calculate fluency score (sum of sp + ud), create new df
df_fluency_score <- cn_demog %>%
filter(demog_question %in% c("lang_sp", "lang_ud")) %>%
mutate(demog_response = as.numeric(demog_response)) %>%
group_by(subject) %>%
summarise(fluency_score = sum(demog_response))
## `summarise()` ungrouping output (override with `.groups` argument)
cn_fl_data <- left_join(cn_data, df_fluency_score,
by = "subject")
RMTS_ms <- cn_fl_data %>%
filter(task_name == "RMTS") %>%
group_by(subject) %>%
summarise(avg_resp = mean(resp)) %>%
left_join(df_fluency_score, by = "subject")
## `summarise()` ungrouping output (override with `.groups` argument)
#scatter plot
ggplot(RMTS_ms,
aes(x = fluency_score, y = avg_resp)) +
geom_point() +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
rmts_df <- cn_fl_data %>%
filter(task_name == "RMTS") %>%
mutate(choice = as.factor(case_when(
resp == "1" ~ "rel",
resp == "0" ~ "obj"))
) %>%
group_by(subject) %>%
mutate(trial_num = as.factor(row_number())) %>%
select(-resp, -task_info, -trial_info, -resp_type)
# model 0: not converging
#rmts_model <- glmer(choice ~ fluency_score + (trial_num | subject), family = binomial, data = rmts_df)
# model 1:
rmts_model <- glmer(choice ~ fluency_score + (1 | subject), family = binomial, data = rmts_df)
summary(rmts_model)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: choice ~ fluency_score + (1 | subject)
## Data: rmts_df
##
## AIC BIC logLik deviance df.resid
## 339.9 353.4 -166.9 333.9 657
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.71092 -0.00583 -0.00509 0.08027 1.75119
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 593.5 24.36
## Number of obs: 660, groups: subject, 165
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.90806 1.98309 -5.501 3.79e-08 ***
## fluency_score 0.05824 0.16225 0.359 0.72
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## fluency_scr -0.890
RV_ms <- cn_fl_data %>%
filter(task_name == "RV") %>%
group_by(subject) %>%
summarise(mean = mean(as.numeric(resp), na.rm = TRUE)) %>%
left_join(df_fluency_score, by = "subject")
## `summarise()` ungrouping output (override with `.groups` argument)
ggplot(RV_ms,
aes(x = fluency_score, y = mean)) +
geom_point()+
ylab("Raven % correct") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
rv_df <- cn_fl_data %>%
filter(task_name == "RV") %>%
mutate(acc = as.numeric(resp)) %>%
group_by(subject) %>%
mutate(trial = as.factor(row_number())) %>%
select(-resp, -task_info, -trial_info, -resp_type)
rv_model <- glmer(acc ~ fluency_score + (1 | subject) + (1 | trial), family = binomial, data = rv_df)
rv_model
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: acc ~ fluency_score + (1 | subject) + (1 | trial)
