4 | 1.63498098859316 | 2 | 0.362435782079935 | 0.602026396497641 | 1 | 0.0371225379196616 | 1 | 1 | 3 | 3 | 0.366201292599991 | -0.663694285579543 | 0.214828897338403 | 263 | 0 | 263 |
| int_1_5 | 1.45247148288973 | 1 | 0.263953792122602 | 0.513764335199128 | 1 | 0.0316800660671265 | 1 | NA | 2 | 3 | 0.361996525802919 | -1.46939222327506 | 0.218631178707224 | 263 | 0 | 263 |
| int_2_1 | 1.4638783269962 | 1 | 0.310713145444519 | 0.557416491902167 | 1 | 0.0343717733608779 | 1 | NA | 2 | 3 | 0.676380154135319 | -0.599504504126857 | 0.201520912547529 | 263 | 0 | 263 |
| int_2_2 | 1.3041825095057 | 1 | 0.242997707021159 | 0.492947975978357 | 1 | 0.0303964743691246 | 1 | NA | 2 | 3 | 1.23615510110959 | 0.375297772287927 | 0.136882129277567 | 263 | 0 | 263 |
| int_2_3 | 1.29277566539924 | 1 | 0.246016312077323 | 0.496000314593976 | 1 | 0.0305846896312146 | 1 | NA | 2 | 3 | 1.3800790528495 | 0.877996965927718 | 0.127376425855513 | 263 | 0 | 263 |
| int_2_4 | 1.28136882129278 | 1 | 0.241140103909674 | 0.49106018359227 | 1 | 0.0302800681038102 | 1 | NA | 2 | 3 | 1.45547228315005 | 1.12291817499834 | 0.121673003802281 | 263 | 0 | 263 |
| int_2_5 | 1.08365019011407 | 1 | 0.0769454038835515 | 0.277390345692765 | 0 | 0.0171046214691485 | 1 | NA | 2 | 2 | 3.02490866318568 | 7.20480535346754 | 0.0418250950570342 | 263 | 0 | 263 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| int_1_1 | Mild issues/questionable research practices - In research from other institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 2 | 3 | 1.791045 | 0.6067612 | 3 | <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582> |
| int_1_2 | Mild issues/questionable research practices - In research at your institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 2 | 3 | 1.611940 | 0.6230341 | 3 | <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581> |
| int_1_3 | Mild issues/questionable research practices - In graduate student research at your institution? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
106 | 0.7142857 | 1 | 2 | 3 | 1.656604 | 0.6388642 | 3 | <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582> |
| int_1_4 | Mild issues/questionable research practices - Of senior colleagues and/or collaborators? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 2 | 3 | 1.634328 | 0.6063465 | 3 | <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581> |
| int_1_5 | Mild issues/questionable research practices - In your own research? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.451493 | 0.5133769 | 3 | <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581> |
| int_2_1 | Serious issues/scientific misconducts - In research from other institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.466418 | 0.5565334 | 3 | <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581> |
| int_2_2 | Serious issues/scientific misconducts - In research at your institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.302239 | 0.4915719 | 3 | <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581> |
| int_2_3 | Serious issues/scientific misconducts - In graduate student research at your institution? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
107 | 0.7115903 | 1 | 1 | 3 | 1.291667 | 0.4953843 | 3 | <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581> |
| int_2_4 | Serious issues/scientific misconducts - Of senior colleagues and/or collaborators? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.283582 | 0.4913017 | 3 | <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581> |
| int_2_5 | Serious issues/scientific misconducts - In your own research? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
104 | 0.7196765 | 1 | 1 | 2 | 1.082397 | 0.2754850 | 3 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 106.
