Table of Contents

Density Plots


Post Reveal Entropy per hour

Post Reveal RE/Hour ~ Actual Grade

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ actual_grade + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1345.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3392 -0.6494  0.0008  0.6765  4.2544 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001546 0.01243 
##  Residual             0.0020372 0.04514 
## Number of obs: 416, groups:  subject, 125
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  1.467e-01  1.035e-02 2.848e+02  14.169   <2e-16 ***
## actual_grade 8.148e-05  1.389e-04 2.797e+02   0.587    0.558    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## actual_grad -0.970


Post Reveal RE/Hour ~ Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1345.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3122 -0.6507 -0.0114  0.6554  4.2433 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.000146 0.01208 
##  Residual             0.002046 0.04523 
## Number of obs: 416, groups:  subject, 125
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  1.526e-01  2.488e-03  1.120e+02  61.322   <2e-16 ***
## PE          -3.025e-05  1.801e-04  4.034e+02  -0.168    0.867    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr)
## PE 0.028


Post Reveal RE/Hour ~ Actual Grade + Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ actual_grade + PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1330.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3442 -0.6413  0.0067  0.6757  4.2761 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001532 0.01238 
##  Residual             0.0020420 0.04519 
## Number of obs: 416, groups:  subject, 125
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.433e-01  1.210e-02  2.648e+02  11.842   <2e-16 ***
## actual_grade  1.281e-04  1.630e-04  2.608e+02   0.786    0.433    
## PE           -1.162e-04  2.115e-04  3.925e+02  -0.549    0.583    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g
## actual_grad -0.978       
## PE           0.517 -0.523


Post Reveal RE/Hour ~ PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1356.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3869 -0.6187 -0.0102  0.6681  4.1939 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001644 0.01282 
##  Residual             0.0020160 0.04490 
## Number of obs: 418, groups:  subject, 125
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  1.554e-01  3.481e-03  1.505e+02  44.641   <2e-16 ***
## PHQ         -5.613e-04  4.736e-04  2.479e+02  -1.185    0.237    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##     (Intr)
## PHQ -0.696

Post Reveal RE/Hour ~ Exam number

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ exam_num + (1 | subject)
##    Data: fm3
## 
## REML criterion at convergence: -1370.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6614 -0.5489  0.0663  0.6804  4.0863 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001662 0.01289 
##  Residual             0.0018936 0.04352 
## Number of obs: 418, groups:  subject, 125
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.383e-01  4.214e-03 4.077e+02  32.816  < 2e-16 ***
## exam_num2   2.479e-02  5.859e-03 3.169e+02   4.232 3.04e-05 ***
## exam_num3   7.792e-03  5.984e-03 3.192e+02   1.302    0.194    
## exam_num4   2.660e-02  6.046e-03 3.270e+02   4.400 1.47e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) exm_n2 exm_n3
## exam_num2 -0.666              
## exam_num3 -0.650  0.470       
## exam_num4 -0.644  0.466  0.459

Post Reveal RE/Hour ~ Cognitive attention average

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ Cog_attn_avg + (1 | subject)
##    Data: fm3
## 
## REML criterion at convergence: -886.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5848 -0.6179  0.0126  0.6493  4.0374 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0002323 0.01524 
##  Residual             0.0020309 0.04507 
## Number of obs: 279, groups:  subject, 113
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  1.416e-01  8.125e-03 2.202e+02  17.432   <2e-16 ***
## Cog_attn_avg 3.298e-04  1.550e-04 2.441e+02   2.128   0.0343 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Cog_attn_vg -0.925

Post Reveal RE/Hour ~ Sleep hours

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ Sleep_hours + (1 | subject)
##    Data: fm3
## 
## REML criterion at convergence: -892.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4369 -0.6099  0.0050  0.6603  3.8615 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001911 0.01382 
##  Residual             0.0020560 0.04534 
## Number of obs: 279, groups:  subject, 113
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   0.184372   0.011443 235.737219  16.113   <2e-16 ***
## Sleep_hours  -0.003822   0.001578 245.530884  -2.421   0.0162 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Sleep_hours -0.964

Post Reveal RE/Hour ~ Gender

## 
##  Welch Two Sample t-test
## 
## data:  fm3$postRE_perhour by fm3$gender
## t = 0.2946, df = 190.71, p-value = 0.7686
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.008753659  0.011827588
## sample estimates:
## mean in group Female   mean in group Male 
##            0.1529557            0.1514187

