#Objetivo

#Resolver cuestiones de casos de probabilidad en casos mediante la identificación de variables aleatorias, funciones de probabilidad, funciones acumuladas y visualización gráficas relacionados con variables discretas.
#Descripcion

#Identificar casos relacionados con variables discretas para elaborar mediante programación R y markdown las variables discretas, las funciones de probabilidad de cada variable, la función acumulada y su visualización gráfica para su adecuada interpretación.
#1. Cargar librerias

library(ggplot2)
library(stringr)  # String
library(stringi)  # String
library(gtools)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(knitr)

#2. Ejercicios
#2.1. Ejercicio 1

#Se venden 5000 billetes para una rifa a 1 euro cada uno. Existe un único premio de cierta cantidad, calcular los valores de las variables aleatorias y sus probabilidades para 0 para no gana y 1 para si gana cuando un comprador adquiere tres billetes. (Hero, n.d.)
#Tabla de probabilidad

discretas <- c(0,1)   # 0 Que no gane, 1 que gane
n <- 5000
casos <- c(4997,3)
probabilidades <- casos / n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##   x casos f.prob.x F.acum.x
## 1 0  4997   0.9994   0.9994
## 2 1     3   0.0006   1.0000
#Grafica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  geom_bar(stat="identity")

#Grafica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
    geom_point() + 
  geom_line()

#2.2. Ejercicio

#Las ventas de automóviles de una empresa

#Durante los últimos 300 días de operación, los datos de ventas muestran que hubo

#54 días en los que no se vendió ningún automóvil,

#117 días en los que se vendió 1 automóvil,

#72 días en los que se vendieron 2 automóviles,

#42 días en los que se vendieron 3 automóviles,

#12 días en los que se vendieron 4 automóviles y

#3 días en los que se vendieron 5 automóviles.

#¿Cuál es la probabilida de que se venda exactamente un automoviles?

#¿Cuál es la la probabilidad de que se venda al menos 2 automóviles?
#Tabla de probabilidad o contingencia

discretas <- 0:5   # c(0,1,2,3,4,5)
n <- 300

casos <- c(54, 117, 72, 42, 12, 3)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##   x casos f.prob.x F.acum.x
## 1 0    54     0.18     0.18
## 2 1   117     0.39     0.57
## 3 2    72     0.24     0.81
## 4 3    42     0.14     0.95
## 5 4    12     0.04     0.99
## 6 5     3     0.01     1.00
#Grafica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  #geom_bar(stat="identity")
  geom_bar(stat="identity")

#Grafica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point() + 
  geom_line() 

#2.3. Ejercicio 3

#En Estados Unidos un porcentaje de los niños de cuarto grado no pueden leer un libro adecuado a su edad. La tabla siguiente muestra, de acuerdo con las edades de entre 6 y 14 años, el número de niños que tienen problemas de lectura. La mayoría de estos niños tienen problemas de lectura que debieron ser detectados y corregidos antes del tercer grado.(Anderson et al., 2008)

#¿Cuál es la probabilida de elegir alumnos que tienen problemas de exactamente 10 años? ¿Cuál es la probabilidad de encontrar alumnos por de 11 años o menos?

#Tabla de probabilidad o Contingencia

discretas <- 6:14
#n <- '?'

casos <- c(37369, 87436, 160840,239719,286719,306533,310787,302604,289168)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##    x  casos   f.prob.x   F.acum.x
## 1  6  37369 0.01848875 0.01848875
## 2  7  87436 0.04325998 0.06174874
## 3  8 160840 0.07957747 0.14132621
## 4  9 239719 0.11860378 0.25992999
## 5 10 286719 0.14185758 0.40178757
## 6 11 306533 0.15166079 0.55344837
## 7 12 310787 0.15376551 0.70721387
## 8 13 302604 0.14971687 0.85693075
## 9 14 289168 0.14306925 1.00000000
#Grafica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  geom_bar(stat="identity")

#Grafica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point() + 
  geom_line()

#2.4. Ejercicio.