Likert plot of scale intMild items
Distribution of scale intMild
| Dataframe: | res$dat |
| Items: | int_1_1, int_1_2, int_1_3, int_1_4 & int_1_5 |
| Observations: | 265 |
| Positive correlations: | 10 |
| Number of correlations: | 10 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.89 |
| Omega (hierarchical): | 0.82 |
| Revelle’s Omega (total): | 0.89 |
| Greatest Lower Bound (GLB): | 0.89 |
| Coefficient H: | 0.89 |
| Coefficient Alpha: | 0.87 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.272, 0.611, 0.529, 0.323 & 0.264
| PC1 | |
|---|---|
| int_1_1 | 0.798 |
| int_1_2 | 0.889 |
| int_1_3 | 0.739 |
| int_1_4 | 0.862 |
| int_1_5 | 0.746 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| int_1_1 | 1.78867924528302 | 2 | 0.371841052029731 | 0.609787710625371 | 1 | 0.037458961294252 | 1 | 1 | 3 | 3 | 0.14702106443572 | -0.496637596020182 | 0.156603773584906 | 265 | 0 | 265 |
| int_1_2 | 1.61509433962264 | 2 | 0.389165237278445 | 0.623831096754919 | 1 | 0.0383216396465715 | 1 | 1 | 3 | 3 | 0.499096030384462 | -0.636118970708686 | 0.230188679245283 | 265 | 0 | 265 |
| int_1_3 | 1.65660377358491 | 2 | 0.408147512864494 | 0.638864236645388 | 1 | 0.0392451180891112 | 1 | 1 | 3 | 3 | 0.44987118439655 | -0.678148356912257 | 0.216981132075472 | 265 | 0 | 265 |
| int_1_4 | 1.63018867924528 | 2 | 0.362721555174385 | 0.602263692392614 | 1 | 0.0369967645283168 | 1 | 1 | 3 | 3 | 0.378083971303195 | -0.66409982409902 | 0.216981132075472 | 265 | 0 | 265 |
| int_1_5 | 1.44905660377358 | 1 | 0.26349342481418 | 0.51331610613167 | 1 | 0.0315327577388903 | 1 | NA | 2 | 3 | 0.375057053481523 | -1.46128317074733 | 0.216981132075472 | 265 | 0 | 265 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| int_1_1 | Mild issues/questionable research practices - In research from other institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 2 | 3 | 1.791045 | 0.6067612 | 3 | <U+2585><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582> |
| int_1_2 | Mild issues/questionable research practices - In research at your institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 2 | 3 | 1.611940 | 0.6230341 | 3 | <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581> |
| int_1_3 | Mild issues/questionable research practices - In graduate student research at your institution? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
106 | 0.7142857 | 1 | 2 | 3 | 1.656604 | 0.6388642 | 3 | <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2582> |
| int_1_4 | Mild issues/questionable research practices - Of senior colleagues and/or collaborators? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 2 | 3 | 1.634328 | 0.6063465 | 3 | <U+2587><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2581> |
| int_1_5 | Mild issues/questionable research practices - In your own research? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.451493 | 0.5133769 | 3 | <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 108.
Likert plot of scale intSerious items
Distribution of scale intSerious
| Dataframe: | res$dat |
| Items: | int_2_1, int_2_2, int_2_3, int_2_4 & int_2_5 |
| Observations: | 263 |
| Positive correlations: | 10 |
| Number of correlations: | 10 |
| Percentage positive correlations: | 100 |
| Omega (total): | 0.88 |
| Omega (hierarchical): | 0.83 |
| Revelle’s Omega (total): | 0.88 |
| Greatest Lower Bound (GLB): | 0.85 |
| Coefficient H: | 0.88 |
| Coefficient Alpha: | 0.84 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
3.121, 0.744, 0.466, 0.383 & 0.286
| PC1 | |
|---|---|
| int_2_1 | 0.733 |
| int_2_2 | 0.859 |
| int_2_3 | 0.830 |
| int_2_4 | 0.854 |
| int_2_5 | 0.654 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| int_2_1 | 1.4638783269962 | 1 | 0.310713145444519 | 0.557416491902167 | 1 | 0.0343717733608779 | 1 | NA | 2 | 3 | 0.676380154135319 | -0.599504504126857 | 0.201520912547529 | 263 | 0 | 263 |
| int_2_2 | 1.3041825095057 | 1 | 0.242997707021159 | 0.492947975978357 | 1 | 0.0303964743691246 | 1 | NA | 2 | 3 | 1.23615510110959 | 0.375297772287927 | 0.136882129277567 | 263 | 0 | 263 |
| int_2_3 | 1.29277566539924 | 1 | 0.246016312077323 | 0.496000314593976 | 1 | 0.0305846896312146 | 1 | NA | 2 | 3 | 1.3800790528495 | 0.877996965927718 | 0.127376425855513 | 263 | 0 | 263 |