Post Reveal RE/Hour ~ School Year

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ schoolyear + (1 | subject)
##    Data: fm3
## 
## REML criterion at convergence: -1324.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2505 -0.6307 -0.0036  0.6576  4.2563 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001696 0.01302 
##  Residual             0.0020301 0.04506 
## Number of obs: 411, groups:  subject, 123
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    0.150797   0.002844 108.643097  53.026   <2e-16
## schoolyearSecond (Sophomore)   0.008498   0.007065 112.334972   1.203    0.232
## schoolyearThird (Junior)       0.010997   0.014006 110.541700   0.785    0.434
## schoolyearFourth (Senior)     -0.002533   0.019887  95.941090  -0.127    0.899
##                                 
## (Intercept)                  ***
## schoolyearSecond (Sophomore)    
## schoolyearThird (Junior)        
## schoolyearFourth (Senior)       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scS(S) scT(J)
## schlyrS(Sp) -0.403              
## schlyrT(Jn) -0.203  0.082       
## schlyrF(Sn) -0.143  0.058  0.029

Post Reveal RE/Hour ~ Actual Grade ~ School Year

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ schoolyear + (1 | subject)
##    Data: fm3
## 
## REML criterion at convergence: -1324.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2505 -0.6307 -0.0036  0.6576  4.2563 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001696 0.01302 
##  Residual             0.0020301 0.04506 
## Number of obs: 411, groups:  subject, 123
## 
## Fixed effects:
##                                Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                    0.150797   0.002844 108.643097  53.026   <2e-16
## schoolyearSecond (Sophomore)   0.008498   0.007065 112.334972   1.203    0.232
## schoolyearThird (Junior)       0.010997   0.014006 110.541700   0.785    0.434
## schoolyearFourth (Senior)     -0.002533   0.019887  95.941090  -0.127    0.899
##                                 
## (Intercept)                  ***
## schoolyearSecond (Sophomore)    
## schoolyearThird (Junior)        
## schoolyearFourth (Senior)       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) scS(S) scT(J)
## schlyrS(Sp) -0.403              
## schlyrT(Jn) -0.203  0.082       
## schlyrF(Sn) -0.143  0.058  0.029

Extraversion
low -> 8-18
med-low -> 19-22
med-high -> 23-25
high -> 26-30

Post Reveal RE/Hour ~ Actual Grade * Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ actual_grade * extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1290.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.37417 -0.66084  0.00092  0.66037  2.89117 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001813 0.01346 
##  Residual             0.0019534 0.04420 
## Number of obs: 405, groups:  subject, 122
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)                1.535e-01  5.144e-02  3.398e+02   2.985  0.00304 **
## actual_grade               5.135e-05  6.892e-04  3.435e+02   0.075  0.94065   
## extraversion              -4.076e-04  2.298e-03  3.179e+02  -0.177  0.85931   
## actual_grade:extraversion  2.190e-06  3.098e-05  3.209e+02   0.071  0.94370   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g extrvr
## actual_grad -0.976              
## extraversin -0.979  0.957       
## actl_grd:xt  0.951 -0.979 -0.974

Post Reveal RE/Hour ~ Prediction Error + Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ PE + extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1309.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.34350 -0.64770 -0.01275  0.68140  2.88795 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.000172 0.01312 
##  Residual             0.001957 0.04424 
## Number of obs: 405, groups:  subject, 122
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.580e-01  1.117e-02  9.972e+01  14.137   <2e-16 ***
## PE           -6.051e-05  1.784e-04  3.926e+02  -0.339    0.735    
## extraversion -2.831e-04  5.150e-04  1.004e+02  -0.550    0.584    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PE    
## PE          -0.030       
## extraversin -0.974  0.039

