South ural state university, Chelyabinsk, Russian federation
# Imports
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2 3.3.2 v fma 2.4
## v forecast 8.13 v expsmooth 2.3
##
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package: markovchain
## Version: 0.8.5-3
## Date: 2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
#population in Brazil = 332049624
#WHO COVID-19 global table data January 11th 2021 at 11.53.00 AM.csv
Full_original_data<-read.csv("F:/Phd/COVID 19 in 2021/WHO_data.csv")
View(Full_original_data)
y_lab<- "Covid 19 Infection cases in Brazil " # input name of data
Actual_date_interval <- c("2020/01/03","2021/01/10")
Forecast_date_interval <- c("2021/01/11","2021/01/17")
validation_data_days <-7
frequency <-"days"
Population <-213376438 # population in Brazil
# Data Preparation & calculate some of statistics measures
Covid_data<-Full_original_data[Full_original_data$Country == "Brazil", ]
original_data<-Covid_data$Cumulative_cases
View(original_data)
summary(original_data)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0 9362 1613170 2549528 4992806 8013708
sd(original_data) # calculate standard deviation
## [1] 2626118
skewness(original_data) # calculate Cofficient of skewness
## [1] 0.5166867
kurtosis(original_data) # calculate Cofficient of kurtosis
## [1] 1.773888
rows <- NROW(original_data)
training_data<-original_data[1:(rows-validation_data_days)]
testing_data<-original_data[(rows-validation_data_days+1):rows]
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency) #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency) #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD))
validation_dates<-tail(AD,validation_data_days)
validation_data_by_name<-weekdays(validation_dates)
forecasting_data_by_name<-weekdays(FD)
##bats model
# Data Modeling
data_series<-ts(training_data)
autoplot(data_series ,xlab=paste ("Time in ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 641.5894 8698.253 5471.335 NaN Inf 0.2600465 0.01545096
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
##
## Call: bats(y = data_series)
##
## Parameters
## Alpha: 1.507906
## Beta: 0.1643973
## Damping Parameter: 1
##
## Seed States:
## [,1]
## [1,] -45.610897
## [2,] 8.731625
##
## Sigma: 8698.253
## AIC: 8833.292
plot(model_bats,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Covid 19 Infection cases in Brazil "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Covid 19 Infection cases in Brazil "
paste(MAPE_Mean_All,"%")
## [1] "0.412 % MAPE 7 days Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Covid 19 Infection cases in Brazil "
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
## date_bats validation_data_by_name actual_data forecasting_bats
## 1 2021-01-04 Monday 7716405 7726003
## 2 2021-01-05 Tuesday 7733746 7764721
## 3 2021-01-06 Wednesday 7753752 7803440
## 4 2021-01-07 Thursday 7810400 7842158
## 5 2021-01-08 Friday 7873830 7880876
## 6 2021-01-09 Saturday 7961673 7919594
## 7 2021-01-10 Sunday 8013708 7958313
## MAPE_bats_Model
## 1 0.124 %
## 2 0.401 %
## 3 0.641 %
## 4 0.407 %
## 5 0.089 %
## 6 0.529 %
## 7 0.691 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
## FD forecating_date forecasting_by_bats
## 1 2021-01-11 Monday 7997031
## 2 2021-01-12 Tuesday 8035749
## 3 2021-01-13 Wednesday 8074467
## 4 2021-01-14 Thursday 8113186
## 5 2021-01-15 Friday 8151904
## 6 2021-01-16 Saturday 8190622
## 7 2021-01-17 Sunday 8229340
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days) # Root mean square forecast error
MSE_bats<-(sum((Error_bats^2))/validation_data_days) # Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,MSE_bats,RMSE_bats,MAPE_Mean_All,MAD_bats) # analysis of Error by using Bats Model shows result of correlation ,MSE ,MPER
## correlation_bats MSE_bats RMSE_bats
## 1 0.9748807 1345417652 36679.94
## MAPE_Mean_All MAD_bats
## 1 0.412 % MAPE 7 days Covid 19 Infection cases in Brazil 4513.061
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_bats REOF_Abats REOF_Fbats
## 1 2021-01-04 Monday 9598.145 0.124 % 0.124 %
## 2 2021-01-05 Tuesday 30975.403 0.401 % 0.399 %
## 3 2021-01-06 Wednesday 49687.660 0.641 % 0.637 %
## 4 2021-01-07 Thursday 31757.918 0.407 % 0.405 %
## 5 2021-01-08 Friday 7046.176 0.089 % 0.089 %
## 6 2021-01-09 Saturday 42078.567 0.529 % 0.531 %
## 7 2021-01-10 Sunday 55395.309 0.691 % 0.696 %
## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE, seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 633.1078 8567.274 5667.245 NaN Inf 0.2693579 0.01600741