## Data: rv_df
## AIC BIC logLik deviance df.resid
## 1373.496 1395.860 -682.748 1365.496 1976
## Random effects:
## Groups Name Std.Dev.
## subject (Intercept) 1.205
## trial (Intercept) 1.208
## Number of obs: 1980, groups: subject, 165; trial, 12
## Fixed Effects:
## (Intercept) fluency_score
## 2.517910 0.005736
summary(rv_model)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: acc ~ fluency_score + (1 | subject) + (1 | trial)
## Data: rv_df
##
## AIC BIC logLik deviance df.resid
## 1373.5 1395.9 -682.7 1365.5 1976
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -8.3324 0.1204 0.2138 0.3594 3.8118
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 1.453 1.205
## trial (Intercept) 1.459 1.208
## Number of obs: 1980, groups: subject, 165; trial, 12
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.517910 0.489390 5.145 2.68e-07 ***
## fluency_score 0.005736 0.029450 0.195 0.846
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## fluency_scr -0.639
cp_df <- cn_fl_data %>%
filter(task_name == "RV") %>%
mutate(choice = as.factor(case_when(
resp == "1" ~ "uniq",
resp == "0" ~ "non_uniq"))
) %>%
select(-resp, -task_info, -trial_info, -resp_type)
cp_model <- glm(choice ~ fluency_score,
family=binomial(link="logit"),
data = cp_df)
cp_model
##
## Call: glm(formula = choice ~ fluency_score, family = binomial(link = "logit"),
## data = cp_df)
##
## Coefficients:
## (Intercept) fluency_score
## 1.681069 0.006562
##
## Degrees of Freedom: 1979 Total (i.e. Null); 1978 Residual
## (36 observations deleted due to missingness)
## Null Deviance: 1660
## Residual Deviance: 1660 AIC: 1664
summary(cp_model)
##
## Call:
## glm(formula = choice ~ fluency_score, family = binomial(link = "logit"),
## data = cp_df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.9817 0.5567 0.5652 0.5704 0.5826
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.681069 0.176514 9.524 <2e-16 ***
## fluency_score 0.006562 0.015621 0.420 0.674
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1660.0 on 1979 degrees of freedom
## Residual deviance: 1659.8 on 1978 degrees of freedom
## (36 observations deleted due to missingness)
## AIC: 1663.8
##
## Number of Fisher Scoring iterations: 4
si_ratio_ms <- cn_fl_data %>%
filter(task_name == "SI") %>%
filter(resp_type == "inflation_score_ratio")
ggplot(si_ratio_ms,
aes(x = fluency_score, y = as.numeric(resp))) +
geom_point() +
ylab("(me_radius *2) / (other_radius * 2)") +
xlab("fluency score") +
theme_classic() +
scale_size_area(breaks = seq(0,50,5)) +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 2 rows containing missing values (geom_point).
### difference
si_diff_ms <- cn_fl_data %>%
filter(task_name == "SI") %>%
filter(resp_type == "inflation_score_diff")
ggplot(si_diff_ms,
aes(x = fluency_score, y = as.numeric(resp))) +
geom_point() +
ylab("me_radius - other_radius") +
xlab("fluency score") +
theme_classic() +
scale_size_area(breaks = seq(0,50,5)) +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 2 rows containing missing values (geom_point).
## model ### ratio
si_ratio_model <- glm(as.numeric(resp) ~ fluency_score, family=gaussian, data = si_ratio_ms)
summary(si_ratio_model)
##
## Call:
## glm(formula = as.numeric(resp) ~ fluency_score, family = gaussian,
## data = si_ratio_ms)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.7433 -0.2285 -0.0634 0.1178 4.3787
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.65619 0.11596 5.659 7.38e-08 ***
## fluency_score 0.02854 0.01036 2.756 0.00657 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 0.2700607)
##
## Null deviance: 43.101 on 153 degrees of freedom
## Residual deviance: 41.049 on 152 degrees of freedom
## (2 observations deleted due to missingness)
## AIC: 239.42
##
## Number of Fisher Scoring iterations: 2
si_diff_model <- glm(as.numeric(resp) ~ fluency_score, family=gaussian, data = si_diff_ms)
summary(si_diff_model)
##
## Call:
## glm(formula = as.numeric(resp) ~ fluency_score, family = gaussian,
## data = si_diff_ms)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -253.153 -15.811 5.145 16.957 122.646
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.8493 9.4111 -3.172 0.00183 **
## fluency_score 1.6679 0.8405 1.984 0.04901 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1778.759)
##
## Null deviance: 277376 on 153 degrees of freedom
## Residual deviance: 270371 on 152 degrees of freedom
## (2 observations deleted due to missingness)
## AIC: 1593.5
##
## Number of Fisher Scoring iterations: 2
CA_ms <- cn_fl_data %>%
filter(task_name == "CA") %>%
group_by(resp_type, subject) %>%
summarise(subject_mean = mean(resp)) %>%
left_join(df_fluency_score, by = "subject")
## `summarise()` regrouping output by 'resp_type' (override with `.groups` argument)
#plot means and CIs
ggplot(CA_ms,
aes(x = fluency_score, y = subject_mean)) +
geom_point()+
facet_wrap(~resp_type)+
ylab("Average number of attributions per trial") +
xlab("Fluency Score") +
ylim(c(0,1)) +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 37 rows containing missing values (geom_point).