| int_2_4 | 1.28136882129278 | 1 | 0.241140103909674 | 0.49106018359227 | 1 | 0.0302800681038102 | 1 | NA | 2 | 3 | 1.45547228315005 | 1.12291817499834 | 0.121673003802281 | 263 | 0 | 263 |
| int_2_5 | 1.08365019011407 | 1 | 0.0769454038835515 | 0.277390345692765 | 0 | 0.0171046214691485 | 1 | NA | 2 | 2 | 3.02490866318568 | 7.20480535346754 | 0.0418250950570342 | 263 | 0 | 263 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| int_2_1 | Serious issues/scientific misconducts - In research from other institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.466418 | 0.5565334 | 3 | <U+2587><U+2581><U+2581><U+2586><U+2581><U+2581><U+2581><U+2581> |
| int_2_2 | Serious issues/scientific misconducts - In research at your institutions? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.302239 | 0.4915719 | 3 | <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581> |
| int_2_3 | Serious issues/scientific misconducts - In graduate student research at your institution? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
107 | 0.7115903 | 1 | 1 | 3 | 1.291667 | 0.4953843 | 3 | <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581> |
| int_2_4 | Serious issues/scientific misconducts - Of senior colleagues and/or collaborators? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
103 | 0.7223720 | 1 | 1 | 3 | 1.283582 | 0.4913017 | 3 | <U+2587><U+2581><U+2581><U+2583><U+2581><U+2581><U+2581><U+2581> |
| int_2_5 | Serious issues/scientific misconducts - In your own research? | haven_labelled | 1. Never, 2. Once or Twice, 3. Often |
104 | 0.7196765 | 1 | 1 | 2 | 1.082397 | 0.2754850 | 3 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
Reliability: .
Missing: 0.
Likert plot of scale rep_2 items
Distribution of scale rep_2
| Dataframe: | res$dat |
| Items: | rep_2_1, rep_2_2, rep_2_3, rep_2_4, rep_2_5, rep_2_6, rep_2_7, rep_2_8 & rep_2_9 |
| Observations: | 371 |
| Positive correlations: | 24 |
| Number of correlations: | 36 |
| Percentage positive correlations: | 67 |
| Omega (total): | 0.73 |
| Omega (hierarchical): | 0.47 |
| Revelle’s Omega (total): | 0.73 |
| Greatest Lower Bound (GLB): | 0.73 |
| Coefficient H: | 0.73 |
| Coefficient Alpha: | 0.64 |
(Estimates assuming ordinal level not computed, as the polychoric correlation matrix has missing values.)
Note: the normal point estimate and confidence interval for omega are based on the procedure suggested by Dunn, Baguley & Brunsden (2013) using the MBESS function ci.reliability, whereas the psych package point estimate was suggested in Revelle & Zinbarg (2008). See the help (‘?ufs::scaleStructure’) for more information.
2.55, 1.119, 1.114, 0.929, 0.873, 0.776, 0.615, 0.564 & 0.46
| TC1 | TC2 | TC3 | |
|---|---|---|---|
| rep_2_1 | 0.351 | 0.360 | -0.140 |
| rep_2_2 | 0.614 | 0.240 | -0.079 |
| rep_2_3 | 0.756 | 0.061 | 0.056 |
| rep_2_4 | 0.802 | -0.065 | 0.006 |
| rep_2_5 | 0.247 | 0.645 | 0.021 |
| rep_2_6 | 0.083 | 0.732 | -0.022 |
| rep_2_7 | -0.181 | 0.612 | 0.071 |
| rep_2_8 | 0.178 | -0.256 | 0.724 |
| rep_2_9 | -0.142 | 0.244 | 0.754 |
| mean | median | var | sd | IQR | se | min | q1 | q3 | max | skew | kurt | dip | n | NA | valid | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| rep_2_1 | 0.307277628032345 | 0 | 0.213433379471115 | 0.461988505778137 | 1 | 0.0239852481320183 | 0 | NA | 1 | 1 | 0.838838781683588 | -1.30340518383503 | 0.153638814016173 | 371 | 0 | 371 |
| rep_2_2 | 0.366576819407008 | 0 | 0.232825817731478 | 0.482520277015876 | 1 | 0.0250512045823797 | 0 | NA | 1 | 1 | 0.556023644407386 | -1.70003157114474 | 0.183288409703504 | 371 | 0 | 371 |
| rep_2_3 | 0.417789757412399 | 0 | 0.243898885408319 | 0.493861200549627 | 1 | 0.0256399959951555 | 0 | NA | 1 | 1 | 0.334733024041072 | -1.89821606247463 | 0.208894878706199 | 371 | 0 | 371 |
| rep_2_4 | 0.223719676549865 | 0 | 0.174138559044219 | 0.417299124183384 | 0 | 0.02166509104367 | 0 | NA | 1 | 1 | 1.33131253664317 | -0.228869887763615 | 0.111859838274933 | 371 | 0 | 371 |
| rep_2_5 | 0.390835579514825 | 0 | 0.238726597217163 | 0.4885965587447 | 1 | 0.0253666694114027 | 0 | NA | 1 | 1 | 0.449270857915825 | -1.80793123835233 | 0.195417789757412 | 371 | 0 | 371 |
