New techniques For Forecasting Covid 19 In top 10 countries infected ( The United Kingdom)

By

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

# Imports
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## 
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#population in  The United Kingdom  = 68078368
#WHO COVID-19 global table data January 11th 2021 at 11.53.00 AM.csv
Full_original_data<-read.csv("F:/Phd/COVID 19 in 2021/WHO_data.csv")
View(Full_original_data)
y_lab<- "Covid 19 Infection cases in The United Kingdom "   # input name of data
Actual_date_interval <- c("2020/01/03","2021/01/10")
Forecast_date_interval <- c("2021/01/11","2021/01/17")
validation_data_days <-7
frequency <-"days"
Population <-68078368 # population in The United Kingdom
# Data Preparation & calculate some of statistics measures
Covid_data<-Full_original_data[Full_original_data$Country == "The United Kingdom", ]
original_data<-Covid_data$Cumulative_cases
View(original_data)
summary(original_data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##       0   54165  288032  528772  557434 3017413
sd(original_data)  # calculate standard deviation
## [1] 684530.8
skewness(original_data)  # calculate Cofficient of skewness
## [1] 1.742938
kurtosis(original_data)   # calculate Cofficient of kurtosis
## [1] 5.188567
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD)) 
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                    ME     RMSE      MAE MPE MAPE      MASE        ACF1
## Training set 114.5686 1969.839 895.0024 NaN  Inf 0.1259988 -0.02881263
# Print Model Parameters
model_bats
## BATS(1, {1,1}, 0.996, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Alpha: 0.4573979
##   Beta: 0.04588305
##   Damping Parameter: 0.995972
##   AR coefficients: 0.990099
##   MA coefficients: 0.312657
## 
## Seed States:
##          [,1]
## [1,] 26.28688
## [2,] 31.23649
## [3,]  0.00000
## [4,]  0.00000
## 
## Sigma: 1969.839
## AIC: 7753.177
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  Covid 19 Infection cases in The United Kingdom "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 Infection cases in The United Kingdom "
paste(MAPE_Mean_All,"%")
## [1] "0.454 % MAPE  7 days Covid 19 Infection cases in The United Kingdom  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 Infection cases in The United Kingdom "
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2021-01-04                  Monday     2654783          2658925
## 2 2021-01-05                 Tuesday     2713567          2719205
## 3 2021-01-06               Wednesday     2774483          2781163
## 4 2021-01-07                Thursday     2836805          2844773
## 5 2021-01-08                  Friday     2889423          2910011
## 6 2021-01-09                Saturday     2957476          2976851
## 7 2021-01-10                  Sunday     3017413          3045268
##   MAPE_bats_Model
## 1         0.156 %
## 2         0.208 %
## 3         0.241 %
## 4         0.281 %
## 5         0.713 %
## 6         0.655 %
## 7         0.923 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2021-01-11          Monday             3115238
## 2 2021-01-12         Tuesday             3186736
## 3 2021-01-13       Wednesday             3259738
## 4 2021-01-14        Thursday             3334220
## 5 2021-01-15          Friday             3410159
## 6 2021-01-16        Saturday             3487531
## 7 2021-01-17          Sunday             3566314
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MSE_bats<-(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,MSE_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats  MSE_bats RMSE_bats
## 1        0.9997066 247465805  15731.05
##                                                          MAPE_Mean_All MAD_bats
## 1 0.454 % MAPE  7 days Covid 19 Infection cases in The United Kingdom  13178.14
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_bats REOF_Abats REOF_Fbats
## 1       2021-01-04              Monday  4142.274    0.156 %    0.156 %
## 2       2021-01-05             Tuesday  5637.682    0.208 %    0.207 %
## 3       2021-01-06           Wednesday  6679.628    0.241 %     0.24 %
## 4       2021-01-07            Thursday  7968.328    0.281 %     0.28 %
## 5       2021-01-08              Friday 20588.288    0.713 %    0.707 %
## 6       2021-01-09            Saturday 19375.306    0.655 %    0.651 %
## 7       2021-01-10              Sunday 27855.466    0.923 %    0.915 %
## TBATS Model

# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                   ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set 217.574 2035.066 1017.958 NaN  Inf 0.1433086 -0.009596333
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 1.110404
##   Beta: 0.7066523
##   Damping Parameter: 1
##   Gamma-1 Values: 0.0008801099
##   Gamma-2 Values: -0.001787153
## 
## Seed States:
##            [,1]
## [1,]   56.85541
## [2,]   24.62076
## [3,]   49.91159
## [4,]  110.65960
## [5,] -239.39399
## [6,] -118.06086
## 
## Sigma: 2035.066
## AIC: 7779.088
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using TBATS Model for  ==>  Covid 19 Infection cases in The United Kingdom "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  Covid 19 Infection cases in The United Kingdom "
paste(MAPE_Mean_All,"%")
## [1] "0.319 % MAPE  7 days Covid 19 Infection cases in The United Kingdom  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  Covid 19 Infection cases in The United Kingdom "
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2021-01-04                  Monday     2654783           2656498
## 2 2021-01-05                 Tuesday     2713567           2712970
## 3 2021-01-06               Wednesday     2774483           2769479
## 4 2021-01-07                Thursday     2836805           2826048
## 5 2021-01-08                  Friday     2889423           2882806
## 6 2021-01-09                Saturday     2957476           2939118
## 7 2021-01-10                  Sunday     3017413           2995202
##   MAPE_TBATS_Model
## 1          0.065 %
## 2          0.022 %
## 3           0.18 %
## 4          0.379 %
## 5          0.229 %
## 6          0.621 %
## 7          0.736 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2021-01-11          Monday              3051673
## 2 2021-01-12         Tuesday              3108183
## 3 2021-01-13       Wednesday              3164751
## 4 2021-01-14        Thursday              3221510
## 5 2021-01-15          Friday              3277821
## 6 2021-01-16        Saturday              3333905
## 7 2021-01-17          Sunday              3390377
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model

Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MSE_tbats<-(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,MSE_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_tbats MSE_tbats RMSE_tbats
## 1         0.9997615 145457920   12060.59
##                                                          MAPE_Mean_All
## 1 0.319 % MAPE  7 days Covid 19 Infection cases in The United Kingdom 
##   MAD_tbats
## 1   8832.75
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2021-01-04              Monday  1715.1683      0.065 %      0.065 %
## 2       2021-01-05             Tuesday   597.0167      0.022 %      0.022 %
## 3       2021-01-06           Wednesday  5003.6576       0.18 %      0.181 %
## 4       2021-01-07            Thursday 10757.4204      0.379 %      0.381 %
## 5       2021-01-08              Friday  6616.8130      0.229 %       0.23 %
## 6       2021-01-09            Saturday 18358.1364      0.621 %      0.625 %
## 7       2021-01-10              Sunday 22211.3742      0.736 %      0.742 %
## Holt's linear trend


# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                    ME     RMSE     MAE MPE MAPE      MASE       ACF1
## Training set 85.94693 2017.146 915.629 Inf  Inf 0.1289026 0.05307677
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.3892 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
##     beta  = 0.7276 
## 
##   Initial states:
##     l = -2.3039 
##     b = -0.3774 
## 
##   sigma:  0.6143
## 
##      AIC     AICc      BIC 
## 1815.571 1815.738 1835.098 
## 
## Training set error measures:
##                    ME     RMSE     MAE MPE MAPE      MASE       ACF1
## Training set 85.94693 2017.146 915.629 Inf  Inf 0.1289026 0.05307677
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using holt Model for  ==>  Covid 19 Infection cases in The United Kingdom "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  Covid 19 Infection cases in The United Kingdom "
paste(MAPE_Mean_All,"%")
## [1] "0.08 % MAPE  7 days Covid 19 Infection cases in The United Kingdom  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  Covid 19 Infection cases in The United Kingdom "
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2021-01-04                  Monday     2654783          2657423
## 2 2021-01-05                 Tuesday     2713567          2715828
## 3 2021-01-06               Wednesday     2774483          2775010
## 4 2021-01-07                Thursday     2836805          2834972
## 5 2021-01-08                  Friday     2889423          2895720
## 6 2021-01-09                Saturday     2957476          2957256
## 7 2021-01-10                  Sunday     3017413          3019584
##   MAPE_holt_Model
## 1         0.099 %
## 2         0.083 %
## 3         0.019 %
## 4         0.065 %
## 5         0.218 %
## 6         0.007 %
## 7         0.072 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2021-01-11          Monday             3082708
## 2 2021-01-12         Tuesday             3146631
## 3 2021-01-13       Wednesday             3211358
## 4 2021-01-14        Thursday             3276891
## 5 2021-01-15          Friday             3343234
## 6 2021-01-16        Saturday             3410392
## 7 2021-01-17          Sunday             3478367
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MSE_Holt<-(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,MSE_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt MSE_Holt RMSE_Holt
## 1        0.9998037  8590000   2930.87
##                                                         MAPE_Mean_All MAD_Holt
## 1 0.08 % MAPE  7 days Covid 19 Infection cases in The United Kingdom  1691.778
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2021-01-04              Monday 2640.4472     0.099 %     0.099 %
## 2       2021-01-05             Tuesday 2260.8162     0.083 %     0.083 %
## 3       2021-01-06           Wednesday  526.5172     0.019 %     0.019 %
## 4       2021-01-07            Thursday 1832.7289     0.065 %     0.065 %
## 5       2021-01-08              Friday 6296.7852     0.218 %     0.217 %
## 6       2021-01-09            Saturday  220.2462     0.007 %     0.007 %
## 7       2021-01-10              Sunday 2170.8579     0.072 %     0.072 %
#Auto arima model
##################

require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  Covid 19 Infection cases in The United Kingdom "
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 4.4287, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 6.0668, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## Warning in adf.test(data_series): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = 1.7351, Lag order = 7, p-value = 0.99
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  Covid 19 Infection cases in The United Kingdom "
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 3.6524, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = 5.6508, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## Warning in adf.test(diff1_x1): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = 2.1134, Lag order = 7, p-value = 0.99
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Covid 19 Infection cases in The United Kingdom "
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.72221, Truncation lag parameter = 5, p-value = 0.01153
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -362.72, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -3.7891, Lag order = 7, p-value = 0.01982
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 6609.382
##  ARIMA(0,2,1)                    : 6600.259
##  ARIMA(0,2,2)                    : 6598.279
##  ARIMA(0,2,3)                    : 6600.295
##  ARIMA(0,2,4)                    : 6601.255
##  ARIMA(0,2,5)                    : 6599.026
##  ARIMA(1,2,0)                    : 6602.73
##  ARIMA(1,2,1)                    : 6599.1
##  ARIMA(1,2,2)                    : 6596.312
##  ARIMA(1,2,3)                    : 6597.503
##  ARIMA(1,2,4)                    : 6598.946
##  ARIMA(2,2,0)                    : 6599.441
##  ARIMA(2,2,1)                    : 6600.478
##  ARIMA(2,2,2)                    : 6597.233
##  ARIMA(2,2,3)                    : 6599.298
##  ARIMA(3,2,0)                    : 6601.374
##  ARIMA(3,2,1)                    : 6602.533
##  ARIMA(3,2,2)                    : 6599.296
##  ARIMA(4,2,0)                    : 6598.948
##  ARIMA(4,2,1)                    : 6600.821
##  ARIMA(5,2,0)                    : 6600.422
## 
## 
## 
##  Best model: ARIMA(1,2,2)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(1,2,2) 
## 
## Coefficients:
##           ar1     ma1      ma2
##       -0.8252  0.6543  -0.2412
## s.e.   0.0890  0.0998   0.0565
## 
## sigma^2 estimated as 4072343:  log likelihood=-3294.1
## AIC=6596.2   AICc=6596.31   BIC=6611.8
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}