ca_df <- cn_fl_data %>%
filter(task_name == "CA") %>%
mutate(
subject = as.factor(subject),
attrib_num = as.numeric(resp),
attrib_binary = replace(attrib_num, attrib_num > 1, 1),
attrib_type = factor(resp_type)) %>%
group_by(subject, resp_type) %>%
mutate(trial = as.character(row_number())) %>%
select(-resp, -task_info)
#ca_model <- glmer(attrib_num ~ attrib_type * fluency_score + (attrib_type | subject) + (fluency_score | trial), family=poisson, data = ca_df, control=glmerControl(optimizer="bobyqa"))
#boundary (singular) fit: see ?isSingular
#ca_model_binary <- glmer(attrib_binary ~ attrib_type * culture + (attrib_type | subject) + (culture | trial), family=binomial, data = ca_df, control=glmerControl(optimizer="bobyqa"))
#boundary (singular) fit: see ?isSingular
#ca_model1 <- glmer(attrib_num ~ attrib_type * culture + (attrib_type | subject) + (1 | trial), family=poisson, data = ca_df, control=glmerControl(optimizer="bobyqa"))
#boundary (singular) fit: see ?isSingular
#ca_model2 <- glmer(attrib_num ~ attrib_type * culture + (1 | subject) + (1 | trial), family=poisson, data = ca_df, control=glmerControl(optimizer="bobyqa"))
#boundary (singular) fit: see ?isSingular
#ca_model3 <- glmer(attrib_num ~ attrib_type * culture + (1 | subject), family=poisson, data = ca_df, control=glmerControl(optimizer="bobyqa"))
#boundary (singular) fit: see ?isSingular
ca_model4 <- glm(attrib_num ~ attrib_type * fluency_score, family=poisson, data = ca_df)
ca_model4
##
## Call: glm(formula = attrib_num ~ attrib_type * fluency_score, family = poisson,
## data = ca_df)
##
## Coefficients:
## (Intercept)
## -0.380372
## attrib_typesituation_attribution
## 0.171958
## fluency_score
## 0.009022
## attrib_typesituation_attribution:fluency_score
## -0.025471
##
## Degrees of Freedom: 655 Total (i.e. Null); 652 Residual
## (12 observations deleted due to missingness)
## Null Deviance: 469.4
## Residual Deviance: 467 AIC: 1340
summary(ca_model4)
##
## Call:
## glm(formula = attrib_num ~ attrib_type * fluency_score, family = poisson,
## data = ca_df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.2797 -1.1737 0.2686 0.3365 2.6617
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -0.380372 0.181074 -2.101
## attrib_typesituation_attribution 0.171958 0.258063 0.666
## fluency_score 0.009022 0.015700 0.575
## attrib_typesituation_attribution:fluency_score -0.025471 0.022779 -1.118
## Pr(>|z|)
## (Intercept) 0.0357 *
## attrib_typesituation_attribution 0.5052
## fluency_score 0.5655
## attrib_typesituation_attribution:fluency_score 0.2635
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 469.45 on 655 degrees of freedom
## Residual deviance: 467.00 on 652 degrees of freedom
## (12 observations deleted due to missingness)
## AIC: 1339.7
##
## Number of Fisher Scoring iterations: 5
# current calculation: hz_height = CANVAS_HEIGHT - y
hz_height_ms <- cn_fl_data %>%
filter(task_name == "HZ") %>%
filter(resp_type == "hz_height")
ggplot(hz_height_ms,
aes(x = fluency_score, y = as.numeric(resp))) +
geom_point() +
ylab("hz height") +
xlab("fluency score") +
theme_classic() +
scale_size_area(breaks = seq(0,50,5)) +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
### count
hz_stkr_count_ms <- cn_fl_data %>%
filter(task_name == "HZ") %>%
filter(resp_type == "stkr_count")
ggplot(hz_stkr_count_ms,
aes(x = fluency_score, y = as.numeric(resp))) +
geom_point() +
ylab("stkr_count") +
xlab("fluency score") +
theme_classic() +
scale_size_area(breaks = seq(0,50,5)) +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