| rep_2_6 | 0.261455525606469 | 0 | 0.193618416259926 | 0.440020927070436 | 1 | 0.0228447482720134 | 0 | NA | 1 | 1 | 1.09011814492901 | -0.816070938521698 | 0.130727762803235 | 371 | 0 | 371 |
| rep_2_7 | 0.0269541778975741 | 0 | 0.026298535732498 | 0.162168232809321 | 0 | 0.0084193551450183 | 0 | NA | 1 | 1 | 5.86563407466848 | 32.5812768232464 | 0.0134770889487871 | 371 | 0 | 371 |
| rep_2_8 | 0.0431266846361186 | 0 | 0.0413783055292489 | 0.203416581254452 | 0 | 0.0105608626936229 | 0 | NA | 1 | 1 | 4.51634365953029 | 18.4970469023046 | 0.0215633423180593 | 371 | 0 | 371 |
| rep_2_9 | 0.132075471698113 | 0 | 0.11494135645079 | 0.339030022934239 | 0 | 0.0176015617760558 | 0 | NA | 1 | 1 | 2.18221794037836 | 2.77701665755518 | 0.0660377358490566 | 371 | 0 | 371 |
Scatterplot
| name | label | data_type | value_labels | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| rep_2_1 | Replication failure - Outdated methods | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.3072776 | 0.4619885 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583> |
| rep_2_2 | Replication failure - Low quality data | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.3665768 | 0.4825203 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2585> |
| rep_2_3 | Replication failure - Lack of external validity | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.4177898 | 0.4938612 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2586> |
| rep_2_4 | Replication failure - Lack of internal validity | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.2237197 | 0.4172991 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2582> |
| rep_2_5 | Replication failure - Publication bias | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.3908356 | 0.4885966 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2585> |
| rep_2_6 | Replication failure - Author bias | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.2614555 | 0.4400209 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2583> |
| rep_2_7 | Replication failure - Fraud | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0269542 | 0.1621682 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| rep_2_8 | Replication failure - I don’t think there is a replication problem | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.0431267 | 0.2034166 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
| rep_2_9 | Replication failure - Other explanation | haven_labelled | 0. No, 1. Yes |
0 | 1 | 0 | 0 | 1 | 0.1320755 | 0.3390300 | 2 | <U+2587><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581> |
When studies in your field do not replicate, what do you think are the primary explanations? - Text
Distribution of values for rep_2_o
322 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| rep_2_o | When studies in your field do not replicate, what do you think are the primary explanations? - Text | character | 322 | 0.1320755 | 49 | 0 | 7 | 315 | 0 |
What is the likelihood that you will pre-register hypotheses or analyses online in advance of your next new empirical project?
Distribution of values for beh_1
111 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| beh_1 | What is the likelihood that you will pre-register hypotheses or analyses online in advance of your next new empirical project? | numeric | 111 | 0.7008086 | 0 | 30 | 100 | 38.92308 | 30.01277 | <U+2587><U+2585><U+2583><U+2583><U+2582> |
What is the likelihood that you will post the data or code online for your next completed empirical project?
Distribution of values for beh_2
111 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| beh_2 | What is the likelihood that you will post the data or code online for your next completed empirical project? | numeric | 111 | 0.7008086 | 0 | 30 | 100 | 37.42308 | 30.13313 | <U+2587><U+2583><U+2583><U+2582><U+2582> |
What is the likelihood that you will post the study instruments online for your next completed empirical project?
Distribution of values for beh_3
113 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| beh_3 | What is the likelihood that you will post the study instruments online for your next completed empirical project? | numeric | 113 | 0.6954178 | 0 | 60 | 100 | 53.52713 | 31.75112 | <U+2587><U+2583><U+2585><U+2587><U+2585> |
Specific barriers for EMCP researchers to engaging in open science practices?
