New techniques For Forecasting Covid 19 In top 10 countries infected ( Spain)

By

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## 
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#population in  Spain  = 46764483
#WHO COVID-19 global table data January 11th 2021 at 11.53.00 AM.csv
Full_original_data<-read.csv("F:/Phd/COVID 19 in 2021/WHO_data.csv")
View(Full_original_data)
y_lab<- "Covid 19 Infection cases in Spain "   # input name of data
Actual_date_interval <- c("2020/01/03","2021/01/10")
Forecast_date_interval <- c("2021/01/11","2021/01/17")
validation_data_days <-7
frequency <-"days"
Population <-46764483 # population in Spain
# Data Preparation & calculate some of statistics measures
Covid_data<-Full_original_data[Full_original_data$Country == "Spain", ]
original_data<-Covid_data$Cumulative_cases
View(original_data)
summary(original_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0  146358  257960  564018  875247 2025560
sd(original_data)  # calculate standard deviation
## [1] 616918.1
skewness(original_data)  # calculate Cofficient of skewness
## [1] 1.090816
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 2.781643
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                    ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set 64.33216 1721.255 1021.583 NaN  Inf 0.1901531 -0.004840924
# Print Model Parameters
model_bats
## BATS(1, {2,2}, 1, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Alpha: 0.126776
##   Beta: 0.183256
##   Damping Parameter: 0.999998
##   AR coefficients: 0.920605 -0.407193
##   MA coefficients: 0.715634 -0.07047
## 
## Seed States:
##           [,1]
## [1,] 695.98285
## [2,] -71.17898
## [3,]   0.00000
## [4,]   0.00000
## [5,]   0.00000
## [6,]   0.00000
## 
## Sigma: 1721.255
## AIC: 7662.161
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.725 % MAPE  7 days Covid 19 Infection cases in Spain  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 Infection cases in Spain "
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2021-01-04                  Monday     1974823          1977081
## 2 2021-01-05                 Tuesday     1983011          1991197
## 3 2021-01-06               Wednesday     1999362          2006904
## 4 2021-01-07                Thursday     2019090          2022698
## 5 2021-01-08                  Friday     2025560          2037924
## 6 2021-01-09                Saturday     2025560          2052592
## 7 2021-01-10                  Sunday     2025560          2066977
##   MAPE_bats_Model
## 1         0.114 %
## 2         0.413 %
## 3         0.377 %
## 4         0.179 %
## 5          0.61 %
## 6         1.335 %
## 7         2.045 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2021-01-11          Monday             2081330
## 2 2021-01-12         Tuesday             2095767
## 3 2021-01-13       Wednesday             2110295
## 4 2021-01-14        Thursday             2124873
## 5 2021-01-15          Friday             2139460
## 6 2021-01-16        Saturday             2154034
## 7 2021-01-17          Sunday             2168593
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MSE_bats<-(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error  
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,MSE_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats  MSE_bats RMSE_bats
## 1        0.9379012 391573815  19788.22
##                                             MAPE_Mean_All MAD_bats
## 1 0.725 % MAPE  7 days Covid 19 Infection cases in Spain  14629.74
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_bats REOF_Abats REOF_Fbats
## 1       2021-01-04              Monday  2258.401    0.114 %    0.114 %
## 2       2021-01-05             Tuesday  8186.104    0.413 %    0.411 %
## 3       2021-01-06           Wednesday  7542.056    0.377 %    0.376 %
## 4       2021-01-07            Thursday  3608.032    0.179 %    0.178 %
## 5       2021-01-08              Friday 12364.166     0.61 %    0.607 %
## 6       2021-01-09            Saturday 27032.095    1.335 %    1.317 %
## 7       2021-01-10              Sunday 41417.348    2.045 %    2.004 %
## TBATS Model

# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                    ME   RMSE      MAE MPE MAPE      MASE       ACF1
## Training set 76.99495 1896.6 1134.408 NaN  Inf 0.2111539 0.04419437
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 1.720444
##   Beta: 0.3850237
##   Damping Parameter: 1
##   Gamma-1 Values: -0.003286456
##   Gamma-2 Values: 0.005744953
## 
## Seed States:
##            [,1]
## [1,]  750.14984
## [2,]  -88.11144
## [3,] -251.23764
## [4,]  -15.25863
## [5,] -126.99616
## [6,]  -25.34281
## 
## Sigma: 1896.6
## AIC: 7727.366
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using TBATS Model for  ==>  Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.31 % MAPE  7 days Covid 19 Infection cases in Spain  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  Covid 19 Infection cases in Spain "
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2021-01-04                  Monday     1974823           1977029
## 2 2021-01-05                 Tuesday     1983011           1987798
## 3 2021-01-06               Wednesday     1999362           1998698
## 4 2021-01-07                Thursday     2019090           2009786
## 5 2021-01-08                  Friday     2025560           2020205
## 6 2021-01-09                Saturday     2025560           2030723
## 7 2021-01-10                  Sunday     2025560           2041778
##   MAPE_TBATS_Model
## 1          0.112 %
## 2          0.241 %
## 3          0.033 %
## 4          0.461 %
## 5          0.264 %
## 6          0.255 %
## 7          0.801 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2021-01-11          Monday              2052547
## 2 2021-01-12         Tuesday              2063447
## 3 2021-01-13       Wednesday              2074535
## 4 2021-01-14        Thursday              2084954
## 5 2021-01-15          Friday              2095472
## 6 2021-01-16        Saturday              2106527
## 7 2021-01-17          Sunday              2117296
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model

Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MSE_tbats<-(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,MSE_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_tbats MSE_tbats RMSE_tbats
## 1         0.9349741  61875684    7866.11
##                                            MAPE_Mean_All MAD_tbats
## 1 0.31 % MAPE  7 days Covid 19 Infection cases in Spain   1864.268
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2021-01-04              Monday  2205.5711      0.112 %      0.112 %
## 2       2021-01-05             Tuesday  4786.5689      0.241 %      0.241 %
## 3       2021-01-06           Wednesday   663.9111      0.033 %      0.033 %
## 4       2021-01-07            Thursday  9303.9085      0.461 %      0.463 %
## 5       2021-01-08              Friday  5355.0253      0.264 %      0.265 %
## 6       2021-01-09            Saturday  5162.6533      0.255 %      0.254 %
## 7       2021-01-10              Sunday 16217.9290      0.801 %      0.794 %
## Holt's linear trend


# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                     ME     RMSE      MAE MPE MAPE      MASE      ACF1
## Training set -26.30459 2328.927 1282.801 NaN  Inf 0.2387752 0.2026866
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.6438 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
##     beta  = 0.9999 
## 
##   Initial states:
##     l = -2.3353 
##     b = -0.7639 
## 
##   sigma:  18.2188
## 
##      AIC     AICc      BIC 
## 4303.647 4303.813 4323.174 
## 
## Training set error measures:
##                     ME     RMSE      MAE MPE MAPE      MASE      ACF1
## Training set -26.30459 2328.927 1282.801 NaN  Inf 0.2387752 0.2026866
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using holt Model for  ==>  Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.827 % MAPE  7 days Covid 19 Infection cases in Spain  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  Covid 19 Infection cases in Spain "
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2021-01-04                  Monday     1974823          1972437
## 2 2021-01-05                 Tuesday     1983011          1978574
## 3 2021-01-06               Wednesday     1999362          1984717
## 4 2021-01-07                Thursday     2019090          1990867
## 5 2021-01-08                  Friday     2025560          1997024
## 6 2021-01-09                Saturday     2025560          2003187
## 7 2021-01-10                  Sunday     2025560          2009358
##   MAPE_holt_Model
## 1         0.121 %
## 2         0.224 %
## 3         0.732 %
## 4         1.398 %
## 5         1.409 %
## 6         1.105 %
## 7           0.8 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2021-01-11          Monday             2015535
## 2 2021-01-12         Tuesday             2021719
## 3 2021-01-13       Wednesday             2027909
## 4 2021-01-14        Thursday             2034106
## 5 2021-01-15          Friday             2040311
## 6 2021-01-16        Saturday             2046521
## 7 2021-01-17          Sunday             2052739
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MSE_Holt<-(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,MSE_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt  MSE_Holt RMSE_Holt
## 1        0.9330847 373396759  19323.48
##                                             MAPE_Mean_All MAD_Holt
## 1 0.827 % MAPE  7 days Covid 19 Infection cases in Spain   16686.1
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2021-01-04              Monday  2385.819     0.121 %     0.121 %
## 2       2021-01-05             Tuesday  4437.356     0.224 %     0.224 %
## 3       2021-01-06           Wednesday 14645.108     0.732 %     0.738 %
## 4       2021-01-07            Thursday 28223.079     1.398 %     1.418 %
## 5       2021-01-08              Friday 28536.275     1.409 %     1.429 %
## 6       2021-01-09            Saturday 22372.704     1.105 %     1.117 %
## 7       2021-01-10              Sunday 16202.371       0.8 %     0.806 %
#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  Covid 19 Infection cases in Spain "
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 5.1304, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 0.73192, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = -3.2906, Lag order = 7, p-value = 0.07281
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  Covid 19 Infection cases in Spain "
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 3.8554, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -30.559, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = -2.4687, Lag order = 7, p-value = 0.3791
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Covid 19 Infection cases in Spain "
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.059268, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -153.36, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -5.2906, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 6696.498
##  ARIMA(0,2,1)                    : 6654.804
##  ARIMA(0,2,2)                    : 6563.483
##  ARIMA(0,2,3)                    : 6564.945
##  ARIMA(0,2,4)                    : 6560.478
##  ARIMA(0,2,5)                    : 6452.524
##  ARIMA(1,2,0)                    : 6682.932
##  ARIMA(1,2,1)                    : 6627.926
##  ARIMA(1,2,2)                    : 6562.667
##  ARIMA(1,2,3)                    : 6560.268
##  ARIMA(1,2,4)                    : 6534.126
##  ARIMA(2,2,0)                    : 6608.658
##  ARIMA(2,2,1)                    : 6540.68
##  ARIMA(2,2,2)                    : 6420.077
##  ARIMA(2,2,3)                    : 6543.098
##  ARIMA(3,2,0)                    : 6602.728
##  ARIMA(3,2,1)                    : 6540.2
##  ARIMA(3,2,2)                    : 6522.062
##  ARIMA(4,2,0)                    : 6529.162
##  ARIMA(4,2,1)                    : 6467.972
##  ARIMA(5,2,0)                    : 6390.814
## 
## 
## 
##  Best model: ARIMA(5,2,0)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(5,2,0) 
## 
## Coefficients:
##           ar1      ar2      ar3      ar4      ar5
##       -0.0829  -0.5867  -0.3799  -0.3480  -0.5770
## s.e.   0.0430   0.0395   0.0466   0.0395   0.0437
## 
## sigma^2 estimated as 2284965:  log likelihood=-3189.29
## AIC=6390.58   AICc=6390.81   BIC=6413.98
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}






