South ural state university, Chelyabinsk, Russian federation
# Imports
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2 3.3.2 v fma 2.4
## v forecast 8.13 v expsmooth 2.3
##
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package: markovchain
## Version: 0.8.5-3
## Date: 2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#population in Spain = 46764483
#WHO COVID-19 global table data January 11th 2021 at 11.53.00 AM.csv
Full_original_data<-read.csv("F:/Phd/COVID 19 in 2021/WHO_data.csv")
View(Full_original_data)
y_lab<- "Covid 19 Infection cases in Spain " # input name of data
Actual_date_interval <- c("2020/01/03","2021/01/10")
Forecast_date_interval <- c("2021/01/11","2021/01/17")
validation_data_days <-7
frequency <-"days"
Population <-46764483 # population in Spain
# Data Preparation & calculate some of statistics measures
Covid_data<-Full_original_data[Full_original_data$Country == "Spain", ]
original_data<-Covid_data$Cumulative_cases
View(original_data)
summary(original_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 146358 257960 564018 875247 2025560
sd(original_data) # calculate standard deviation
## [1] 616918.1
skewness(original_data) # calculate Cofficient of skewness
## [1] 1.090816
kurtosis(original_data) # calculate Cofficient of kurtosis
## [1] 2.781643
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency) #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency) #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD))
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 64.33216 1721.255 1021.583 NaN Inf 0.1901531 -0.004840924
# Print Model Parameters
model_bats
## BATS(1, {2,2}, 1, -)
##
## Call: bats(y = data_series)
##
## Parameters
## Alpha: 0.126776
## Beta: 0.183256
## Damping Parameter: 0.999998
## AR coefficients: 0.920605 -0.407193
## MA coefficients: 0.715634 -0.07047
##
## Seed States:
## [,1]
## [1,] 695.98285
## [2,] -71.17898
## [3,] 0.00000
## [4,] 0.00000
## [5,] 0.00000
## [6,] 0.00000
##
## Sigma: 1721.255
## AIC: 7662.161
plot(model_bats,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.725 % MAPE 7 days Covid 19 Infection cases in Spain %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Covid 19 Infection cases in Spain "
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
## date_bats validation_data_by_name actual_data forecasting_bats
## 1 2021-01-04 Monday 1974823 1977081
## 2 2021-01-05 Tuesday 1983011 1991197
## 3 2021-01-06 Wednesday 1999362 2006904
## 4 2021-01-07 Thursday 2019090 2022698
## 5 2021-01-08 Friday 2025560 2037924
## 6 2021-01-09 Saturday 2025560 2052592
## 7 2021-01-10 Sunday 2025560 2066977
## MAPE_bats_Model
## 1 0.114 %
## 2 0.413 %
## 3 0.377 %
## 4 0.179 %
## 5 0.61 %
## 6 1.335 %
## 7 2.045 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
## FD forecating_date forecasting_by_bats
## 1 2021-01-11 Monday 2081330
## 2 2021-01-12 Tuesday 2095767
## 3 2021-01-13 Wednesday 2110295
## 4 2021-01-14 Thursday 2124873
## 5 2021-01-15 Friday 2139460
## 6 2021-01-16 Saturday 2154034
## 7 2021-01-17 Sunday 2168593
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days) # Root mean square forecast error
MSE_bats<-(sum((Error_bats^2))/validation_data_days) # Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,MSE_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error by using Bats Model shows result of correlation ,MSE ,MPER
## correlation_bats MSE_bats RMSE_bats
## 1 0.9379012 391573815 19788.22
## MAPE_Mean_All MAD_bats
## 1 0.725 % MAPE 7 days Covid 19 Infection cases in Spain 14629.74
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_bats REOF_Abats REOF_Fbats
## 1 2021-01-04 Monday 2258.401 0.114 % 0.114 %
## 2 2021-01-05 Tuesday 8186.104 0.413 % 0.411 %
## 3 2021-01-06 Wednesday 7542.056 0.377 % 0.376 %
## 4 2021-01-07 Thursday 3608.032 0.179 % 0.178 %
## 5 2021-01-08 Friday 12364.166 0.61 % 0.607 %
## 6 2021-01-09 Saturday 27032.095 1.335 % 1.317 %
## 7 2021-01-10 Sunday 41417.348 2.045 % 2.004 %
## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE, seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 76.99495 1896.6 1134.408 NaN Inf 0.2111539 0.04419437
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