Distribution of values for barrier
114 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| barrier | Specific barriers for EMCP researchers to engaging in open science practices? | haven_labelled | 114 | 0.6927224 | 0 | 1 | 2 | 1.18677 | 0.6875995 | 3 | <U+2582><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2586> |
| name | value |
|---|---|
| No | 0 |
| Yes | 1 |
| Maybe | 2 |
What are some specific barriers to engaging in open science practices in ethnic minority/cultural psychology?
Distribution of values for barrier_o
203 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| barrier_o | What are some specific barriers to engaging in open science practices in ethnic minority/cultural psychology? | character | 203 | 0.4528302 | 165 | 0 | 3 | 637 | 0 |
Specific opportunities for EMCP researchers to engaging in open science practices?
Distribution of values for opportunity
116 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| opportunity | Specific opportunities for EMCP researchers to engaging in open science practices? | haven_labelled | 116 | 0.6873315 | 0 | 1 | 2 | 1.364706 | 0.678936 | 3 | <U+2582><U+2581><U+2581><U+2587><U+2581><U+2581><U+2581><U+2587> |
| name | value |
|---|---|
| No | 0 |
| Yes | 1 |
| Maybe | 2 |
What are some specific opportunities related to open science practices that would improve ethnic minority/cultural psychology?
Distribution of values for opportunity_o
240 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| opportunity_o | What are some specific opportunities related to open science practices that would improve ethnic minority/cultural psychology? | character | 240 | 0.3530997 | 130 | 0 | 3 | 511 | 0 |
First motivation for engagement in open science practices:
Distribution of values for engagemotiv01
170 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| engagemotiv01 | First motivation for engagement in open science practices: | character | 170 | 0.541779 | 185 | 0 | 5 | 245 | 0 |
Second motivation for engagement in open science practices:
Distribution of values for engagemotiv02
191 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| engagemotiv02 | Second motivation for engagement in open science practices: | character | 191 | 0.4851752 | 175 | 0 | 4 | 138 | 0 |
Third motivation for engagement in open science practices:
Distribution of values for engagemotiv03
225 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| engagemotiv03 | Third motivation for engagement in open science practices: | character | 225 | 0.393531 | 140 | 0 | 3 | 201 | 0 |
First barrier for engagement in open science practices:
Distribution of values for engagebarrier01
164 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| engagebarrier01 | First barrier for engagement in open science practices: | character | 164 | 0.5579515 | 189 | 0 | 3 | 601 | 0 |
Second barrier for engagement in open science practices:
Distribution of values for engagebarrier02
198 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| engagebarrier02 | Second barrier for engagement in open science practices: | character | 198 | 0.4663073 | 171 | 0 | 3 | 623 | 0 |
Third barrier for engagement in open science practices:
Distribution of values for engagebarrier03
250 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| engagebarrier03 | Third barrier for engagement in open science practices: | character | 250 | 0.3261456 | 113 | 0 | 3 | 414 | 0 |
First motivation for discussion participation:
Distribution of values for convomotiv01
216 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| convomotiv01 | First motivation for discussion participation: | character | 216 | 0.4177898 | 150 | 0 | 3 | 408 | 0 |
Second motivation for discussion participation:
Distribution of values for convomotiv02
264 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| convomotiv02 | Second motivation for discussion participation: | character | 264 | 0.2884097 | 106 | 0 | 3 | 137 | 0 |
Third motivation for discussion participation:
Distribution of values for convomotiv03
296 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| convomotiv03 | Third motivation for discussion participation: | character | 296 | 0.2021563 | 72 | 0 | 2 | 90 | 0 |
First concern for discussion participation:
Distribution of values for convoconcern01
224 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| convoconcern01 | First concern for discussion participation: | character | 224 | 0.3962264 | 136 | 0 | 4 | 499 | 0 |
Second concern for discussion participation:
Distribution of values for convoconcern02
288 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| convoconcern02 | Second concern for discussion participation: | character | 288 | 0.2237197 | 77 | 0 | 2 | 277 | 0 |
Third concern for discussion participation:
Distribution of values for convoconcern03
313 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| convoconcern03 | Third concern for discussion participation: | character | 313 | 0.1563342 | 49 | 0 | 2 | 134 | 0 |
Please select occasionally for this question.