Post Reveal RE/Hour ~ Actual Grade * Exam number

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ actual_grade * exam_num + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1307.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5665 -0.5445  0.0493  0.6762  3.8327 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001642 0.01282 
##  Residual             0.0019062 0.04366 
## Number of obs: 416, groups:  subject, 125
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             1.372e-01  1.632e-02  4.080e+02   8.406 7.16e-16 ***
## actual_grade            1.658e-05  2.458e-04  4.080e+02   0.067   0.9463    
## exam_num2               1.151e-02  2.449e-02  3.635e+02   0.470   0.6385    
## exam_num3               2.754e-02  2.707e-02  3.724e+02   1.017   0.3097    
## exam_num4               6.562e-02  3.480e-02  3.768e+02   1.885   0.0601 .  
## actual_grade:exam_num2  1.941e-04  3.531e-04  3.612e+02   0.550   0.5828    
## actual_grade:exam_num3 -2.516e-04  3.608e-04  3.654e+02  -0.698   0.4859    
## actual_grade:exam_num4 -4.960e-04  4.546e-04  3.715e+02  -1.091   0.2760    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g exm_n2 exm_n3 exm_n4 ac_:_2 ac_:_3
## actual_grad -0.966                                          
## exam_num2   -0.637  0.616                                   
## exam_num3   -0.570  0.551  0.385                            
## exam_num4   -0.438  0.423  0.304  0.276                     
## actl_grd:_2  0.645 -0.667 -0.970 -0.388 -0.306              
## actl_grd:_3  0.628 -0.650 -0.420 -0.970 -0.299  0.453       
## actl_grd:_4  0.493 -0.510 -0.338 -0.306 -0.981  0.364  0.355

Post Reveal RE/Hour (day after) ~ Grade Reveal Time

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ grade_reveal_time + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1349.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6146 -0.6238 -0.0124  0.6809  4.2230 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001568 0.01252 
##  Residual             0.0020259 0.04501 
## Number of obs: 418, groups:  subject, 125
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        1.666e-01  1.711e-02  4.131e+02   9.738   <2e-16 ***
## grade_reveal_time -1.598e-05  1.923e-05  4.078e+02  -0.831    0.407    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## grad_rvl_tm -0.989

PHQ
low -> 0
med-low -> 1-4
med-high -> 5-8
high -> 9-25

Post Reveal RE/Hour ~ Actual Grade * PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: postRE_perhour ~ actual_grade * PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: -1313.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4038 -0.6386 -0.0068  0.6774  4.2033 
## 
## Random effects:
##  Groups   Name        Variance  Std.Dev.
##  subject  (Intercept) 0.0001712 0.01308 
##  Residual             0.0020275 0.04503 
## Number of obs: 416, groups:  subject, 125
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       1.477e-01  1.579e-02  2.843e+02   9.356   <2e-16 ***
## actual_grade      1.026e-04  2.048e-04  2.850e+02   0.501    0.617    
## PHQ               1.214e-04  2.154e-03  3.654e+02   0.056    0.955    
## actual_grade:PHQ -9.040e-06  2.915e-05  3.584e+02  -0.310    0.757    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g PHQ   
## actual_grad -0.975              
## PHQ         -0.745  0.730       
## actl_gr:PHQ  0.703 -0.722 -0.974



Unique Locations per Hour

Day After Grade Reveal U

Unique Locations/Hour (day after) ~ Actual Grade

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ actual_grade + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2319.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0374 -0.6513 -0.3504  0.3398  6.6257 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.0     
##  Residual             15.21    3.9     
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  3.692e+00  8.312e-01 4.140e+02   4.441 1.15e-05 ***
## actual_grade 4.485e-03  1.115e-02 4.140e+02   0.402    0.688    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## actual_grad -0.973
## convergence code: 0
## boundary (singular) fit: see ?isSingular


Unique Locations/Hour (day after) ~ Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2319
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0203 -0.6494 -0.3411  0.3240  6.6446 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.0     
##  Residual             15.21    3.9     
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   4.016521   0.191246 414.000000  21.002   <2e-16 ***
## PE           -0.002704   0.014885 414.000000  -0.182    0.856    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr)
## PE 0.012 
## convergence code: 0
## boundary (singular) fit: see ?isSingular


Unique Locations/Hour (day after) ~ PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2326.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0056 -0.6489 -0.3351  0.3404  6.6421 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.15    3.893   
## Number of obs: 418, groups:  subject, 124
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   3.95624    0.26818 416.00000  14.752   <2e-16 ***
## PHQ           0.01029    0.03729 416.00000   0.276    0.783    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##     (Intr)
## PHQ -0.704
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Unique Locations/Hour (day after) * Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ actual_grade * PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2338.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0537 -0.6398 -0.3421  0.3318  6.6146 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.27    3.908   
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      3.492e+00  9.688e-01  4.120e+02   3.605 0.000351 ***
## actual_grade     7.364e-03  1.299e-02  4.120e+02   0.567 0.570962    
## PE              -1.880e-03  4.902e-02  4.120e+02  -0.038 0.969424    
## actual_grade:PE -9.344e-05  7.316e-04  4.120e+02  -0.128 0.898430    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g PE    
## actual_grad -0.977              
## PE           0.289 -0.216       
## actl_grd:PE -0.122  0.039 -0.936
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Extraversion
low -> 8-18
med-low -> 19-22
med-high -> 23-25
high -> 26-30