### area
hz_stkr_area_ms <- cn_fl_data %>%
filter(task_name == "HZ") %>%
filter(resp_type == "stkr_area")
ggplot(hz_stkr_area_ms,
aes(x = fluency_score, y = as.numeric(resp))) +
geom_point() +
ylab("stkr_area") +
xlab("fluency score") +
theme_classic() +
scale_size_area(breaks = seq(0,50,5)) +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
## Model ### height
HZ_height_df <- cn_fl_data %>%
filter(task_name == "HZ", resp_type == "hz_height") %>%
mutate(
height = resp
) %>%
select(-resp, -task_info, -trial_info)
HZ_height_model <- lm(height ~ fluency_score,
data = HZ_height_df)
summary(HZ_height_model)
##
## Call:
## lm(formula = height ~ fluency_score, data = HZ_height_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -175.097 -44.197 -9.418 42.223 151.223
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 186.8782 14.4282 12.952 <2e-16 ***
## fluency_score -0.5801 1.2688 -0.457 0.648
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 66.06 on 163 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.001281, Adjusted R-squared: -0.004846
## F-statistic: 0.209 on 1 and 163 DF, p-value: 0.6481
HZ_stkr_n_df <- cn_fl_data %>%
filter(task_name == "HZ", resp_type == "stkr_count") %>%
mutate(
stkr_count = resp
) %>%
select(-resp, -task_info, -trial_info)
HZ_stkr_n_model <- lm(stkr_count ~ fluency_score,
data = HZ_stkr_n_df)
summary(HZ_stkr_n_model)
##
## Call:
## lm(formula = stkr_count ~ fluency_score, data = HZ_stkr_n_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.359 -4.359 -1.441 3.049 19.130
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.84850 1.22585 10.481 <2e-16 ***
## fluency_score -0.08158 0.10780 -0.757 0.45
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.613 on 163 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.003501, Adjusted R-squared: -0.002613
## F-statistic: 0.5726 on 1 and 163 DF, p-value: 0.4503
HZ_stkr_area_df <- cn_fl_data %>%
filter(task_name == "HZ", resp_type == "stkr_area") %>%
mutate(
stkr_area = resp
) %>%
select(-resp, -task_info, -trial_info)
HZ_stkr_area_model <- lm(stkr_area ~ fluency_score,
data = HZ_stkr_area_df)
summary(HZ_stkr_area_model)
##
## Call:
## lm(formula = stkr_area ~ fluency_score, data = HZ_stkr_area_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -800755 -278953 -62875 221480 989809
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 897066.8 78703.9 11.398 <2e-16 ***
## fluency_score -216.8 6921.4 -0.031 0.975
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 360400 on 163 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 6.02e-06, Adjusted R-squared: -0.006129
## F-statistic: 0.0009813 on 1 and 163 DF, p-value: 0.975
ebb_df <- cn_fl_data %>%
filter(task_name == "EBB", task_info != "HELPFUL") %>%
mutate(correct = as.factor(case_when(
resp == "1" ~ "correct",
resp == "0" ~ "incorrect")),
context = task_info,
size_diff = as.numeric(trial_info),
) %>%
select(-resp, -task_info, -trial_info)
#full model
#ebb_model <- glmer(correct ~ culture * context * size_diff + (size_diff * context | subject), family = binomial, data = ebb_df, control=glmerControl(optimizer="bobyqa"))
#convergence code 1 from bobyqa: bobyqa -- maximum number of function evaluations exceeded
#boundary (singular) fit: see ?isSingular
#model 2 (if full does not converge)
#ebb_model <- glmer(correct ~ fluency_score * context * size_diff + (context | subject), family = binomial, data = ebb_df, control=glmerControl(optimizer="bobyqa"))
#Model failed to converge with max|grad| = 0.0265787 (tol = 0.001, component 1)