##
## Call: NULL
##
## Parameters
## Alpha: 1.720444
## Beta: 0.3850237
## Damping Parameter: 1
## Gamma-1 Values: -0.003286456
## Gamma-2 Values: 0.005744953
##
## Seed States:
## [,1]
## [1,] 750.14984
## [2,] -88.11144
## [3,] -251.23764
## [4,] -15.25863
## [5,] -126.99616
## [6,] -25.34281
##
## Sigma: 1896.6
## AIC: 7727.366
plot(model_TBATS,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using TBATS Model for ==> Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in TBATS Model for ==> Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.31 % MAPE 7 days Covid 19 Infection cases in Spain %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in TBATS Model for ==> Covid 19 Infection cases in Spain "
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
## date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2021-01-04 Monday 1974823 1977029
## 2 2021-01-05 Tuesday 1983011 1987798
## 3 2021-01-06 Wednesday 1999362 1998698
## 4 2021-01-07 Thursday 2019090 2009786
## 5 2021-01-08 Friday 2025560 2020205
## 6 2021-01-09 Saturday 2025560 2030723
## 7 2021-01-10 Sunday 2025560 2041778
## MAPE_TBATS_Model
## 1 0.112 %
## 2 0.241 %
## 3 0.033 %
## 4 0.461 %
## 5 0.264 %
## 6 0.255 %
## 7 0.801 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
## FD forecating_date forecasting_by_TBATS
## 1 2021-01-11 Monday 2052547
## 2 2021-01-12 Tuesday 2063447
## 3 2021-01-13 Wednesday 2074535
## 4 2021-01-14 Thursday 2084954
## 5 2021-01-15 Friday 2095472
## 6 2021-01-16 Saturday 2106527
## 7 2021-01-17 Sunday 2117296
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model
Error_tbats<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days) # Root mean square forecast error
MSE_tbats<-(sum((Error_tbats^2))/validation_data_days) # Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,MSE_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error by using Holt's linear model shows result of correlation ,MSE ,MPER
## correlation_tbats MSE_tbats RMSE_tbats
## 1 0.9349741 61875684 7866.11
## MAPE_Mean_All MAD_tbats
## 1 0.31 % MAPE 7 days Covid 19 Infection cases in Spain 1864.268
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1 2021-01-04 Monday 2205.5711 0.112 % 0.112 %
## 2 2021-01-05 Tuesday 4786.5689 0.241 % 0.241 %
## 3 2021-01-06 Wednesday 663.9111 0.033 % 0.033 %
## 4 2021-01-07 Thursday 9303.9085 0.461 % 0.463 %
## 5 2021-01-08 Friday 5355.0253 0.264 % 0.265 %
## 6 2021-01-09 Saturday 5162.6533 0.255 % 0.254 %
## 7 2021-01-10 Sunday 16217.9290 0.801 % 0.794 %
## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -26.30459 2328.927 1282.801 NaN Inf 0.2387752 0.2026866
# Print Model Parameters
summary(model_holt$model)
## Holt's method
##
## Call:
## holt(y = data_series, h = N_forecasting_days + validation_data_days,
##
## Call:
## lambda = "auto")
##
## Box-Cox transformation: lambda= 0.6438
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 0.9999
##
## Initial states:
## l = -2.3353
## b = -0.7639
##
## sigma: 18.2188
##
## AIC AICc BIC
## 4303.647 4303.813 4323.174
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -26.30459 2328.927 1282.801 NaN Inf 0.2387752 0.2026866
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using holt Model for ==> Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in holt Model for ==> Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.827 % MAPE 7 days Covid 19 Infection cases in Spain %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in holt Model for ==> Covid 19 Infection cases in Spain "
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
## date_holt validation_data_by_name actual_data forecasting_holt
## 1 2021-01-04 Monday 1974823 1972437
## 2 2021-01-05 Tuesday 1983011 1978574
## 3 2021-01-06 Wednesday 1999362 1984717
## 4 2021-01-07 Thursday 2019090 1990867
## 5 2021-01-08 Friday 2025560 1997024
## 6 2021-01-09 Saturday 2025560 2003187
## 7 2021-01-10 Sunday 2025560 2009358
## MAPE_holt_Model
## 1 0.121 %
## 2 0.224 %
## 3 0.732 %
## 4 1.398 %
## 5 1.409 %
## 6 1.105 %
## 7 0.8 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
## FD forecating_date forecasting_by_holt
## 1 2021-01-11 Monday 2015535
## 2 2021-01-12 Tuesday 2021719
## 3 2021-01-13 Wednesday 2027909
## 4 2021-01-14 Thursday 2034106
## 5 2021-01-15 Friday 2040311
## 6 2021-01-16 Saturday 2046521
## 7 2021-01-17 Sunday 2052739
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days) # Root mean square forecast error