Unique Locations/Hour (day after) ~ Actual Grade * Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ actual_grade * extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2278.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.1827 -0.6487 -0.3366  0.3467  6.5719 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.49    3.936   
## Number of obs: 405, groups:  subject, 121
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                 8.454529   4.355469 401.000000   1.941   0.0529 .
## actual_grade               -0.051388   0.058238 401.000000  -0.882   0.3781  
## extraversion               -0.198201   0.193042 401.000000  -1.027   0.3052  
## actual_grade:extraversion   0.002314   0.002597 401.000000   0.891   0.3734  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g extrvr
## actual_grad -0.980              
## extraversin -0.980  0.962       
## actl_grd:xt  0.957 -0.980 -0.978
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Unique Locations/Hour (day after) ~ Prediction Error + Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ PE + extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2268.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0723 -0.6406 -0.3220  0.3554  6.5419 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.49    3.935   
## Number of obs: 405, groups:  subject, 121
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    4.707684   0.874123 402.000000   5.386 1.23e-07 ***
## PE            -0.003198   0.015093 402.000000  -0.212    0.832    
## extraversion  -0.030267   0.040260 402.000000  -0.752    0.453    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PE    
## PE          -0.046       
## extraversin -0.975  0.050
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Unique Locations/Hour (day after) ~ Actual Grade * Exam number

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ actual_grade * exam_num + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2260.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7477 -0.4774 -0.1695  0.2701  6.7093 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             12.91    3.593   
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)              2.907765   1.293651 408.000000   2.248   0.0251 *
## actual_grade            -0.008642   0.019500 408.000000  -0.443   0.6579  
## exam_num2                3.269958   1.992166 408.000000   1.641   0.1015  
## exam_num3                0.208801   2.144476 408.000000   0.097   0.9225  
## exam_num4                4.354223   2.736611 408.000000   1.591   0.1124  
## actual_grade:exam_num2  -0.003379   0.028706 408.000000  -0.118   0.9064  
## actual_grade:exam_num3   0.003635   0.028835 408.000000   0.126   0.8997  
## actual_grade:exam_num4  -0.008187   0.036010 408.000000  -0.227   0.8203  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g exm_n2 exm_n3 exm_n4 ac_:_2 ac_:_3
## actual_grad -0.966                                          
## exam_num2   -0.649  0.627                                   
## exam_num3   -0.603  0.582  0.392                            
## exam_num4   -0.473  0.456  0.307  0.285                     
## actl_grd:_2  0.656 -0.679 -0.969 -0.396 -0.310              
## actl_grd:_3  0.653 -0.676 -0.424 -0.969 -0.309  0.459       
## actl_grd:_4  0.523 -0.541 -0.340 -0.315 -0.979  0.368  0.366
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Unique Locations/Hour (day after) ~ Grade Reveal Time

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ grade_reveal_time + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2330.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.1527 -0.6313 -0.3132  0.2896  6.7149 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.06    3.881   
## Number of obs: 418, groups:  subject, 124
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         6.100544   1.301525 416.000000   4.687 3.76e-06 ***
## grade_reveal_time  -0.002360   0.001453 416.000000  -1.625    0.105    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## grad_rvl_tm -0.989
## convergence code: 0
## boundary (singular) fit: see ?isSingular

PHQ
low -> 0
med-low -> 1-4
med-high -> 5-8
high -> 9-25

Unique Locations/Hour (day after) ~ Actual Grade * PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: unique_perhour2 ~ actual_grade * PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2334.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0264 -0.6455 -0.3475  0.3433  6.5903 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.28    3.909   
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)       3.553e+00  1.252e+00  4.120e+02   2.838  0.00477 **
## actual_grade      5.368e-03  1.629e-02  4.120e+02   0.330  0.74186   
## PHQ               1.680e-02  1.740e-01  4.120e+02   0.097  0.92315   
## actual_grade:PHQ -2.926e-05  2.364e-03  4.120e+02  -0.012  0.99013   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g PHQ   
## actual_grad -0.977              
## PHQ         -0.739  0.726       
## actl_gr:PHQ  0.698 -0.718 -0.976
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Novel Locations per Hour

Day after Grade Reveal N

Novel Locations/Hour (day after) ~ Actual Grade

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ actual_grade + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2336.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.8747 -0.6612 -0.3797  0.3110  6.5895 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.86    3.982   
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   3.512e+00  8.488e-01  4.140e+02   4.137 4.26e-05 ***
## actual_grade -5.261e-04  1.139e-02  4.140e+02  -0.046    0.963    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## actual_grad -0.973
## convergence code: 0
## boundary (singular) fit: see ?isSingular