#Model is nearly unidentifiable: very large eigenvalue
# - Rescale variables?
#Model is nearly unidentifiable: large eigenvalue ratio
# - Rescale variables?
#model 3
ebb_model <- glmer(correct ~ fluency_score * context * size_diff + ( 1 | subject), family = binomial, data = ebb_df, control=glmerControl(optimizer="bobyqa"))
## Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :
## convergence code 1 from bobyqa: bobyqa -- maximum number of function evaluations
## exceeded
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0644532 (tol = 0.001, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
##convergence code 1 from bobyqa: bobyqa -- maximum number of function evaluations exceededModel failed to converge with max|grad| = 0.0644532 (tol = 0.001, component 1)Model is nearly unidentifiable: very large eigenvalue
#- Rescale variables?;Model is nearly unidentifiable: large eigenvalue ratio
#- Rescale variables?
ebb_model
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: correct ~ fluency_score * context * size_diff + (1 | subject)
## Data: ebb_df
## AIC BIC logLik deviance df.resid
## 3360.388 3418.952 -1671.194 3342.388 4941
## Random effects:
## Groups Name Std.Dev.
## subject (Intercept) 1.345
## Number of obs: 4950, groups: subject, 165
## Fixed Effects:
## (Intercept) fluency_score
## 3.886161 0.032816
## contextNC size_diff
## -5.107697 -0.277232
## fluency_score:contextNC fluency_score:size_diff
## 0.099298 -0.003572
## contextNC:size_diff fluency_score:contextNC:size_diff
## -0.040994 -0.032278
## convergence code 1; 3 optimizer warnings; 0 lme4 warnings
summary(ebb_model)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: correct ~ fluency_score * context * size_diff + (1 | subject)
## Data: ebb_df
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 3360.4 3419.0 -1671.2 3342.4 4941
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -10.6173 -0.2901 -0.0029 0.3142 20.5996
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 1.808 1.345
## Number of obs: 4950, groups: subject, 165
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.886161 0.489560 7.938 2.05e-15 ***
## fluency_score 0.032816 0.043117 0.761 0.4466
## contextNC -5.107697 0.735411 -6.945 3.77e-12 ***
## size_diff -0.277232 0.030977 -8.950 < 2e-16 ***
## fluency_score:contextNC 0.099298 0.066657 1.490 0.1363
## fluency_score:size_diff -0.003572 0.002743 -1.302 0.1928
## contextNC:size_diff -0.040994 0.160120 -0.256 0.7979
## fluency_score:contextNC:size_diff -0.032278 0.016587 -1.946 0.0516 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) flncy_ cntxNC sz_dff fl_:NC fln_:_ cnNC:_