source("stringthearima.R")  
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 1 2 2
strtoi(bestmodel[3])
## [1] 2
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##           ar1     ma1      ma2
##       -0.8252  0.6543  -0.2412
## s.e.   0.0890  0.0998   0.0565
## 
## sigma^2 estimated as 4038872:  log likelihood = -3294.1,  aic = 6596.2
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  Covid 19 Infection cases in The United Kingdom "
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                   ME     RMSE      MAE       MPE     MAPE      MASE
## Training set 200.204 2004.211 937.5939 0.6121025 2.243849 0.1319949
##                      ACF1
## Training set 0.0004357398
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(1,2,2)
## Q* = 28.793, df = 7, p-value = 0.0001578
## 
## Model df: 3.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  Covid 19 Infection cases in The United Kingdom "
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 215.91, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 2433.8, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='black')

#Test data

x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 days by using bats Model for  ==>  Covid 19 Infection cases in The United Kingdom "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 Infection cases in The United Kingdom "
paste(MAPE_Mean_All,"%")
## [1] "0.272 % MAPE  7 days Covid 19 Infection cases in The United Kingdom  %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 Infection cases in The United Kingdom "
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2021-01-04                  Monday     2654783                2657059
## 2      2021-01-05                 Tuesday     2713567                2713630
## 3      2021-01-06               Wednesday     2774483                2770774
## 4      2021-01-07                Thursday     2836805                2827446
## 5      2021-01-08                  Friday     2889423                2884507
## 6      2021-01-09                Saturday     2957476                2941247
## 7      2021-01-10                  Sunday     3017413                2998252
##   MAPE_auto.arima_Model
## 1               0.086 %
## 2               0.002 %
## 3               0.134 %
## 4                0.33 %
## 5                0.17 %
## 6               0.549 %
## 7               0.635 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2021-01-11          Monday                   3055038
## 2 2021-01-12         Tuesday                   3112005
## 3 2021-01-13       Wednesday                   3168823
## 4 2021-01-14        Thursday                   3225764
## 5 2021-01-15          Friday                   3282603
## 6 2021-01-16        Saturday                   3339527
## 7 2021-01-17          Sunday                   3396380
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MSE_auto.arima<-(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,MSE_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima MSE_auto.arima RMSE_auto.arima
## 1              0.9997772      108743630        10428.02
##                                                          MAPE_Mean_All
## 1 0.272 % MAPE  7 days Covid 19 Infection cases in The United Kingdom 
##   MAD_auto.arima
## 1       7290.617
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2021-01-04              Monday      2275.81442           0.086 %
## 2       2021-01-05             Tuesday        62.98577           0.002 %
## 3       2021-01-06           Wednesday      3708.65629           0.134 %
## 4       2021-01-07            Thursday      9359.26480            0.33 %
## 5       2021-01-08              Friday      4915.60377            0.17 %
## 6       2021-01-09            Saturday     16228.97470           0.549 %
## 7       2021-01-10              Sunday     19160.62010           0.635 %
##   REOF_F_auto.arima
## 1           0.086 %
## 2           0.002 %
## 3           0.134 %
## 4           0.331 %
## 5            0.17 %
## 6           0.552 %
## 7           0.639 %
# SIR Model 
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##       beta      gamma 
## 0.02177408 0.00000000
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MSE_SIR<-(sum((Error_SIR^2))/validation_data_days)   #  Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))

REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,MSE_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error  by using SIR's linear model shows result of correlation ,MSE ,MPER
##   correlation_SIR      MSE_SIR RMSE_SIR
## 1       0.9997617 156756415019 395924.8
##                                                           MAPE_Mean_All
## 1 13.949 % MAPE  7 days Covid 19 Infection cases in The United Kingdom 
##    MAD_SIR
## 1 395490.2
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1       2021-01-04              Monday 366434.0   13.803 %   16.013 %
## 2       2021-01-05             Tuesday 376573.1   13.877 %   16.114 %
## 3       2021-01-06           Wednesday 387847.9   13.979 %   16.251 %
## 4       2021-01-07            Thursday 399513.6   14.083 %   16.392 %
## 5       2021-01-08              Friday 400441.7   13.859 %   16.089 %
## 6       2021-01-09            Saturday 415750.7   14.058 %   16.357 %
## 7       2021-01-10              Sunday 421870.2   13.981 %   16.254 %
##   validation_forecast testing_data
## 1             2288349      2654783
## 2             2336994      2713567
## 3             2386635      2774483
## 4             2437291      2836805
## 5             2488981      2889423
## 6             2541725      2957476
## 7             2595543      3017413
## forecasting by SIR model

Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us

SIR <- function(time, state, parameters) {
  par <- as.list(c(state, parameters))
  with(par, {
    dS <- -beta/N * I * S
    dI <- beta/N * I * S - gamma * I
    dR <- gamma * I
    list(c(dS, dI, dR))
  })
}

init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
  names(parameters) <- c("beta", "gamma")
  out <- ode(y = init, times = Day, func = SIR, parms = parameters)
  fit <- out[ , 3]
  sum((Infected - fit)^2)
}

# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B", 
             lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "ERROR: ABNORMAL_TERMINATION_IN_LNSRCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
##       beta      gamma 
## 0.10232895 0.07586272
# beta     gamma 
# 0.6512503 0.4920399 

out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)

plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))

result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
##           FD forecating_date forecasting_by_SIR
## 1 2021-01-11          Monday            2654783
## 2 2021-01-12         Tuesday            2714591
## 3 2021-01-13       Wednesday            2774637
## 4 2021-01-14        Thursday            2834859
## 5 2021-01-15          Friday            2895188
## 6 2021-01-16        Saturday            2955558
## 7 2021-01-17          Sunday            3015896
# Choose Best model by least error

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  Covid 19 Infection cases in The United Kingdom "
M1<-mean(REOF_A_bats)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using TBATS  Model For ==>  Covid 19 Infection cases in The United Kingdom "
M2<-mean(REOF_A_tbats1)

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using Holt's Linear << Exponential Smoothing >>  For ==>  Covid 19 Infection cases in The United Kingdom "
M3<-REOF_A_Holt11

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using auto arima  Model For ==>  Covid 19 Infection cases in The United Kingdom "
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using SIR Model For ==>  Covid 19 Infection cases in The United Kingdom "
M5<-REOF_A_SIR1

paste("System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes  Error ==> ( MAPE ) of Forecasting  by using autoarima  Model For ==>  Covid 19 Infection cases in The United Kingdom "
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
##   validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1       2021-01-04          Monday       0.1560306       0.06460672
## 2       2021-01-05         Tuesday       0.2077591       0.02200118
## 3       2021-01-06       Wednesday       0.2407522       0.18034558
## 4       2021-01-07        Thursday       0.2808909       0.37920902
## 5       2021-01-08          Friday       0.7125398       0.22900119
## 6       2021-01-09        Saturday       0.6551298       0.62073661
## 7       2021-01-10          Sunday       0.9231572       0.73610653
##   MAPE_Holt_error MAPE_autoarima_error
## 1     0.099460000          0.085725064
## 2     0.083315289          0.002321143
## 3     0.018977129          0.133670175
## 4     0.064605388          0.329922740
## 5     0.217925352          0.170124062
## 6     0.007447101          0.548744088
## 7     0.071944340          0.635001576
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing .....   ... . .Select Minimum MAPE from Models for select best Model ==>  Covid 19 Infection cases in The United Kingdom "
best_recommended_model
## [1] 0.08052494
paste ("Best Model For Forecasting  ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting  ==>  Covid 19 Infection cases in The United Kingdom "
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better  For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend  That's better TBATS  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend Holt's Linear Model < Exponential Smoothing Model >   That's better  For forecasting ==>  Covid 19 Infection cases in The United Kingdom "
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M5) {paste("System Recommend SIR Model  That's better  For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and SIR  Model ==>Covid 19 Infection cases in The United Kingdom
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> Covid 19 Infection cases in The United Kingdom