Novel Locations/Hour (day after) ~ Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2335.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.8982 -0.6557 -0.3759  0.3123  6.6062 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.00    
##  Residual             15.84    3.98    
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   3.47200    0.19517 414.00000   17.79   <2e-16 ***
## PE           -0.00972    0.01519 414.00000   -0.64    0.523    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr)
## PE 0.012 
## convergence code: 0
## boundary (singular) fit: see ?isSingular


Novel Locations/Hour (day after) ~ PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2343.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.8955 -0.6566 -0.3775  0.3155  6.5939 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.79    3.974   
## Number of obs: 418, groups:  subject, 124
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 3.428e+00  2.738e-01 4.160e+02  12.521   <2e-16 ***
## PHQ         7.694e-03  3.807e-02 4.160e+02   0.202     0.84    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##     (Intr)
## PHQ -0.704
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Novel Locations/Hour (day after) * Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ actual_grade * PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2354.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.9089 -0.6553 -0.3739  0.3248  6.5884 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.0     0.000   
##  Residual             15.9     3.988   
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)      3.232e+00  9.886e-01  4.120e+02   3.269  0.00117 **
## actual_grade     3.971e-03  1.325e-02  4.120e+02   0.300  0.76456   
## PE               1.466e-02  5.002e-02  4.120e+02   0.293  0.76965   
## actual_grade:PE -4.351e-04  7.465e-04  4.120e+02  -0.583  0.56034   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g PE    
## actual_grad -0.977              
## PE           0.289 -0.216       
## actl_grd:PE -0.122  0.039 -0.936
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Extraversion
low -> 8-18
med-low -> 19-22
med-high -> 23-25
high -> 26-30

Novel Locations/Hour (day after) ~ Actual Grade * Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ actual_grade * extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2295.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0459 -0.6479 -0.3914  0.3161  6.5342 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             16.18    4.023   
## Number of obs: 405, groups:  subject, 121
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)                 7.822270   4.451001 401.000000   1.757   0.0796 .
## actual_grade               -0.051811   0.059516 401.000000  -0.871   0.3845  
## extraversion               -0.177400   0.197276 401.000000  -0.899   0.3691  
## actual_grade:extraversion   0.002103   0.002654 401.000000   0.792   0.4287  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g extrvr
## actual_grad -0.980              
## extraversin -0.980  0.962       
## actl_grd:xt  0.957 -0.980 -0.978
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Novel Locations/Hour (day after) ~ Prediction Error + Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ PE + extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2285.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.9157 -0.6516 -0.3759  0.3087  6.5057 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.00    
##  Residual             16.16    4.02    
## Number of obs: 405, groups:  subject, 121
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    4.03175    0.89292 402.00000   4.515 8.32e-06 ***
## PE            -0.01017    0.01542 402.00000  -0.660    0.510    
## extraversion  -0.02427    0.04113 402.00000  -0.590    0.555    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PE    
## PE          -0.046       
## extraversin -0.975  0.050
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Novel Locations/Hour (day after) ~ Actual Grade * Exam number

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ actual_grade * exam_num + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2255.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6633 -0.4177 -0.1774  0.2311  6.7656 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             12.75    3.571   
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)             2.714e+00  1.286e+00  4.080e+02   2.111   0.0354 *
## actual_grade           -1.182e-02  1.938e-02  4.080e+02  -0.610   0.5422  
## exam_num2               3.240e+00  1.980e+00  4.080e+02   1.636   0.1025  
## exam_num3              -5.865e-01  2.131e+00  4.080e+02  -0.275   0.7833  
## exam_num4               3.860e+00  2.720e+00  4.080e+02   1.419   0.1566  
## actual_grade:exam_num2 -1.261e-03  2.853e-02  4.080e+02  -0.044   0.9648  
## actual_grade:exam_num3  4.283e-03  2.866e-02  4.080e+02   0.149   0.8813  
## actual_grade:exam_num4 -6.014e-05  3.579e-02  4.080e+02  -0.002   0.9987  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g exm_n2 exm_n3 exm_n4 ac_:_2 ac_:_3
## actual_grad -0.966                                          
## exam_num2   -0.649  0.627                                   
## exam_num3   -0.603  0.582  0.392                            
## exam_num4   -0.473  0.456  0.307  0.285                     
## actl_grd:_2  0.656 -0.679 -0.969 -0.396 -0.310              
## actl_grd:_3  0.653 -0.676 -0.424 -0.969 -0.309  0.459       
## actl_grd:_4  0.523 -0.541 -0.340 -0.315 -0.979  0.368  0.366
## convergence code: 0
## boundary (singular) fit: see ?isSingular