## fluency_scr -0.927
## contextNC -0.450 0.413
## size_diff -0.748 0.693 0.531
## flncy_sc:NC 0.403 -0.432 -0.922 -0.477
## flncy_scr:_ 0.689 -0.749 -0.486 -0.925 0.510
## cntxtNC:sz_ 0.118 -0.111 -0.736 -0.170 0.724 0.159
## flncy_:NC:_ -0.095 0.101 0.631 0.136 -0.750 -0.144 -0.904
## convergence code: 1
## Model failed to converge with max|grad| = 0.0644532 (tol = 0.001, component 1)
## Model is nearly unidentifiable: very large eigenvalue
## - Rescale variables?
## Model is nearly unidentifiable: large eigenvalue ratio
## - Rescale variables?
fd_ms <- cn_fl_data %>%
filter(task_name == "FD") %>%
group_by(resp_type, subject) %>%
summarise(subject_mean = mean(resp)) %>%
left_join(df_fluency_score, by = "subject")
## `summarise()` regrouping output by 'resp_type' (override with `.groups` argument)
fd_ms %>%
filter(resp_type == "first_mention_focal") %>%
ggplot(
aes(x = fluency_score, y = subject_mean)) +
geom_point()+
ylab("Average number of focal first mention per subject") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
### imada focal
fd_ms %>%
filter(resp_type == "imada_focal_description") %>%
ggplot(
aes(x = fluency_score, y = subject_mean)) +
geom_point()+
ylab("Average number of imada focal description per participant") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
fd_ms %>%
filter(resp_type == "imada_bckgrd_description") %>%
ggplot(
aes(x = fluency_score, y = subject_mean)) +
geom_point()+
ylab("Average number of imada focal description per participant") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
fd_ms %>%
filter(grepl("imada", resp_type)) %>%
ggplot(
aes(x = fluency_score, y = subject_mean, color = resp_type)) +
geom_point()+
geom_smooth(method = "lm")+
ylab("Average number of imada focal description per participant") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).
## Warning: Removed 6 rows containing missing values (geom_point).
fd_ms %>%
filter(resp_type == "full_focal_description") %>%
ggplot(
aes(x = fluency_score, y = subject_mean)) +
geom_point()+
ylab("Average number of full focal description per participant") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
fd_ms %>%
filter(resp_type == "full_bckgrd_description") %>%
ggplot(
aes(x = fluency_score, y = subject_mean)) +
geom_point()+
ylab("Average number of full background description per participant") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## Warning: Removed 3 rows containing missing values (geom_point).
fd_ms %>%
filter(grepl("full", resp_type)) %>%
ggplot(
aes(x = fluency_score, y = subject_mean, color = resp_type)) +
geom_point()+
geom_smooth(method = "lm")+
ylab("Average number of descriptions per participant") +
xlab("Fluency Score") +
theme_classic() +
ggthemes::scale_color_solarized() +
theme(legend.position = "bottom")
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 6 rows containing non-finite values (stat_smooth).
## Warning: Removed 6 rows containing missing values (geom_point).
mention_df <- cn_fl_data %>%
filter(task_name == "FD", resp_type == "first_mention_focal") %>%
mutate(first_mention = as.factor(case_when(
resp == "1" ~ "focal",
resp == "0" ~ "background")),
scene = trial_info) %>%
select(-resp, -task_info, -resp_type, -trial_info)
#mention_model <- glmer(first_mention ~ fluency_score + (scene | subject), family = binomial, data = mention_df)
#Error: number of observations (=1146) < number of random effects (=1148) for term (scene | subject); the random-effects parameters are probably unidentifiable
#Error: Invalid grouping factor specification, subject
mention_model <- glmer(first_mention ~ fluency_score + (1 | subject),
family = binomial, data = mention_df)
mention_model
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: first_mention ~ fluency_score + (1 | subject)
## Data: mention_df
## AIC BIC logLik deviance df.resid
## 1448.5583 1463.7138 -721.2791 1442.5583 1152
## Random effects:
## Groups Name Std.Dev.
## subject (Intercept) 1.332
## Number of obs: 1155, groups: subject, 165
## Fixed Effects:
## (Intercept) fluency_score
## -0.02258 0.03404
summary(mention_model)
## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: binomial ( logit )
## Formula: first_mention ~ fluency_score + (1 | subject)
## Data: mention_df
##
## AIC BIC logLik deviance df.resid
## 1448.6 1463.7 -721.3 1442.6 1152
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.9939 -0.7488 0.3868 0.6744 1.7725
