Baseline Regression - Increase MTurk Detail

We repeat our baseline regressions with the increased MTurk detail as seen below. We split these by gender.

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
risk_pred_prob -1.105*** -1.107*** -1.106*** -0.778*** -0.713***
(-1.211, -0.998) (-1.215, -1.000) (-1.214, -0.999) (-0.883, -0.673) (-0.818, -0.608)
skin_tonenumber_f7ddc4 0.002 0.002 -0.027 -0.041**
(-0.033, 0.037) (-0.033, 0.038) (-0.061, 0.007) (-0.075, -0.007)
age -0.0003 0.0003 0.001*
(-0.001, 0.001) (-0.001, 0.001) (0.00004, 0.002)
attractiveness -0.002 0.001 0.002
(-0.012, 0.008) (-0.009, 0.010) (-0.008, 0.012)
competence 0.003 -0.001 -0.003
(-0.009, 0.015) (-0.013, 0.010) (-0.014, 0.008)
dominance 0.001 0.005 0.006
(-0.008, 0.009) (-0.003, 0.012) (-0.001, 0.014)
trustworthiness 0.001 0.001 -0.002
(-0.010, 0.011) (-0.009, 0.011) (-0.012, 0.008)
p_hat_covariates 1.083*** 1.005***
(1.018, 1.148) (0.939, 1.071)
p_hat_cnn 0.403***
(0.336, 0.470)
Constant 1.102*** 1.088*** 1.088*** 0.114** -0.161***
(1.069, 1.136) (1.045, 1.131) (1.017, 1.158) (0.024, 0.203) (-0.261, -0.061)
Observations 8,479 8,479 8,479 8,479 8,479
Adjusted R2 0.033 0.033 0.033 0.112 0.122
F Statistic 291.841*** (df = 1; 8477) 17.216*** (df = 18; 8460) 13.490*** (df = 23; 8455) 45.641*** (df = 24; 8454) 48.180*** (df = 25; 8453)
Note: p<0.1; p<0.05; p<0.01

Gender Split

Female Subsample:

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
risk_pred_prob -0.966*** -0.946*** -0.916*** -0.679*** -0.618***
(-1.232, -0.700) (-1.214, -0.678) (-1.185, -0.647) (-0.942, -0.416) (-0.879, -0.357)
skin_tonenumber_f7ddc4 -0.071 -0.077* -0.085* -0.050
(-0.144, 0.003) (-0.150, -0.003) (-0.157, -0.013) (-0.122, 0.021)
age -0.002 -0.001 -0.0003
(-0.004, 0.0002) (-0.003, 0.001) (-0.002, 0.002)
attractiveness 0.012 0.012 0.011
(-0.006, 0.031) (-0.006, 0.030) (-0.007, 0.029)
competence -0.012 -0.014 -0.017
(-0.034, 0.009) (-0.035, 0.007) (-0.038, 0.004)
dominance 0.019** 0.016* 0.016*
(0.003, 0.034) (0.001, 0.031) (0.001, 0.031)
trustworthiness 0.004 0.005 0.002
(-0.015, 0.024) (-0.014, 0.024) (-0.017, 0.020)
p_hat_covariates 1.140*** 1.124***
(0.969, 1.311) (0.954, 1.293)
p_hat_cnn 0.582***
(0.417, 0.747)
Constant 1.118*** 1.145*** 1.095*** 0.043 -0.450***
(1.041, 1.195) (1.046, 1.244) (0.951, 1.239) (-0.168, 0.254) (-0.701, -0.198)
Observations 1,833 1,833 1,833 1,833 1,833
Adjusted R2 0.019 0.022 0.026 0.086 0.102
F Statistic 35.610*** (df = 1; 1831) 3.239*** (df = 18; 1814) 3.113*** (df = 23; 1809) 8.192*** (df = 24; 1808) 9.355*** (df = 25; 1807)
Note: p<0.1; p<0.05; p<0.01

Male Subsample:

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
risk_pred_prob -1.039*** -1.043*** -1.048*** -0.791*** -0.749***
(-1.158, -0.920) (-1.163, -0.923) (-1.168, -0.928) (-0.908, -0.674) (-0.865, -0.633)
skin_tonenumber_f7ddc4 0.001 0.003 -0.013 -0.033
(-0.040, 0.043) (-0.039, 0.045) (-0.053, 0.027) (-0.073, 0.007)
age 0.001 0.001 0.001*
(-0.001, 0.002) (-0.001, 0.002) (0.0001, 0.002)
attractiveness -0.006 -0.002 -0.0001
(-0.018, 0.005) (-0.013, 0.010) (-0.011, 0.011)
competence 0.005 0.001 0.001
(-0.008, 0.019) (-0.012, 0.015) (-0.012, 0.014)
dominance 0.002 0.0004 -0.001
(-0.008, 0.012) (-0.009, 0.010) (-0.010, 0.009)
trustworthiness -0.003 -0.0005 -0.002
(-0.015, 0.010) (-0.012, 0.011) (-0.014, 0.010)
p_hat_covariates 1.086*** 1.043***
(1.011, 1.160) (0.968, 1.117)
p_hat_cnn 0.467***
(0.385, 0.549)
Constant 1.066*** 1.053*** 1.041*** 0.130** -0.197***
(1.028, 1.105) (1.005, 1.101) (0.959, 1.124) (0.029, 0.231) (-0.313, -0.082)
Observations 6,646 6,646 6,646 6,646 6,646
Adjusted R2 0.030 0.030 0.029 0.107 0.118
F Statistic 206.526*** (df = 1; 6644) 12.312*** (df = 18; 6627) 9.751*** (df = 23; 6622) 34.077*** (df = 24; 6621) 36.641*** (df = 25; 6620)
Note: p<0.1; p<0.05; p<0.01

Label regressions

We now regress the individual, and combined, MTurk label on the release outcome. These are;

  1. Attractiveness
  2. Competence
  3. Dominance
  4. Trustworthiness

We split these regressions by: gender and race.