MSE_Holt<-(sum((Error_Holt^2))/validation_data_days) # Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,MSE_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error by using Holt's linear model shows result of correlation ,MSE ,MPER
## correlation_Holt MSE_Holt RMSE_Holt
## 1 0.9330847 373396759 19323.48
## MAPE_Mean_All MAD_Holt
## 1 0.827 % MAPE 7 days Covid 19 Infection cases in Spain 16686.1
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1 2021-01-04 Monday 2385.819 0.121 % 0.121 %
## 2 2021-01-05 Tuesday 4437.356 0.224 % 0.224 %
## 3 2021-01-06 Wednesday 14645.108 0.732 % 0.738 %
## 4 2021-01-07 Thursday 28223.079 1.398 % 1.418 %
## 5 2021-01-08 Friday 28536.275 1.409 % 1.429 %
## 6 2021-01-09 Saturday 22372.704 1.105 % 1.117 %
## 7 2021-01-10 Sunday 16202.371 0.8 % 0.806 %
#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series
paste ("tests For Check Stationarity in series ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series ==> Covid 19 Infection cases in Spain "
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: data_series
## KPSS Level = 5.1304, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series) # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: data_series
## Dickey-Fuller Z(alpha) = 0.73192, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series) # applay adf test
##
## Augmented Dickey-Fuller Test
##
## data: data_series
## Dickey-Fuller = -3.2906, Lag order = 7, p-value = 0.07281
## alternative hypothesis: stationary
ndiffs(data_series) # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in ==> Covid 19 Infection cases in Spain "
kpss.test(diff1_x1) # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff1_x1
## KPSS Level = 3.8554, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1) # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff1_x1
## Dickey-Fuller Z(alpha) = -30.559, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1) # applay adf test after taking first differences
##
## Augmented Dickey-Fuller Test
##
## data: diff1_x1
## Dickey-Fuller = -2.4687, Lag order = 7, p-value = 0.3791
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Covid 19 Infection cases in Spain "
kpss.test(diff2_x1) # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff2_x1
## KPSS Level = 0.059268, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1) # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff2_x1
## Dickey-Fuller Z(alpha) = -153.36, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1) # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff2_x1
## Dickey-Fuller = -5.2906, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp")) #applaying auto arima
##
## ARIMA(0,2,0) : 6696.498
## ARIMA(0,2,1) : 6654.804
## ARIMA(0,2,2) : 6563.483
## ARIMA(0,2,3) : 6564.945
## ARIMA(0,2,4) : 6560.478
## ARIMA(0,2,5) : 6452.524
## ARIMA(1,2,0) : 6682.932
## ARIMA(1,2,1) : 6627.926
## ARIMA(1,2,2) : 6562.667
## ARIMA(1,2,3) : 6560.268
## ARIMA(1,2,4) : 6534.126
## ARIMA(2,2,0) : 6608.658
## ARIMA(2,2,1) : 6540.68
## ARIMA(2,2,2) : 6420.077
## ARIMA(2,2,3) : 6543.098
## ARIMA(3,2,0) : 6602.728
## ARIMA(3,2,1) : 6540.2
## ARIMA(3,2,2) : 6522.062
## ARIMA(4,2,0) : 6529.162
## ARIMA(4,2,1) : 6467.972
## ARIMA(5,2,0) : 6390.814
##
##
##
## Best model: ARIMA(5,2,0)
model1 # show the result of autoarima
## Series: data_series
## ARIMA(5,2,0)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.0829 -0.5867 -0.3799 -0.3480 -0.5770
## s.e. 0.0430 0.0395 0.0466 0.0395 0.0437
##
## sigma^2 estimated as 2284965: log likelihood=-3189.29
## AIC=6390.58 AICc=6390.81 BIC=6413.98
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE)
{
order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
m <- order[7]
result <- paste("ARIMA(", order[1], ",", order[2], ",",
order[3], ")", sep = "")
if (m > 1 && sum(order[4:6]) > 0) {
result <- paste(result, "(", order[4], ",", order[5],
",", order[6], ")[", m, "]", sep = "")
}
if (padding && m > 1 && sum(order[4:6]) == 0) {
result <- paste(result, " ", sep = "")
if (m <= 9) {
result <- paste(result, " ", sep = "")
}
else if (m <= 99) {
result <- paste(result, " ", sep = "")
}
else {
result <- paste(result, " ", sep = "")
}
}
if (!is.null(object$xreg)) {
if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
result <- paste(result, "with drift ")
}
else {
result <- paste("Regression with", result, "errors")
}
}
else {
if (is.element("constant", names(object$coef)) || is.element("intercept",
