DADOS OBTIDOS DE SCLEROTINIA SCLEROTIORUM
library(agricolae)
library(readxl)
library(agricolae)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'xts'
## The following objects are masked from 'package:dplyr':
##
## first, last
##
## Attaching package: 'PerformanceAnalytics'
## The following objects are masked from 'package:agricolae':
##
## kurtosis, skewness
## The following object is masked from 'package:graphics':
##
## legend
library(plotly)
## Loading required package: ggplot2
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v tibble 3.0.4 v purrr 0.3.4
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x plotly::filter() masks dplyr::filter(), stats::filter()
## x xts::first() masks dplyr::first()
## x dplyr::lag() masks stats::lag()
## x xts::last() masks dplyr::last()
library(reshape2)
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
## smiths
library(ggrepel)
library(rgl)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:purrr':
##
## some
## The following object is masked from 'package:dplyr':
##
## recode
library(sf)
## Linking to GEOS 3.8.0, GDAL 3.0.4, PROJ 6.3.1
library(tmap)
library(rgdal)
## Loading required package: sp
## rgdal: version: 1.5-18, (SVN revision 1082)
## Geospatial Data Abstraction Library extensions to R successfully loaded
## Loaded GDAL runtime: GDAL 3.0.4, released 2020/01/28
## Path to GDAL shared files: C:/Users/User/Documents/R/win-library/4.0/rgdal/gdal
## GDAL binary built with GEOS: TRUE
## Loaded PROJ runtime: Rel. 6.3.1, February 10th, 2020, [PJ_VERSION: 631]
## Path to PROJ shared files: C:/Users/User/Documents/R/win-library/4.0/rgdal/proj
## Linking to sp version:1.4-4
## To mute warnings of possible GDAL/OSR exportToProj4() degradation,
## use options("rgdal_show_exportToProj4_warnings"="none") before loading rgdal.
library(esquisse)
library(ggplot2)
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
dt <- read_excel("C:/Users/User/Desktop/Sclerotinia_Sclerotiorum.xlsx",
sheet = "re3")
attach(dt)
names(dt)
## [1] "genot" "trat" "bloco" "folf" "talf" "folsec" "talsec" "rasec"
a <- as.factor(genot)
b <- as.factor(trat)
inter<-as.factor(a:b)
############ 1.1 anova folha fresca ###########################
summary(aov(folf ~ a+b+inter, data = dt))
## Df Sum Sq Mean Sq F value Pr(>F)
## a 4 0.00822 0.002054 0.476 0.7531
## b 1 0.02504 0.025042 5.801 0.0224 *
## inter 4 0.00124 0.000310 0.072 0.9901
## Residuals 30 0.12950 0.004317
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(folf ~ a + b + inter, data = dt),
"a", alpha = 0.05)["groups"]
## $groups
## folf groups
## MT 0.1790000 a
## VF.1 0.1600000 a
## VF 0.1520000 a
## VG 0.1430000 a
## VA 0.1384375 a
LSD.test(aov(folf ~ a + b + inter, data = dt),
"b", alpha = 0.05)["groups"]
## $groups
## folf groups
## ino 0.1795083 a
## noinoc 0.1294667 b
LSD.test(aov(folf ~ a + b + inter, data = dt),
"inter", alpha = 0.05)["groups"]
## $groups
## folf groups
## MT:ino 0.2015000 a
## VF:ino 0.1815000 a
## VF.1:ino 0.1755000 a
## VG:ino 0.1696667 a
## VA:ino 0.1693750 a
## MT:noinoc 0.1565000 a
## VF.1:noinoc 0.1445000 a
## VF:noinoc 0.1225000 a
## VG:noinoc 0.1163333 a
## VA:noinoc 0.1075000 a
shapiro.test(unlist(aov(folf ~ a + b + inter,
data = dt)["residuals"]))
##
## Shapiro-Wilk normality test
##
## data: unlist(aov(folf ~ a + b + inter, data = dt)["residuals"])
## W = 0.97057, p-value = 0.375
res <-sort(unlist(aov( folf ~ a + b + inter,
data = dt)["residuals"]),decreasing = TRUE)
ks.test(res, "pnorm" ,mean(res),sd(res))
##
## One-sample Kolmogorov-Smirnov test
##
## data: res
## D = 0.088877, p-value = 0.8825
## alternative hypothesis: two-sided
kruskal(folf, inter)["groups"]