##
## Random effects:
## Groups Name Variance Std.Dev.
## subject (Intercept) 1.774 1.332
## Number of obs: 1155, groups: subject, 165
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.02258 0.35043 -0.064 0.949
## fluency_score 0.03404 0.03091 1.101 0.271
##
## Correlation of Fixed Effects:
## (Intr)
## fluency_scr -0.934
fd_df <- cn_fl_data %>%
filter(task_name == "FD") %>%
filter(grepl("imada", resp_type)) %>%
mutate(description_num = as.numeric(resp),
description_type = factor(resp_type)) %>%
group_by(subject, resp_type) %>%
mutate(scene = as.character(row_number())) %>%
select(-resp, -task_info, -resp_type, -trial_info)
## Adding missing grouping variables: `resp_type`
#model 0
#fd_model <- lmer(description_num ~ description_type * fluency_score + (description_type | subject) + (fluency_score | scene), data = fd_df)
#boundary (singular) fit: see ?isSingular
#model 1
fd_model <- lmer(description_num ~ description_type * fluency_score + (description_type | subject) + (1 | scene), data = fd_df)
#fd_model
summary(fd_model)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## description_num ~ description_type * fluency_score + (description_type |
## subject) + (1 | scene)
## Data: fd_df
##
## REML criterion at convergence: 6357.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.8454 -0.7289 -0.1250 0.4267 4.8508
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subject (Intercept) 0.42001 0.6481
## description_typeimada_focal_description 0.24814 0.4981 -0.94
## scene (Intercept) 0.01534 0.1238
## Residual 0.79405 0.8911
## Number of obs: 2310, groups: subject, 165; scene, 7
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 0.657521 0.166242
## description_typeimada_focal_description -0.105789 0.150527
## fluency_score 0.025227 0.014028
## description_typeimada_focal_description:fluency_score 0.004253 0.013238
## t value
## (Intercept) 3.955
## description_typeimada_focal_description -0.703
## fluency_score 1.798
## description_typeimada_focal_description:fluency_score 0.321
##
## Correlation of Fixed Effects:
## (Intr) dsc___ flncy_
## dscrptn_t__ -0.792
## fluency_scr -0.897 0.771
## dscrpt___:_ 0.740 -0.934 -0.825
fd_df <- cn_fl_data %>%
filter(task_name == "FD") %>%
filter(grepl("full", resp_type)) %>%
mutate(description_num = as.numeric(resp),
description_type = factor(resp_type)) %>%
group_by(subject, resp_type) %>%
mutate(scene = as.character(row_number())) %>%
select(-resp, -task_info, -resp_type, -trial_info)
## Adding missing grouping variables: `resp_type`
#model 0
#fd_model <- lmer(description_num ~ description_type * fluency_score + (description_type | subject) + (fluency_score | scene), data = fd_df)
#boundary (singular) fit: see ?isSingular
#model 1
fd_model <- lmer(description_num ~ description_type * fluency_score + (description_type | subject) + (1 | scene), data = fd_df)
#fd_model
summary(fd_model)
## Linear mixed model fit by REML ['lmerMod']
## Formula:
## description_num ~ description_type * fluency_score + (description_type |
## subject) + (1 | scene)
## Data: fd_df
##
## REML criterion at convergence: 10311.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7625 -0.6252 -0.1684 0.5205 5.9432
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## subject (Intercept) 3.29721 1.8158
## description_typefull_focal_description 2.69183 1.6407 -0.97
## scene (Intercept) 0.04989 0.2234
## Residual 4.33319 2.0816
## Number of obs: 2310, groups: subject, 165; scene, 7
##
## Fixed effects:
## Estimate Std. Error
## (Intercept) 3.65458 0.44038
## description_typefull_focal_description -0.88728 0.43297
## fluency_score 0.04449 0.03801
## description_typefull_focal_description:fluency_score 0.02060 0.03808
## t value
## (Intercept) 8.299
## description_typefull_focal_description -2.049
## fluency_score 1.171
## description_typefull_focal_description:fluency_score 0.541
##
## Correlation of Fixed Effects:
## (Intr) dsc___ flncy_
## dscrptn_t__ -0.876
## fluency_scr -0.917 0.833
## dscrpt___:_ 0.818 -0.934 -0.892