Novel Locations/Hour (day after) ~ Grade Reveal Time

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ grade_reveal_time + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2348.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.0140 -0.6420 -0.3545  0.2793  6.6484 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.73    3.966   
## Number of obs: 418, groups:  subject, 124
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         5.190171   1.330013 416.000000   3.902 0.000111 ***
## grade_reveal_time  -0.001944   0.001484 416.000000  -1.310 0.190976    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## grad_rvl_tm -0.989
## convergence code: 0
## boundary (singular) fit: see ?isSingular

PHQ
low -> 0
med-low -> 1-4
med-high -> 5-8
high -> 9-25

Novel Locations/Hour (day after) ~ Actual Grade * PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: novel_perhour2 ~ actual_grade * PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 2351.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.8840 -0.6647 -0.3705  0.3212  6.5425 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept)  0.00    0.000   
##  Residual             15.93    3.991   
## Number of obs: 416, groups:  subject, 124
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)       3.777e+00  1.278e+00  4.120e+02   2.954  0.00331 **
## actual_grade     -4.655e-03  1.663e-02  4.120e+02  -0.280  0.77970   
## PHQ              -5.762e-02  1.777e-01  4.120e+02  -0.324  0.74595   
## actual_grade:PHQ  9.246e-04  2.414e-03  4.120e+02   0.383  0.70195   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g PHQ   
## actual_grad -0.977              
## PHQ         -0.739  0.726       
## actl_gr:PHQ  0.698 -0.718 -0.976
## convergence code: 0
## boundary (singular) fit: see ?isSingular



Post Reveal Entropy

Post Reveal RE ~ Actual Grade

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 710.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5108 -0.6739 -0.0358  0.5819  4.8329 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.006947 0.08335 
##  Residual             0.299393 0.54717 
## Number of obs: 421, groups:  subject, 125
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  1.087e+00  1.191e-01 2.647e+02   9.127  < 2e-16 ***
## actual_grade 4.528e-03  1.598e-03 2.586e+02   2.833  0.00498 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## actual_grad -0.972

Post Reveal RE ~ Actual Grade (Exams 2, 3, 4)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade + (1 | subject)
##    Data: fm2
## 
## REML criterion at convergence: 533
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4686 -0.5574  0.0386  0.5465  4.5380 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.02539  0.1593  
##  Residual             0.29803  0.5459  
## Number of obs: 305, groups:  subject, 117
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)  1.547e+00  1.626e-01 2.202e+02   9.515   <2e-16 ***
## actual_grade 8.889e-05  2.101e-03 2.184e+02   0.042    0.966    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## actual_grad -0.977

Post Reveal RE ~ Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 714.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4700 -0.6558 -0.0277  0.6049  4.9120 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.004364 0.06606 
##  Residual             0.305191 0.55244 
## Number of obs: 421, groups:  subject, 125
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept) 1.417e+00  2.763e-02 1.089e+02  51.275   <2e-16 ***
## PE          3.882e-03  2.128e-03 3.979e+02   1.824   0.0689 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr)
## PE 0.022

Post Reveal RE ~ Prediction Error (Exams 2, 3, 4)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ PE + (1 | subject)
##    Data: fm2
## 
## REML criterion at convergence: 531.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5229 -0.5475  0.0336  0.5441  4.5563 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.02382  0.1543  
##  Residual             0.29852  0.5464  
## Number of obs: 305, groups:  subject, 117
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.558145   0.034974 110.139613   44.55   <2e-16 ***
## PE           -0.002514   0.002762 302.331036   -0.91    0.364    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr)
## PE -0.146


Post Reveal RE ~ PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 713.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5327 -0.6548 -0.0326  0.5907  4.9211 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.004322 0.06574 
##  Residual             0.303045 0.55050 
## Number of obs: 423, groups:  subject, 125
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   1.474284   0.038777 143.979700  38.019   <2e-16 ***
## PHQ          -0.011707   0.005349 221.562667  -2.189   0.0297 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##     (Intr)
## PHQ -0.706