## $groups
## folf groups
## MT:ino 28.75 a
## VF:ino 24.75 a
## VA:ino 24.00 a
## VF.1:ino 23.00 a
## VG:ino 23.00 a
## MT:noinoc 21.75 a
## VF.1:noinoc 19.25 a
## VF:noinoc 15.50 a
## VG:noinoc 13.25 a
## VA:noinoc 11.75 a
##### 1.2 anova talo fresco #####################################################
summary(aov(talf ~ a+b+inter, data = dt))
## Df Sum Sq Mean Sq F value Pr(>F)
## a 4 0.01186 0.002966 0.868 0.4945
## b 1 0.02729 0.027292 7.987 0.0083 **
## inter 4 0.00243 0.000607 0.178 0.9482
## Residuals 30 0.10251 0.003417
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(talf ~ a + b + inter, data = dt),
"a", alpha = 0.05)["groups"]
## $groups
## talf groups
## MT 0.1512500 a
## VF 0.1287500 a
## VF.1 0.1122500 a
## VG 0.1107500 a
## VA 0.1029375 a
LSD.test(aov(talf ~ a + b + inter, data = dt),
"b", alpha = 0.05)["groups"]
## $groups
## talf groups
## ino 0.14730833 a
## noinoc 0.09506667 b
LSD.test(aov(talf ~ a + b + inter, data = dt),
"inter", alpha = 0.05)["groups"]
## $groups
## talf groups
## MT:ino 0.18250000 a
## VF:ino 0.15350000 ab
## VG:ino 0.14466667 ab
## VA:ino 0.13187500 ab
## VF.1:ino 0.12400000 ab
## MT:noinoc 0.12000000 ab
## VF:noinoc 0.10400000 ab
## VF.1:noinoc 0.10050000 ab
## VG:noinoc 0.07683333 b
## VA:noinoc 0.07400000 b
shapiro.test(unlist(aov(talf ~ a + b + inter,
data = dt)["residuals"]))
##
## Shapiro-Wilk normality test
##
## data: unlist(aov(talf ~ a + b + inter, data = dt)["residuals"])
## W = 0.92541, p-value = 0.01144
res <-sort(unlist(aov( talf ~ a + b + inter,
data = dt)["residuals"]),decreasing = TRUE)
ks.test(res, "pnorm" ,mean(res),sd(res))
##
## One-sample Kolmogorov-Smirnov test
##
## data: res
## D = 0.15249, p-value = 0.2806
## alternative hypothesis: two-sided
kruskal(talf, inter)["groups"]
## $groups
## talf groups
## MT:ino 32.875 a
## VF:ino 25.500 a
## VA:ino 24.250 ab
## MT:noinoc 24.000 abc
## VG:ino 22.000 abc
## VF.1:ino 21.375 abc
## VF.1:noinoc 19.000 abc
## VF:noinoc 18.125 abc
## VA:noinoc 9.000 bc
## VG:noinoc 8.875 c
#######1.3 anova folhas secas #################################
summary(aov(folsec ~ a+b+inter, data = dt))
## Df Sum Sq Mean Sq F value Pr(>F)
## a 4 0.001096 2.741e-04 0.898 0.477
## b 1 0.000011 1.061e-05 0.035 0.853
## inter 4 0.000662 1.654e-04 0.542 0.706
## Residuals 30 0.009152 3.051e-04
LSD.test(aov(folsec ~ a + b + inter, data = dt),
"a", alpha = 0.05)["groups"]
## $groups
## folsec groups
## MT 0.04325000 a
## VF 0.04042000 a
## VG 0.03673542 a
## VF.1 0.03162250 a
## VA 0.02925000 a
LSD.test(aov(folsec ~ a + b + inter, data = dt),
"b", alpha = 0.05)["groups"]
## $groups
## folsec groups
## ino 0.03677050 a
## noinoc 0.03574067 a
LSD.test(aov(folsec ~ a + b + inter, data = dt),
"inter", alpha = 0.05)["groups"]
## $groups
## folsec groups
## MT:noinoc 0.04650000 a
## VF:noinoc 0.04274500 ab
## MT:ino 0.04000000 ab
## VF:ino 0.03809500 ab
## VG:ino 0.03776250 ab
## VA:ino 0.03737500 ab
## VG:noinoc 0.03570833 ab
## VF.1:noinoc 0.03262500 ab
## VF.1:ino 0.03062000 ab
## VA:noinoc 0.02112500 b
shapiro.test(unlist(aov(folsec ~ a + b + inter,
data = dt)["residuals"]))
##
## Shapiro-Wilk normality test
##
## data: unlist(aov(folsec ~ a + b + inter, data = dt)["residuals"])
## W = 0.95676, p-value = 0.1297
res <-sort(unlist(aov( folsec ~ a + b + inter,
data = dt)["residuals"]),decreasing = TRUE)
ks.test(res, "pnorm" ,mean(res),sd(res))
##
## One-sample Kolmogorov-Smirnov test
##
## data: res
## D = 0.076643, p-value = 0.9586
## alternative hypothesis: two-sided
kruskal(folsec, inter)["groups"]
## $groups
## folsec groups
## MT:noinoc 27.000 a
## VF:ino 24.250 ab
## MT:ino 24.000 ab
## VA:ino 22.625 ab
## VG:ino 22.375 ab
## VF:noinoc 21.250 ab
## VG:noinoc 21.125 ab
## VF.1:ino 17.000 ab
## VF.1:noinoc 16.250 ab
## VA:noinoc 9.125 b
#######1.4 anova talo seco #################################