Distribution of values for attcheck
100 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| attcheck | Please select occasionally for this question. | haven_labelled | 100 | 0.7304582 | 0 | 1 | 1 | 0.8118081 | 0.3915885 | 2 | <U+2582><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587> |
| name | value |
|---|---|
| Incorrect | 0 |
| Correct | 1 |
Please choose 3
Distribution of values for experience_19
128 missing values.
| name | label | data_type | n_missing | complete_rate | min | median | max | mean | sd | n_value_labels | hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| experience_19 | Please choose 3 | haven_labelled | 128 | 0.6549865 | 0 | 1 | 1 | 0.7201646 | 0.4498448 | 2 | <U+2583><U+2581><U+2581><U+2581><U+2581><U+2581><U+2581><U+2587> |
| name | value |
|---|---|
| Incorrect | 0 |
| Correct | 1 |
Why do you think this practice should or should not be used? - Not reporting nonsignificance
Distribution of values for qrp1_4
218 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp1_4 | Why do you think this practice should or should not be used? - Not reporting nonsignificance | character | 218 | 0.4123989 | 153 | 0 | 3 | 1099 | 0 |
Why do you think this practice should or should not be used? - Not reporting nonsignificance (covariate)
Distribution of values for qrp2_4
230 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp2_4 | Why do you think this practice should or should not be used? - Not reporting nonsignificance (covariate) | character | 230 | 0.3800539 | 141 | 0 | 9 | 601 | 0 |
Why do you think this practice should or should not be used? - HARKing
Distribution of values for qrp3_4
227 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp3_4 | Why do you think this practice should or should not be used? - HARKing | character | 227 | 0.3881402 | 144 | 0 | 9 | 449 | 0 |
Why do you think this practice should or should not be used? - Not reporting alternative models
Distribution of values for qrp4_4
235 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp4_4 | Why do you think this practice should or should not be used? - Not reporting alternative models | character | 235 | 0.3665768 | 136 | 0 | 12 | 1508 | 0 |
Why do you think this practice should or should not be used? - Rounding p-value
Distribution of values for qrp5_4
227 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp5_4 | Why do you think this practice should or should not be used? - Rounding p-value | character | 227 | 0.3881402 | 144 | 0 | 9 | 715 | 0 |
Why do you think this practice should or should not be used? - Excluding data
Distribution of values for qrp6_4
238 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp6_4 | Why do you think this practice should or should not be used? - Excluding data | character | 238 | 0.3584906 | 133 | 0 | 9 | 822 | 0 |
Why do you think this practice should or should not be used? - Increasing sample
Distribution of values for qrp7_4
221 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp7_4 | Why do you think this practice should or should not be used? - Increasing sample | character | 221 | 0.4043127 | 150 | 0 | 9 | 922 | 0 |
Why do you think this practice should or should not be used? - Changing analysis
Distribution of values for qrp8_4
243 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp8_4 | Why do you think this practice should or should not be used? - Changing analysis | character | 243 | 0.3450135 | 128 | 0 | 9 | 759 | 0 |
Why do you think this practice should or should not be used? - Not reporting problems
Distribution of values for qrp9_4
243 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp9_4 | Why do you think this practice should or should not be used? - Not reporting problems | character | 243 | 0.3450135 | 127 | 0 | 6 | 590 | 0 |
Why do you think this practice should or should not be used? - Imputing data
Distribution of values for qrp10_4
241 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| qrp10_4 | Why do you think this practice should or should not be used? - Imputing data | character | 241 | 0.3504043 | 129 | 0 | 5 | 406 | 0 |
Why do you think this practice should or should not be used? - Posting data
Distribution of values for prrp1_7
241 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| prrp1_7 | Why do you think this practice should or should not be used? - Posting data | character | 241 | 0.3504043 | 130 | 0 | 7 | 698 | 0 |
Why do you think this practice should or should not be used? - Posting instruments
Distribution of values for prrp2_7
242 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| prrp2_7 | Why do you think this practice should or should not be used? - Posting instruments | character | 242 | 0.3477089 | 129 | 0 | 15 | 1103 | 0 |
Why do you think this practice should or should not be used? - Preregistration
Distribution of values for prrp3_7
242 missing values.
| name | label | data_type | n_missing | complete_rate | n_unique | empty | min | max | whitespace |
|---|---|---|---|---|---|---|---|---|---|
| prrp3_7 | Why do you think this practice should or should not be used? - Preregistration | character | 242 | 0.3477089 | 129 | 0 | 22 | 604 | 0 |