New techniques For Forecasting Covid 19 In top 10 countries infected ( Turkey)

By

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## 
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#population in  turkey  = 84833098
#WHO COVID-19 global table data January 11th 2021 at 11.53.00 AM.csv
Full_original_data<-read.csv("F:/Phd/COVID 19 in 2021/WHO_data.csv")
View(Full_original_data)
y_lab<- "Covid 19 Infection cases in Turkey "   # input name of data
Actual_date_interval <- c("2020/01/03","2021/01/10")
Forecast_date_interval <- c("2021/01/11","2021/01/17")
validation_data_days <-7
frequency <-"days"
Population <-84833098 # population in Turkey
# Data Preparation & calculate some of statistics measures
Covid_data<-Full_original_data[Full_original_data$Country == "Turkey", ]
original_data<-Covid_data$Cumulative_cases
View(original_data)
summary(original_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0   24718  207371  282555  330349 1502780
sd(original_data)  # calculate standard deviation
## [1] 343734.1
skewness(original_data)  # calculate Cofficient of skewness
## [1] 2.079256
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 6.916256
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                    ME    RMSE    MAE MPE MAPE       MASE      ACF1
## Training set 88.14223 1281.37 295.18 NaN  Inf 0.07620521 -0.024969
# Print Model Parameters
model_bats
## BATS(1, {2,0}, -, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Alpha: 0.0910748
##   AR coefficients: 1.948154 -0.950386
## 
## Seed States:
##          [,1]
## [1,] 12.12023
## [2,]  0.00000
## [3,]  0.00000
## 
## Sigma: 1281.37
## AIC: 7431.541
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  Covid 19 Infection cases in Turkey "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 Infection cases in Turkey "
paste(MAPE_Mean_All,"%")
## [1] "0.953 % MAPE  7 days Covid 19 Infection cases in Turkey  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 Infection cases in Turkey "
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2021-01-04                  Monday     1427574          1428104
## 2 2021-01-05                 Tuesday     1441269          1437754
## 3 2021-01-06               Wednesday     1455763          1446663
## 4 2021-01-07                Thursday     1469593          1454847
## 5 2021-01-08                  Friday     1481764          1462325
## 6 2021-01-09                Saturday     1493243          1469113
## 7 2021-01-10                  Sunday     1502780          1475233
##   MAPE_bats_Model
## 1         0.037 %
## 2         0.244 %
## 3         0.625 %
## 4         1.003 %
## 5         1.312 %
## 6         1.616 %
## 7         1.833 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2021-01-11          Monday             1480702
## 2 2021-01-12         Tuesday             1485542
## 3 2021-01-13       Wednesday             1489773
## 4 2021-01-14        Thursday             1493414
## 5 2021-01-15          Friday             1496489
## 6 2021-01-16        Saturday             1499017
## 7 2021-01-17          Sunday             1501020
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MSE_bats<-(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,MSE_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats  MSE_bats RMSE_bats
## 1        0.9997113 290264237  17037.14
##                                              MAPE_Mean_All MAD_bats
## 1 0.953 % MAPE  7 days Covid 19 Infection cases in Turkey  13992.26
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name  AEOF_bats REOF_Abats REOF_Fbats
## 1       2021-01-04              Monday   530.4594    0.037 %    0.037 %
## 2       2021-01-05             Tuesday  3514.5199    0.244 %    0.244 %
## 3       2021-01-06           Wednesday  9099.8948    0.625 %    0.629 %
## 4       2021-01-07            Thursday 14745.7634    1.003 %    1.014 %
## 5       2021-01-08              Friday 19439.4458    1.312 %    1.329 %
## 6       2021-01-09            Saturday 24129.5614    1.616 %    1.642 %
## 7       2021-01-10              Sunday 27547.1054    1.833 %    1.867 %
## TBATS Model

# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                    ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set 28.17034 1285.432 425.7613 NaN  Inf 0.1099168 -0.000599952
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 0.9881883
##   Beta: 1.058792
##   Damping Parameter: 1
##   Gamma-1 Values: -0.0007540652
##   Gamma-2 Values: 0.001468062
## 
## Seed States:
##           [,1]
## [1,] -80.46459
## [2,]  17.85984
## [3,]  26.85867
## [4,]  42.36763
## [5,] 105.24842
## [6,] -51.13483
## 
## Sigma: 1285.432
## AIC: 7441.864
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using TBATS Model for  ==>  Covid 19 Infection cases in Turkey "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  Covid 19 Infection cases in Turkey "
paste(MAPE_Mean_All,"%")
## [1] "0.421 % MAPE  7 days Covid 19 Infection cases in Turkey  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  Covid 19 Infection cases in Turkey "
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2021-01-04                  Monday     1427574           1428572
## 2 2021-01-05                 Tuesday     1441269           1439674
## 3 2021-01-06               Wednesday     1455763           1450568
## 4 2021-01-07                Thursday     1469593           1461264
## 5 2021-01-08                  Friday     1481764           1472399
## 6 2021-01-09                Saturday     1493243           1483495
## 7 2021-01-10                  Sunday     1502780           1494358
##   MAPE_TBATS_Model
## 1           0.07 %
## 2          0.111 %
## 3          0.357 %
## 4          0.567 %
## 5          0.632 %
## 6          0.653 %
## 7           0.56 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2021-01-11          Monday              1505459
## 2 2021-01-12         Tuesday              1516353
## 3 2021-01-13       Wednesday              1527049
## 4 2021-01-14        Thursday              1538184
## 5 2021-01-15          Friday              1549280
## 6 2021-01-16        Saturday              1560143
## 7 2021-01-17          Sunday              1571244
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model

Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MSE_tbats<-(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,MSE_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_tbats MSE_tbats RMSE_tbats
## 1         0.9976799  50511728    7107.16
##                                              MAPE_Mean_All MAD_tbats
## 1 0.421 % MAPE  7 days Covid 19 Infection cases in Turkey   5950.992
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2021-01-04              Monday   998.4443       0.07 %       0.07 %
## 2       2021-01-05             Tuesday  1595.0433      0.111 %      0.111 %
## 3       2021-01-06           Wednesday  5194.9870      0.357 %      0.358 %
## 4       2021-01-07            Thursday  8329.4838      0.567 %       0.57 %
## 5       2021-01-08              Friday  9365.0595      0.632 %      0.636 %
## 6       2021-01-09            Saturday  9748.4690      0.653 %      0.657 %
## 7       2021-01-10              Sunday  8422.3432       0.56 %      0.564 %
## Holt's linear trend


# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                     ME     RMSE      MAE MPE MAPE       MASE      ACF1
## Training set -60.48006 1453.343 378.9246 Inf  Inf 0.09782514 0.4216128
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.429 
## 
##   Smoothing parameters:
##     alpha = 0.9702 
##     beta  = 0.6349 
## 
##   Initial states:
##     l = -2.1606 
##     b = -0.3631 
## 
##   sigma:  1.3156
## 
##      AIC     AICc      BIC 
## 2374.587 2374.753 2394.114 
## 
## Training set error measures:
##                     ME     RMSE      MAE MPE MAPE       MASE      ACF1
## Training set -60.48006 1453.343 378.9246 Inf  Inf 0.09782514 0.4216128
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using holt Model for  ==>  Covid 19 Infection cases in Turkey "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  Covid 19 Infection cases in Turkey "
paste(MAPE_Mean_All,"%")
## [1] "0.148 % MAPE  7 days Covid 19 Infection cases in Turkey  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  Covid 19 Infection cases in Turkey "
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2021-01-04                  Monday     1427574          1429700
## 2 2021-01-05                 Tuesday     1441269          1441696
## 3 2021-01-06               Wednesday     1455763          1453749
## 4 2021-01-07                Thursday     1469593          1465860
## 5 2021-01-08                  Friday     1481764          1478028
## 6 2021-01-09                Saturday     1493243          1490253
## 7 2021-01-10                  Sunday     1502780          1502536
##   MAPE_holt_Model
## 1         0.149 %
## 2          0.03 %
## 3         0.138 %
## 4         0.254 %
## 5         0.252 %
## 6           0.2 %
## 7         0.016 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2021-01-11          Monday             1514877
## 2 2021-01-12         Tuesday             1527275
## 3 2021-01-13       Wednesday             1539731
## 4 2021-01-14        Thursday             1552245
## 5 2021-01-15          Friday             1564816
## 6 2021-01-16        Saturday             1577446
## 7 2021-01-17          Sunday             1590133
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MSE_Holt<-(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,MSE_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt MSE_Holt RMSE_Holt
## 1         0.997545  6521742   2553.77
##                                              MAPE_Mean_All MAD_Holt
## 1 0.148 % MAPE  7 days Covid 19 Infection cases in Turkey  1451.935
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2021-01-04              Monday 2126.1368     0.149 %     0.149 %
## 2       2021-01-05             Tuesday  427.0793      0.03 %      0.03 %
## 3       2021-01-06           Wednesday 2013.7114     0.138 %     0.139 %
## 4       2021-01-07            Thursday 3733.1677     0.254 %     0.255 %
## 5       2021-01-08              Friday 3736.2219     0.252 %     0.253 %
## 6       2021-01-09            Saturday 2989.8066       0.2 %     0.201 %
## 7       2021-01-10              Sunday  243.8546     0.016 %     0.016 %
#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  Covid 19 Infection cases in Turkey "
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 4.1387, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 7.6255, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = -1.8175, Lag order = 7, p-value = 0.654
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  Covid 19 Infection cases in Turkey "
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 2.0918, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -9.37, Truncation lag parameter = 5, p-value =
## 0.5857
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = -2.9286, Lag order = 7, p-value = 0.185
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Covid 19 Infection cases in Turkey "
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.061882, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -364.1, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -4.9047, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 6272.345
##  ARIMA(0,2,1)                    : 6273.742
##  ARIMA(0,2,2)                    : 6275.726
##  ARIMA(0,2,3)                    : 6277.755
##  ARIMA(0,2,4)                    : 6275.208
##  ARIMA(0,2,5)                    : 6276.566
##  ARIMA(1,2,0)                    : 6273.726
##  ARIMA(1,2,1)                    : 6272.805
##  ARIMA(1,2,2)                    : Inf
##  ARIMA(1,2,3)                    : 6275.636
##  ARIMA(1,2,4)                    : 6275.3
##  ARIMA(2,2,0)                    : 6275.709
##  ARIMA(2,2,1)                    : Inf
##  ARIMA(2,2,2)                    : 6276.234
##  ARIMA(2,2,3)                    : 6278.252
##  ARIMA(3,2,0)                    : 6277.677
##  ARIMA(3,2,1)                    : 6275.775
##  ARIMA(3,2,2)                    : Inf
##  ARIMA(4,2,0)                    : 6275.123
##  ARIMA(4,2,1)                    : 6275.58
##  ARIMA(5,2,0)                    : 6276.527
## 
## 
## 
##  Best model: ARIMA(0,2,0)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(0,2,0) 
## 
## sigma^2 estimated as 1691490:  log likelihood=-3135.17
## AIC=6272.33   AICc=6272.35   BIC=6276.23
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}






source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 0 2 0
strtoi(bestmodel[3])
## [1] 0
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## 
## sigma^2 estimated as 1691490:  log likelihood = -3135.17,  aic = 6272.33
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  Covid 19 Infection cases in Turkey "
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                    ME     RMSE      MAE       MPE     MAPE       MASE      ACF1
## Training set 30.46322 1297.024 305.3025 0.7617839 2.400916 0.07881846 0.0413259
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,2,0)
## Q* = 18.011, df = 10, p-value = 0.05478
## 
## Model df: 0.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  Covid 19 Infection cases in Turkey "
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 0.22673, df = 20, p-value = 1
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 859785, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='black')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  Covid 19 Infection cases in Turkey "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 Infection cases in Turkey "
paste(MAPE_Mean_All,"%")
## [1] "0.364 % MAPE  7 days Covid 19 Infection cases in Turkey  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 Infection cases in Turkey "
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2021-01-04                  Monday     1427574                1428877
## 2      2021-01-05                 Tuesday     1441269                1440057
## 3      2021-01-06               Wednesday     1455763                1451237
## 4      2021-01-07                Thursday     1469593                1462417
## 5      2021-01-08                  Friday     1481764                1473597
## 6      2021-01-09                Saturday     1493243                1484777
## 7      2021-01-10                  Sunday     1502780                1495957
##   MAPE_auto.arima_Model
## 1               0.091 %
## 2               0.084 %
## 3               0.311 %
## 4               0.488 %
## 5               0.551 %
## 6               0.567 %
## 7               0.454 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2021-01-11          Monday                   1507137
## 2 2021-01-12         Tuesday                   1518317
## 3 2021-01-13       Wednesday                   1529497
## 4 2021-01-14        Thursday                   1540677
## 5 2021-01-15          Friday                   1551857
## 6 2021-01-16        Saturday                   1563037
## 7 2021-01-17          Sunday                   1574217
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MSE_auto.arima<-(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,MSE_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima MSE_auto.arima RMSE_auto.arima
## 1              0.9978134       37153254        6095.347
##                                              MAPE_Mean_All MAD_auto.arima
## 1 0.364 % MAPE  7 days Covid 19 Infection cases in Turkey        5009.571
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2021-01-04              Monday            1303           0.091 %
## 2       2021-01-05             Tuesday            1212           0.084 %
## 3       2021-01-06           Wednesday            4526           0.311 %
## 4       2021-01-07            Thursday            7176           0.488 %
## 5       2021-01-08              Friday            8167           0.551 %
## 6       2021-01-09            Saturday            8466           0.567 %
## 7       2021-01-10              Sunday            6823           0.454 %
##   REOF_F_auto.arima
## 1           0.091 %
## 2           0.084 %
## 3           0.312 %
## 4           0.491 %
## 5           0.554 %
## 6            0.57 %
## 7           0.456 %
# SIR Model 
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##      beta     gamma 
## 0.2277098 0.2114388
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MSE_SIR<-(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))

REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,MSE_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error  by using SIR's linear model shows result of correlation ,MSE ,MPER
##   correlation_SIR    MSE_SIR RMSE_SIR
## 1       0.9998478 8008897684 89492.44
##                                              MAPE_Mean_All  MAD_SIR
## 1 6.101 % MAPE  7 days Covid 19 Infection cases in Turkey  89447.12
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1       2021-01-04              Monday 94334.00    6.608 %    7.076 %
## 2       2021-01-05             Tuesday 91542.20    6.351 %    6.782 %
## 3       2021-01-06           Wednesday 90450.57    6.213 %    6.625 %
## 4       2021-01-07            Thursday 89640.65      6.1 %    6.496 %
## 5       2021-01-08              Friday 88159.54     5.95 %    6.326 %
## 6       2021-01-09            Saturday 87013.61    5.827 %    6.188 %
## 7       2021-01-10              Sunday 84989.30    5.655 %    5.994 %
##   validation_forecast testing_data
## 1             1333240      1427574
## 2             1349727      1441269
## 3             1365312      1455763
## 4             1379952      1469593
## 5             1393604      1481764
## 6             1406229      1493243
## 7             1417791      1502780
## forecasting by SIR model

Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us

SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##      beta     gamma 
## 0.2097288 0.1954336
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
##           FD forecating_date forecasting_by_SIR
## 1 2021-01-11          Monday            1427574
## 2 2021-01-12         Tuesday            1442500
## 3 2021-01-13       Wednesday            1456514
## 4 2021-01-14        Thursday            1469581
## 5 2021-01-15          Friday            1481667
## 6 2021-01-16        Saturday            1492740
## 7 2021-01-17          Sunday            1502772
# Choose Best model by least error

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  Covid 19 Infection cases in Turkey "
M1<-mean(REOF_A_bats)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==>  Covid 19 Infection cases in Turkey "
M2<-mean(REOF_A_tbats1)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==>  Covid 19 Infection cases in Turkey "
M3<-REOF_A_Holt11

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==>  Covid 19 Infection cases in Turkey "
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==>  Covid 19 Infection cases in Turkey "
M5<-REOF_A_SIR1

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==>  Covid 19 Infection cases in Turkey "
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
##   validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1       2021-01-04          Monday       0.0371581       0.06993993
## 2       2021-01-05         Tuesday       0.2438490       0.11066937
## 3       2021-01-06       Wednesday       0.6250945       0.35685665
## 4       2021-01-07        Thursday       1.0033910       0.56678848
## 5       2021-01-08          Friday       1.3119124       0.63202099
## 6       2021-01-09        Saturday       1.6159166       0.65283875
## 7       2021-01-10          Sunday       1.8330764       0.56045085
##   MAPE_Holt_error MAPE_autoarima_error
## 1      0.14893356           0.09127373
## 2      0.02963217           0.08409256
## 3      0.13832687           0.31090226
## 4      0.25402732           0.48829846
## 5      0.25214689           0.55116739
## 6      0.20022238           0.56695394
## 7      0.01622690           0.45402521
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==>  Covid 19 Infection cases in Turkey "
best_recommended_model
## [1] 0.1485023
paste ("Best Model For Forecasting  ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting  ==>  Covid 19 Infection cases in Turkey "
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better  For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend  That's better TBATS  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==>  Covid 19 Infection cases in Turkey "
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M5) {paste("System Recommend SIR Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>Covid 19 Infection cases in Turkey
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> Covid 19 Infection cases in Turkey