Post Reveal RE ~ Actual Grade * Prediction Error

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade * PE + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 737.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5037 -0.6670 -0.0335  0.5962  4.8277 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.007261 0.08521 
##  Residual             0.300301 0.54800 
## Number of obs: 421, groups:  subject, 125
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      1.125e+00  1.399e-01  2.491e+02   8.037  3.7e-14 ***
## actual_grade     4.078e-03  1.874e-03  2.424e+02   2.176   0.0305 *  
## PE               3.769e-03  6.966e-03  4.133e+02   0.541   0.5888    
## actual_grade:PE -4.278e-05  1.039e-04  4.138e+02  -0.412   0.6806    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g PE    
## actual_grad -0.977              
## PE           0.294 -0.222       
## actl_grd:PE -0.121  0.041 -0.934

Extraversion
low -> 8-18
med-low -> 19-22
med-high -> 23-25
high -> 26-30

Post Reveal RE ~ Actual Grade * Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade * extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 703.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5219 -0.6786 -0.0219  0.6134  4.8567 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.006967 0.08347 
##  Residual             0.292402 0.54074 
## Number of obs: 410, groups:  subject, 122
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                9.779e-01  5.949e-01  3.045e+02   1.644    0.101
## actual_grade               7.311e-03  7.990e-03  3.072e+02   0.915    0.361
## extraversion               3.399e-03  2.651e-02  2.835e+02   0.128    0.898
## actual_grade:extraversion -1.131e-04  3.581e-04  2.854e+02  -0.316    0.752
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g extrvr
## actual_grad -0.978              
## extraversin -0.979  0.959       
## actl_grd:xt  0.955 -0.979 -0.977

Post Reveal RE ~ Prediction Error + Extraversion

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ PE + extraversion + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 695.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4476 -0.6566 -0.0256  0.6256  4.9421 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.006316 0.07948 
##  Residual             0.296784 0.54478 
## Number of obs: 410, groups:  subject, 122
## 
## Fixed effects:
##                Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    1.529644   0.123253  95.975952  12.411   <2e-16 ***
## PE             0.003515   0.002118 386.397009   1.660   0.0978 .  
## extraversion  -0.005642   0.005690  96.980539  -0.992   0.3239    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) PE    
## PE          -0.033       
## extraversin -0.974  0.040

Post Reveal RE ~ Actual Grade * Exam number

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade * exam_num + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 669.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8723 -0.4696  0.0270  0.5748  4.8003 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.01772  0.1331  
##  Residual             0.24035  0.4903  
## Number of obs: 421, groups:  subject, 125
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)             9.902e-01  1.824e-01  4.130e+02   5.428 9.72e-08 ***
## actual_grade            9.647e-04  2.747e-03  4.130e+02   0.351   0.7256    
## exam_num2               3.352e-01  2.744e-01  3.703e+02   1.222   0.2226    
## exam_num3               6.092e-01  2.990e-01  3.759e+02   2.038   0.0423 *  
## exam_num4               4.995e-01  3.803e-01  3.846e+02   1.314   0.1898    
## actual_grade:exam_num2  3.334e-03  3.956e-03  3.680e+02   0.843   0.4000    
## actual_grade:exam_num3 -3.002e-03  4.005e-03  3.694e+02  -0.750   0.4539    
## actual_grade:exam_num4  3.819e-04  4.989e-03  3.793e+02   0.077   0.9390    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g exm_n2 exm_n3 exm_n4 ac_:_2 ac_:_3
## actual_grad -0.966                                          
## exam_num2   -0.639  0.618                                   
## exam_num3   -0.580  0.561  0.390                            
## exam_num4   -0.454  0.438  0.311  0.288                     
## actl_grd:_2  0.647 -0.669 -0.969 -0.393 -0.313              
## actl_grd:_3  0.636 -0.658 -0.424 -0.969 -0.311  0.457       
## actl_grd:_4  0.507 -0.525 -0.345 -0.318 -0.980  0.371  0.367

Post Reveal RE ~ Actual Grade * Exam number (Exams 2, 3, 4)

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade * exam_num + (1 | subject)
##    Data: fm2
## 
## REML criterion at convergence: 547.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4405 -0.5632  0.0491  0.5689  4.4611 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.02483  0.1576  
##  Residual             0.30024  0.5479  
## Number of obs: 305, groups:  subject, 117
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)  
## (Intercept)             1.337970   0.591079 261.017024   2.264   0.0244 *
## actual_grade            0.003585   0.007878 260.104195   0.455   0.6495  
## exam_num                0.072112   0.211225 269.329986   0.341   0.7331  
## actual_grade:exam_num  -0.001184   0.002748 264.680216  -0.431   0.6669  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g exm_nm
## actual_grad -0.978              
## exam_num    -0.960  0.931       
## actl_grd:x_  0.952 -0.961 -0.982