names(object$coef))) {
result <- paste(result, "with non-zero mean")
}
else if (order[2] == 0 && order[5] == 0) {
result <- paste(result, "with zero mean ")
}
else {
result <- paste(result, " ")
}
}
if (!padding) {
result <- gsub("[ ]*$", "", result)
}
return(result)
}
source("stringthearima.R")
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 5 2 0
strtoi(bestmodel[3])
## [1] 0
#2. Using ACF and PACF Function
#par(mfrow=c(1,2)) # Code for making two plot in one graph
acf(diff2_x1,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast) # install library forecast
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima for forecasting
x1_model1 # Show result of best model of auto arima
##
## Call:
## arima(x = data_series, order = c(bestmodel))
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.0829 -0.5867 -0.3799 -0.3480 -0.5770
## s.e. 0.0430 0.0395 0.0466 0.0395 0.0437
##
## sigma^2 estimated as 2253664: log likelihood = -3189.29, aic = 6390.58
paste ("accuracy of autoarima Model For ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For ==> Covid 19 Infection cases in Spain "
accuracy(x1_model1) # aacuracy of best model from auto arima
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 87.43194 1497.125 916.4811 0.982646 2.534609 0.1705899 -0.115491
x1_model1$x # show result of best model from auto arima
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab) # checkresiduals from best model from using auto arima

##
## Ljung-Box test
##
## data: Residuals from ARIMA(5,2,0)
## Q* = 250.02, df = 5, p-value < 2.2e-16
##
## Model df: 5. Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for ==> Covid 19 Infection cases in Spain "
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box") # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
##
## Box-Ljung test
##
## data: x1_model1$residuals^2
## X-squared = 351.81, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals) # Do test jarque.bera.test
##
## Jarque Bera Test
##
## data: x1_model1$residuals
## X-squared = 182.6, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.398 % MAPE 7 days Covid 19 Infection cases in Spain %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Covid 19 Infection cases in Spain "
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
## date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1 2021-01-04 Monday 1974823 1970440
## 2 2021-01-05 Tuesday 1983011 1978331
## 3 2021-01-06 Wednesday 1999362 1990986
## 4 2021-01-07 Thursday 2019090 2007232
## 5 2021-01-08 Friday 2025560 2022580
## 6 2021-01-09 Saturday 2025560 2033927
## 7 2021-01-10 Sunday 2025560 2040942
## MAPE_auto.arima_Model
## 1 0.222 %
## 2 0.236 %
## 3 0.419 %
## 4 0.587 %
## 5 0.147 %
## 6 0.413 %
## 7 0.759 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
## FD forecating_date forecasting_by_auto.arima
## 1 2021-01-11 Monday 2047005
## 2 2021-01-12 Tuesday 2055450
## 3 2021-01-13 Wednesday 2067811
## 4 2021-01-14 Thursday 2082629
## 5 2021-01-15 Friday 2096871
## 6 2021-01-16 Saturday 2107953
## 7 2021-01-17 Sunday 2115964
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days) # Root mean square forecast error
MSE_auto.arima<-(sum((Error_auto.arima^2))/validation_data_days) # Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,MSE_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error by using Holt's linear model shows result of correlation ,MSE ,MPER
## correlation_auto.arima MSE_auto.arima RMSE_auto.arima
## 1 0.9496182 81053741 9002.985
## MAPE_Mean_All MAD_auto.arima
## 1 0.398 % MAPE 7 days Covid 19 Infection cases in Spain 1218.302
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1 2021-01-04 Monday 4382.739 0.222 %
## 2 2021-01-05 Tuesday 4680.487 0.236 %
## 3 2021-01-06 Wednesday 8375.810 0.419 %
## 4 2021-01-07 Thursday 11858.134 0.587 %
## 5 2021-01-08 Friday 2979.889 0.147 %
## 6 2021-01-09 Saturday 8366.957 0.413 %
## 7 2021-01-10 Sunday 15381.989 0.759 %
## REOF_F_auto.arima
## 1 0.222 %
## 2 0.237 %
## 3 0.421 %
## 4 0.591 %
## 5 0.147 %
## 6 0.411 %
## 7 0.754 %
# SIR Model
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.05060856 0.04182966
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days) # Root mean square forecast error