source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 5 2 0
strtoi(bestmodel[3])
## [1] 0
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##           ar1      ar2      ar3      ar4      ar5
##       -0.0829  -0.5867  -0.3799  -0.3480  -0.5770
## s.e.   0.0430   0.0395   0.0466   0.0395   0.0437
## 
## sigma^2 estimated as 2253664:  log likelihood = -3189.29,  aic = 6390.58
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  Covid 19 Infection cases in Spain "
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                    ME     RMSE      MAE      MPE     MAPE      MASE      ACF1
## Training set 87.43194 1497.125 916.4811 0.982646 2.534609 0.1705899 -0.115491
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(5,2,0)
## Q* = 250.02, df = 5, p-value < 2.2e-16
## 
## Model df: 5.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  Covid 19 Infection cases in Spain "
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 351.81, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 182.6, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='black')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  Covid 19 Infection cases in Spain "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 Infection cases in Spain "
paste(MAPE_Mean_All,"%")
## [1] "0.398 % MAPE  7 days Covid 19 Infection cases in Spain  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 Infection cases in Spain "
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2021-01-04                  Monday     1974823                1970440
## 2      2021-01-05                 Tuesday     1983011                1978331
## 3      2021-01-06               Wednesday     1999362                1990986
## 4      2021-01-07                Thursday     2019090                2007232
## 5      2021-01-08                  Friday     2025560                2022580
## 6      2021-01-09                Saturday     2025560                2033927
## 7      2021-01-10                  Sunday     2025560                2040942
##   MAPE_auto.arima_Model
## 1               0.222 %
## 2               0.236 %
## 3               0.419 %
## 4               0.587 %
## 5               0.147 %
## 6               0.413 %
## 7               0.759 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2021-01-11          Monday                   2047005
## 2 2021-01-12         Tuesday                   2055450
## 3 2021-01-13       Wednesday                   2067811
## 4 2021-01-14        Thursday                   2082629
## 5 2021-01-15          Friday                   2096871
## 6 2021-01-16        Saturday                   2107953
## 7 2021-01-17          Sunday                   2115964
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MSE_auto.arima<-(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,MSE_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima MSE_auto.arima RMSE_auto.arima
## 1              0.9496182       81053741        9002.985
##                                             MAPE_Mean_All MAD_auto.arima
## 1 0.398 % MAPE  7 days Covid 19 Infection cases in Spain        1218.302
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2021-01-04              Monday        4382.739           0.222 %
## 2       2021-01-05             Tuesday        4680.487           0.236 %
## 3       2021-01-06           Wednesday        8375.810           0.419 %
## 4       2021-01-07            Thursday       11858.134           0.587 %
## 5       2021-01-08              Friday        2979.889           0.147 %
## 6       2021-01-09            Saturday        8366.957           0.413 %
## 7       2021-01-10              Sunday       15381.989           0.759 %
##   REOF_F_auto.arima
## 1           0.222 %
## 2           0.237 %
## 3           0.421 %
## 4           0.591 %
## 5           0.147 %
## 6           0.411 %
## 7           0.754 %
# SIR Model 
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##       beta      gamma 
## 0.05060856 0.04182966
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MSE_SIR<-(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))

REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,MSE_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error  by using SIR's linear model shows result of correlation ,MSE ,MPER
##   correlation_SIR    MSE_SIR RMSE_SIR
## 1        0.935817 5813286179 76244.91
##                                             MAPE_Mean_All  MAD_SIR
## 1 3.772 % MAPE  7 days Covid 19 Infection cases in Spain  75678.54
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1       2021-01-04              Monday 80464.00    4.074 %    4.248 %
## 2       2021-01-05             Tuesday 75957.29     3.83 %    3.983 %
## 3       2021-01-06           Wednesday 79720.50    3.987 %    4.153 %
## 4       2021-01-07            Thursday 86971.74    4.307 %    4.501 %
## 5       2021-01-08              Friday 81080.10    4.003 %     4.17 %
## 6       2021-01-09            Saturday 68837.66    3.398 %    3.518 %
## 7       2021-01-10              Sunday 56718.51      2.8 %    2.881 %
##   validation_forecast testing_data
## 1             1894359      1974823
## 2             1907054      1983011
## 3             1919641      1999362
## 4             1932118      2019090
## 5             1944480      2025560
## 6             1956722      2025560
## 7             1968841      2025560
## forecasting by SIR model

Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us

SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##      beta     gamma 
## 0.1955389 0.1783149
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
##           FD forecating_date forecasting_by_SIR
## 1 2021-01-11          Monday            1974823
## 2 2021-01-12         Tuesday            1991070
## 3 2021-01-13       Wednesday            2004349
## 4 2021-01-14        Thursday            2014605
## 5 2021-01-15          Friday            2021800
## 6 2021-01-16        Saturday            2025917
## 7 2021-01-17          Sunday            2026957
# Choose Best model by least error

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  Covid 19 Infection cases in Spain "
M1<-mean(REOF_A_bats)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==>  Covid 19 Infection cases in Spain "
M2<-mean(REOF_A_tbats1)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==>  Covid 19 Infection cases in Spain "
M3<-REOF_A_Holt11

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==>  Covid 19 Infection cases in Spain "
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==>  Covid 19 Infection cases in Spain "
M5<-REOF_A_SIR1

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==>  Covid 19 Infection cases in Spain "
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
##   validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1       2021-01-04          Monday       0.1143596       0.11168450
## 2       2021-01-05         Tuesday       0.4128118       0.24137884
## 3       2021-01-06       Wednesday       0.3772231       0.03320615
## 4       2021-01-07        Thursday       0.1786959       0.46079712
## 5       2021-01-08          Friday       0.6104073       0.26437259
## 6       2021-01-09        Saturday       1.3345492       0.25487536
## 7       2021-01-10          Sunday       2.0447357       0.80066397
##   MAPE_Holt_error MAPE_autoarima_error
## 1       0.1208118            0.2219307
## 2       0.2237686            0.2360293
## 3       0.7324890            0.4189242
## 4       1.3978118            0.5873009
## 5       1.4088092            0.1471143
## 6       1.1045194            0.4130688
## 7       0.7998959            0.7593944
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==>  Covid 19 Infection cases in Spain "
best_recommended_model
## [1] 0.3095684
paste ("Best Model For Forecasting  ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting  ==>  Covid 19 Infection cases in Spain "
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better  For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend  That's better TBATS  For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend  That's better TBATS  For forecasting ==>  Covid 19 Infection cases in Spain "
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M5) {paste("System Recommend SIR Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>Covid 19 Infection cases in Spain
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> Covid 19 Infection cases in Spain