Post Reveal RE ~ Prediction Error + Exam number

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ PE + exam_num + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 644.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8924 -0.4873  0.0356  0.5741  4.9656 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.01699  0.1304  
##  Residual             0.24087  0.4908  
## Number of obs: 421, groups:  subject, 125
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)  1.052e+00  4.876e-02  4.106e+02  21.571  < 2e-16 ***
## PE          -1.847e-05  2.087e-03  3.940e+02  -0.009    0.993    
## exam_num2    5.734e-01  6.684e-02  3.228e+02   8.579 4.09e-16 ***
## exam_num3    3.863e-01  7.107e-02  3.413e+02   5.436 1.04e-07 ***
## exam_num4    5.436e-01  6.972e-02  3.359e+02   7.796 8.10e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) PE     exm_n2 exm_n3
## PE         0.254                     
## exam_num2 -0.671 -0.118              
## exam_num3 -0.686 -0.331  0.479       
## exam_num4 -0.677 -0.249  0.479  0.508

PHQ
low -> 0
med-low -> 1-4
med-high -> 5-8
high -> 9-25


Post Reveal RE ~ Actual Grade * PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade * PHQ + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 730.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5230 -0.6549 -0.0616  0.5798  4.8135 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.008143 0.09024 
##  Residual             0.297532 0.54546 
## Number of obs: 421, groups:  subject, 125
## 
## Fixed effects:
##                    Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       1.119e+00  1.801e-01  2.617e+02   6.214 2.02e-09 ***
## actual_grade      4.721e-03  2.340e-03  2.604e+02   2.017   0.0447 *  
## PHQ              -7.271e-06  2.451e-02  3.490e+02   0.000   0.9998    
## actual_grade:PHQ -1.296e-04  3.331e-04  3.380e+02  -0.389   0.6975    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g PHQ   
## actual_grad -0.976              
## PHQ         -0.742  0.729       
## actl_gr:PHQ  0.699 -0.719 -0.975

Grade Reveal Time ~ Exam number

## 
## Call:
## lm(formula = grade_reveal_time ~ exam_num, data = fm)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -837.09  -31.20  -22.94    8.88  590.91 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   983.94      11.10  88.658  < 2e-16 ***
## exam_num2    -139.64      15.76  -8.859  < 2e-16 ***
## exam_num3    -138.55      15.98  -8.673  < 2e-16 ***
## exam_num4    -136.85      16.09  -8.505 2.69e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 121.1 on 451 degrees of freedom
##   (15827 observations deleted due to missingness)
## Multiple R-squared:  0.203,  Adjusted R-squared:  0.1977 
## F-statistic: 38.28 on 3 and 451 DF,  p-value: < 2.2e-16

Actual Grade ~ Exam number

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: actual_grade ~ exam_num + (1 | subject)
##    Data: fm
## 
## REML criterion at convergence: 3562
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7123 -0.5002  0.1070  0.5163  2.8868 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 175.47   13.246  
##  Residual              89.98    9.486  
## Number of obs: 452, groups:  subject, 126
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)   63.946      1.472 209.161  43.443  < 2e-16 ***
## exam_num2      5.273      1.259 322.983   4.189 3.61e-05 ***
## exam_num3     13.373      1.280 324.760  10.449  < 2e-16 ***
## exam_num4     11.610      1.296 326.984   8.962  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) exm_n2 exm_n3
## exam_num2 -0.417              
## exam_num3 -0.409  0.488       
## exam_num4 -0.408  0.486  0.491


Post Reveal Entropy ~ Actual Grade + Grade Reveal Time

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: post_reveal_entropy ~ actual_grade + grade_reveal_time + (1 |  
##     subject)
##    Data: fm
## 
## REML criterion at convergence: 579.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -5.1387 -0.5884 -0.0411  0.5792  4.5133 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  subject  (Intercept) 0.009694 0.09846 
##  Residual             0.207098 0.45508 
## Number of obs: 421, groups:  subject, 125
## 
## Fixed effects:
##                     Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)        3.493e+00  2.085e-01  3.917e+02  16.750   <2e-16 ***
## actual_grade       3.167e-04  1.399e-03  2.722e+02   0.226    0.821    
## grade_reveal_time -2.374e-03  1.791e-04  4.180e+02 -13.252   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) actl_g
## actual_grad -0.663       
## grad_rvl_tm -0.874  0.234