summary(aov(talsec ~ a+b+inter, data = dt))
## Df Sum Sq Mean Sq F value Pr(>F)
## a 4 2.88 0.72 11.016 1.29e-05 ***
## b 1 39.25 39.25 601.324 < 2e-16 ***
## inter 4 1.47 0.37 5.637 0.00166 **
## Residuals 30 1.96 0.07
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(talsec ~ a + b + inter, data = dt),
"a", alpha = 0.05)["groups"]
## $groups
## talsec groups
## MT 1.997250 a
## VF.1 1.502500 b
## VF 1.343000 b
## VA 1.307875 b
## VG 1.272167 b
LSD.test(aov(talsec ~ a + b + inter, data = dt),
"b", alpha = 0.05)["groups"]
## $groups
## talsec groups
## noinoc 2.4751833 a
## ino 0.4939333 b
LSD.test(aov(talsec ~ a + b + inter, data = dt),
"inter", alpha = 0.05)["groups"]
## $groups
## talsec groups
## MT:noinoc 3.3395000 a
## VF.1:noinoc 2.4315000 b
## VA:noinoc 2.2897500 b
## VG:noinoc 2.2141667 b
## VF:noinoc 2.1010000 b
## MT:ino 0.6550000 c
## VF:ino 0.5850000 c
## VF.1:ino 0.5735000 c
## VG:ino 0.3301667 c
## VA:ino 0.3260000 c
shapiro.test(unlist(aov(talsec ~ a + b + inter,
data = dt)["residuals"]))
##
## Shapiro-Wilk normality test
##
## data: unlist(aov(talsec ~ a + b + inter, data = dt)["residuals"])
## W = 0.97516, p-value = 0.5154
res <-sort(unlist(aov( talsec ~ a + b + inter,
data = dt)["residuals"]),decreasing = TRUE)
ks.test(res, "pnorm" ,mean(res),sd(res))
##
## One-sample Kolmogorov-Smirnov test
##
## data: res
## D = 0.1726, p-value = 0.1638
## alternative hypothesis: two-sided
kruskal(talsec, inter)["groups"]
## $groups
## talsec groups
## MT:noinoc 38.250 a
## VF.1:noinoc 31.500 ab
## VA:noinoc 28.750 b
## VG:noinoc 28.000 b
## VF:noinoc 26.000 b
## MT:ino 14.750 c
## VF.1:ino 12.250 cd
## VF:ino 12.250 cd
## VA:ino 6.625 d
## VG:ino 6.625 d
#######1.5 anova raiz seca #################################
summary(aov(rasec ~ a+b+inter, data = dt))
## Df Sum Sq Mean Sq F value Pr(>F)
## a 4 55.69 13.92 7.542 0.000249 ***
## b 1 291.06 291.06 157.676 1.78e-13 ***
## inter 4 16.70 4.18 2.262 0.085836 .
## Residuals 30 55.38 1.85
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
LSD.test(aov(rasec ~ a + b + inter, data = dt),
"a", alpha = 0.05)["groups"]
## $groups
## rasec groups
## MT 7.26250 a
## VF 6.44375 a
## VF.1 5.92625 ab
## VA 4.89125 bc
## VG 3.89375 c
LSD.test(aov(rasec ~ a + b + inter, data = dt),
"b", alpha = 0.05)["groups"]
## $groups
## rasec groups
## noinoc 8.381 a
## ino 2.986 b
LSD.test(aov(rasec ~ a + b + inter, data = dt),
"inter", alpha = 0.05)["groups"]
## $groups
## rasec groups
## MT:noinoc 10.8150 a
## VF.1:noinoc 8.8975 ab
## VF:noinoc 8.3550 b
## VA:noinoc 7.9675 b
## VG:noinoc 5.8700 c
## VF:ino 4.5325 cd
## MT:ino 3.7100 de
## VF.1:ino 2.9550 de
## VG:ino 1.9175 e
## VA:ino 1.8150 e
shapiro.test(unlist(aov(rasec ~ a + b + inter,
data = dt)["residuals"]))
##
## Shapiro-Wilk normality test
##
## data: unlist(aov(rasec ~ a + b + inter, data = dt)["residuals"])
## W = 0.97357, p-value = 0.4633
res <-sort(unlist(aov( rasec ~ a + b + inter,
data = dt)["residuals"]),decreasing = TRUE)
ks.test(res, "pnorm" ,mean(res),sd(res))
## Warning in ks.test(res, "pnorm", mean(res), sd(res)): ties should not be present
## for the Kolmogorov-Smirnov test
##
## One-sample Kolmogorov-Smirnov test
##
## data: res
## D = 0.099966, p-value = 0.8189
## alternative hypothesis: two-sided
kruskal(rasec, inter)["groups"]
## $groups
## rasec groups
## MT:noinoc 37.25 a
## VF.1:noinoc 32.50 ab
## VF:noinoc 30.25 ab
## VA:noinoc 28.25 b
## VG:noinoc 21.00 c
## VF:ino 18.00 c
## MT:ino 16.25 cd
## VF.1:ino 10.50 de
## VG:ino 6.00 e
## VA:ino 5.00 e