#Se muestra la distribución de frecuencias porcentuales para las puntuaciones dadas a la satisfacción con el trabajo por una muestra de directivos en sistemas de información de nivel alto y de nivel medio. Las puntuaciones van de 1 (muy insatisfecho) a 5 (muy satisfecho).(Anderson et al., 2008)

#Tabla de probabilidad o contingencia

discretas <- 1:5
#n <- '?'

casos <- c(5,9,3,42,41)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   


tabla1 <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla1
##   x casos f.prob.x F.acum.x
## 1 1     5     0.05     0.05
## 2 2     9     0.09     0.14
## 3 3     3     0.03     0.17
## 4 4    42     0.42     0.59
## 5 5    41     0.41     1.00
paste("La probabilidad de que un ejecutivo de nivel alto dé una puntuación de 4 o 5 a su satisfacción con el trabajo es:", round(sum(tabla1$f.prob.x[4], tabla1$f.prob.x[5]) * 100, 2), "%")
## [1] "La probabilidad de que un ejecutivo de nivel alto dé una puntuación de 4 o 5 a su satisfacción con el trabajo es: 83 %"
#Grafica de barra

ggplot(data = tabla1, aes(x = x, y=f.prob.x, fill=x)) + 
  geom_bar(stat="identity")

#Grafica lineal acumulada

ggplot(data = tabla1, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

discretas <- 1:5
#n <- '?'

casos <- c(4, 10, 12, 46, 28)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   


tabla2 <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla2
##   x casos f.prob.x F.acum.x
## 1 1     4     0.04     0.04
## 2 2    10     0.10     0.14
## 3 3    12     0.12     0.26
## 4 4    46     0.46     0.72
## 5 5    28     0.28     1.00
paste(" La probabilidad de que un ejecutivo de nivel medio esté muy satisfecho es:", round(tabla2$f.prob.x[5] * 100, 2), "%")
## [1] " La probabilidad de que un ejecutivo de nivel medio esté muy satisfecho es: 28 %"
#Grafica de barra

ggplot(data = tabla2, aes(x = x, y=f.prob.x, fill=x)) + 
  geom_bar(stat="identity")

#Grafica lineal acumulada

ggplot(data = tabla2, aes(x = x, y=F.acum.x)) +
  geom_point(colour="blue") + 
  geom_line(colour="red")

#2.5. Ejercicio

#La prueba de un número de componentes electrónicos se prueban tres componentes electrónicos, el espacio muestral que ofrece una descripción detallada de cada posible resultado se escribe como:

S <- c("NNN", "NND", "NDN", "DNN", 
        "NDD", "DND", "DDN", "DDD")
S
## [1] "NNN" "NND" "NDN" "DNN" "NDD" "DND" "DDN" "DDD"
#Tabla de probabilidad o contingencia

discretas <- 0:3
#n <- '?'

casos <- c(1,3,3,1)

n <- sum(casos)
probabilidades <- casos /n

acumulada <- cumsum(probabilidades)   # Acumulada

tabla <- data.frame(x=discretas, 
                    casos = casos,
                    f.prob.x = probabilidades,
                    F.acum.x = acumulada)
tabla
##   x casos f.prob.x F.acum.x
## 1 0     1    0.125    0.125
## 2 1     3    0.375    0.500
## 3 2     3    0.375    0.875
## 4 3     1    0.125    1.000
x <- 1  
paste("La probabilidad de que haya 1 defecto es: ",round(tabla$f.prob.x[x+1] * 100, 2), "%")
## [1] "La probabilidad de que haya 1 defecto es:  37.5 %"
x <- 2 
paste("La probabilidad de que haya 2 defectos o mas es: ",round(sum(tabla$f.prob.x[x+1], tabla$f.prob.x[x+2]) * 100, 2), "%")
## [1] "La probabilidad de que haya 2 defectos o mas es:  50 %"
#Grafica de barra

ggplot(data = tabla, aes(x = x, y=f.prob.x)) +
  #geom_bar(stat="identity")
  geom_bar(stat="identity")

#Grafica lineal acumulada

ggplot(data = tabla, aes(x = x, y=F.acum.x)) +
  geom_point() + 
  geom_line()