Combined Male-Female

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
attractiveness 0.005 0.003
(-0.001, 0.012) (-0.006, 0.013)
competence 0.005 0.003
(-0.002, 0.013) (-0.009, 0.015)
dominance -0.002 -0.006
(-0.009, 0.006) (-0.014, 0.003)
trustworthiness 0.006 0.003
(-0.001, 0.012) (-0.008, 0.013)
Constant 0.737*** 0.735*** 0.770*** 0.735*** 0.745***
(0.706, 0.769) (0.697, 0.773) (0.732, 0.808) (0.702, 0.768) (0.700, 0.790)
Observations 8,479 8,479 8,479 8,479 8,479
Adjusted R2 0.0001 0.00004 -0.0001 0.0001 -0.0001
F Statistic 1.654 (df = 1; 8477) 1.351 (df = 1; 8477) 0.141 (df = 1; 8477) 1.893 (df = 1; 8477) 0.838 (df = 4; 8474)
Note: p<0.1; p<0.05; p<0.01

Subsample Female

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5) (6)
attractiveness 0.019*** 0.016 0.013*
(0.007, 0.030) (-0.001, 0.033) (0.0005, 0.026)
competence 0.014* -0.010
(0.001, 0.027) (-0.032, 0.011)
dominance 0.021*** 0.016* 0.014
(0.008, 0.034) (0.001, 0.032) (-0.0004, 0.028)
trustworthiness 0.015** 0.004
(0.003, 0.027) (-0.016, 0.023)
Constant 0.753*** 0.772*** 0.741*** 0.770*** 0.720*** 0.710***
(0.696, 0.809) (0.704, 0.839) (0.676, 0.806) (0.710, 0.831) (0.643, 0.796) (0.639, 0.782)
Observations 1,833 1,833 1,833 1,833 1,833 1,833
Adjusted R2 0.003 0.001 0.003 0.002 0.004 0.004
F Statistic 7.370*** (df = 1; 1831) 3.162* (df = 1; 1831) 7.024*** (df = 1; 1831) 4.116** (df = 1; 1831) 2.639** (df = 4; 1828) 4.969*** (df = 2; 1830)
Note: p<0.1; p<0.05; p<0.01

Subsample Male

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
attractiveness -0.001 -0.004
(-0.009, 0.007) (-0.015, 0.007)
competence 0.002 0.005
(-0.007, 0.011) (-0.008, 0.019)
dominance -0.001 -0.001
(-0.009, 0.008) (-0.011, 0.008)
trustworthiness 0.001 0.0003
(-0.007, 0.008) (-0.012, 0.013)
Constant 0.745*** 0.729*** 0.743*** 0.737*** 0.737***
(0.708, 0.782) (0.684, 0.774) (0.697, 0.789) (0.698, 0.775) (0.683, 0.791)
Observations 6,646 6,646 6,646 6,646 6,646
Adjusted R2 -0.0001 -0.0001 -0.0001 -0.0001 -0.001
F Statistic 0.072 (df = 1; 6644) 0.138 (df = 1; 6644) 0.019 (df = 1; 6644) 0.013 (df = 1; 6644) 0.162 (df = 4; 6641)
Note: p<0.1; p<0.05; p<0.01

Subsample Black

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
attractiveness 0.001 0.001
(-0.008, 0.010) (-0.012, 0.015)
competence 0.003 0.007
(-0.007, 0.013) (-0.008, 0.023)
dominance -0.004 -0.007
(-0.014, 0.006) (-0.018, 0.004)
trustworthiness 0.001 -0.003
(-0.008, 0.010) (-0.017, 0.011)
Constant 0.755*** 0.746*** 0.781*** 0.756*** 0.767***
(0.712, 0.797) (0.695, 0.797) (0.729, 0.833) (0.712, 0.799) (0.705, 0.828)
Observations 4,768 4,768 4,768 4,768 4,768
Adjusted R2 -0.0002 -0.0002 -0.0001 -0.0002 -0.001
F Statistic 0.044 (df = 1; 4766) 0.222 (df = 1; 4766) 0.450 (df = 1; 4766) 0.025 (df = 1; 4766) 0.327 (df = 4; 4763)
Note: p<0.1; p<0.05; p<0.01

Subsample Not-Black

Multihead(ResNet50)
Dependent variable:
Release Outcome
(1) (2) (3) (4) (5)
attractiveness 0.010 0.006
(-0.0002, 0.019) (-0.009, 0.021)
competence 0.008 -0.002
(-0.003, 0.019) (-0.020, 0.016)
dominance 0.001 -0.005
(-0.009, 0.012) (-0.017, 0.008)
trustworthiness 0.011* 0.010
(0.001, 0.022) (-0.006, 0.026)
Constant 0.716*** 0.723*** 0.756*** 0.708*** 0.719***
(0.667, 0.766) (0.666, 0.781) (0.700, 0.813) (0.657, 0.759) (0.653, 0.786)
Observations 3,711 3,711 3,711 3,711 3,711
Adjusted R2 0.0004 0.0001 -0.0003 0.001 0.00004
F Statistic 2.602 (df = 1; 3709) 1.377 (df = 1; 3709) 0.046 (df = 1; 3709) 3.398* (df = 1; 3709) 1.033 (df = 4; 3706)
Note: p<0.1; p<0.05; p<0.01