MSE_SIR<-(sum((Error_SIR^2))/validation_data_days) # Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,MSE_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error by using SIR's linear model shows result of correlation ,MSE ,MPER
## correlation_SIR MSE_SIR RMSE_SIR
## 1 0.935817 5813286179 76244.91
## MAPE_Mean_All MAD_SIR
## 1 3.772 % MAPE 7 days Covid 19 Infection cases in Spain 75678.54
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1 2021-01-04 Monday 80464.00 4.074 % 4.248 %
## 2 2021-01-05 Tuesday 75957.29 3.83 % 3.983 %
## 3 2021-01-06 Wednesday 79720.50 3.987 % 4.153 %
## 4 2021-01-07 Thursday 86971.74 4.307 % 4.501 %
## 5 2021-01-08 Friday 81080.10 4.003 % 4.17 %
## 6 2021-01-09 Saturday 68837.66 3.398 % 3.518 %
## 7 2021-01-10 Sunday 56718.51 2.8 % 2.881 %
## validation_forecast testing_data
## 1 1894359 1974823
## 2 1907054 1983011
## 3 1919641 1999362
## 4 1932118 2019090
## 5 1944480 2025560
## 6 1956722 2025560
## 7 1968841 2025560
## forecasting by SIR model
Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.1955389 0.1783149
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
## FD forecating_date forecasting_by_SIR
## 1 2021-01-11 Monday 1974823
## 2 2021-01-12 Tuesday 1991070
## 3 2021-01-13 Wednesday 2004349
## 4 2021-01-14 Thursday 2014605
## 5 2021-01-15 Friday 2021800
## 6 2021-01-16 Saturday 2025917
## 7 2021-01-17 Sunday 2026957
# Choose Best model by least error
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> Covid 19 Infection cases in Spain "
M1<-mean(REOF_A_bats)
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using TBATS Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using TBATS Model For ==> Covid 19 Infection cases in Spain "
M2<-mean(REOF_A_tbats1)
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using Holt's Linear << Exponential Smoothing >> For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using Holt's Linear << Exponential Smoothing >> For ==> Covid 19 Infection cases in Spain "
M3<-REOF_A_Holt11
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using auto arima Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using auto arima Model For ==> Covid 19 Infection cases in Spain "
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using SIR Model For ==> Covid 19 Infection cases in Spain "
M5<-REOF_A_SIR1
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using autoarima Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using autoarima Model For ==> Covid 19 Infection cases in Spain "
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
## validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1 2021-01-04 Monday 0.1143596 0.11168450
## 2 2021-01-05 Tuesday 0.4128118 0.24137884
## 3 2021-01-06 Wednesday 0.3772231 0.03320615
## 4 2021-01-07 Thursday 0.1786959 0.46079712
## 5 2021-01-08 Friday 0.6104073 0.26437259
## 6 2021-01-09 Saturday 1.3345492 0.25487536
## 7 2021-01-10 Sunday 2.0447357 0.80066397
## MAPE_Holt_error MAPE_autoarima_error
## 1 0.1208118 0.2219307
## 2 0.2237686 0.2360293
## 3 0.7324890 0.4189242
## 4 1.3978118 0.5873009
## 5 1.4088092 0.1471143
## 6 1.1045194 0.4130688
## 7 0.7998959 0.7593944
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing ..... ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing ..... ... . .Select Minimum MAPE from Models for select best Model ==> Covid 19 Infection cases in Spain "
best_recommended_model
## [1] 0.3095684
paste ("Best Model For Forecasting ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting ==> Covid 19 Infection cases in Spain "
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend That's better TBATS For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend That's better TBATS For forecasting ==> Covid 19 Infection cases in Spain "
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model > That's better For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model That's better For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M5) {paste("System Recommend SIR Model That's better For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting by using autoarima and Holt's ,TBATS, and SIR Model ==>",y_lab, sep=" ")
## System finished Forecasting by using autoarima and Holt's ,TBATS, and SIR Model ==>Covid 19 Infection cases in Spain
message(" Thank you for using our System For Modelling ==> ",y_lab, sep=" ")
## Thank you for using our System For Modelling ==> Covid 19 Infection cases in Spain