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
##
## Call: NULL
##
## Parameters
## Alpha: 1.514693
## Beta: 0.1664232
## Damping Parameter: 1
## Gamma-1 Values: -0.002481143
## Gamma-2 Values: 0.004364751
##
## Seed States:
## [,1]
## [1,] 48.43941
## [2,] -34.39969
## [3,] -699.63011
## [4,] 454.63022
## [5,] -767.45649
## [6,] 85.79901
##
## Sigma: 8567.274
## AIC: 8834.155
plot(model_TBATS,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using TBATS Model for ==> Covid 19 Infection cases in Brazil "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in TBATS Model for ==> Covid 19 Infection cases in Brazil "
paste(MAPE_Mean_All,"%")
## [1] "0.407 % MAPE 7 days Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in TBATS Model for ==> Covid 19 Infection cases in Brazil "
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
## date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2021-01-04 Monday 7716405 7723780
## 2 2021-01-05 Tuesday 7733746 7763074
## 3 2021-01-06 Wednesday 7753752 7804200
## 4 2021-01-07 Thursday 7810400 7841214
## 5 2021-01-08 Friday 7873830 7879536
## 6 2021-01-09 Saturday 7961673 7919130
## 7 2021-01-10 Sunday 8013708 7955585
## MAPE_TBATS_Model
## 1 0.096 %
## 2 0.379 %
## 3 0.651 %
## 4 0.395 %
## 5 0.072 %
## 6 0.534 %
## 7 0.725 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
## FD forecating_date forecasting_by_TBATS
## 1 2021-01-11 Monday 7994879
## 2 2021-01-12 Tuesday 8036005
## 3 2021-01-13 Wednesday 8073018
## 4 2021-01-14 Thursday 8111340
## 5 2021-01-15 Friday 8150935
## 6 2021-01-16 Saturday 8187389
## 7 2021-01-17 Sunday 8226684
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model
Error_tbats<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days) # Root mean square forecast error
MSE_tbats<-(sum((Error_tbats^2))/validation_data_days) # Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,MSE_tbats,RMSE_tbats,MAPE_Mean_All,MAD_tbats) # analysis of Error by using Holt's linear model shows result of correlation ,MSE ,MPER
## correlation_tbats MSE_tbats RMSE_tbats
## 1 0.9727568 1375685097 37090.23
## MAPE_Mean_All MAD_tbats
## 1 0.407 % MAPE 7 days Covid 19 Infection cases in Brazil 3286.423
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1 2021-01-04 Monday 7375.034 0.096 % 0.095 %
## 2 2021-01-05 Tuesday 29328.331 0.379 % 0.378 %
## 3 2021-01-06 Wednesday 50448.295 0.651 % 0.646 %
## 4 2021-01-07 Thursday 30813.621 0.395 % 0.393 %
## 5 2021-01-08 Friday 5705.593 0.072 % 0.072 %
## 6 2021-01-09 Saturday 42542.668 0.534 % 0.537 %
## 7 2021-01-10 Sunday 58123.243 0.725 % 0.731 %
## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt) # accuracy on training data
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -467.1298 10003.29 6482.739 Inf Inf 0.3081175 0.3828341
# Print Model Parameters
summary(model_holt$model)
## Holt's method
##
## Call:
## holt(y = data_series, h = N_forecasting_days + validation_data_days,
##
## Call:
## lambda = "auto")
##
## Box-Cox transformation: lambda= 0.4566
##
## Smoothing parameters:
## alpha = 0.9999
## beta = 0.1548
##
## Initial states:
## l = -3.0736
## b = -1.0619
##
## sigma: 3.6118
##
## AIC AICc BIC
## 3115.860 3116.026 3135.387
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set -467.1298 10003.29 6482.739 Inf Inf 0.3081175 0.3828341
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round( abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using holt Model for ==> Covid 19 Infection cases in Brazil "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in holt Model for ==> Covid 19 Infection cases in Brazil "
paste(MAPE_Mean_All,"%")
## [1] "0.492 % MAPE 7 days Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in holt Model for ==> Covid 19 Infection cases in Brazil "
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
## date_holt validation_data_by_name actual_data forecasting_holt
## 1 2021-01-04 Monday 7716405 7741394
## 2 2021-01-05 Tuesday 7733746 7782326
## 3 2021-01-06 Wednesday 7753752 7823375
## 4 2021-01-07 Thursday 7810400 7864542
## 5 2021-01-08 Friday 7873830 7905825
## 6 2021-01-09 Saturday 7961673 7947227
## 7 2021-01-10 Sunday 8013708 7988746
## MAPE_holt_Model
## 1 0.324 %
## 2 0.628 %
## 3 0.898 %
## 4 0.693 %
## 5 0.406 %
## 6 0.181 %
## 7 0.311 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
## FD forecating_date forecasting_by_holt
## 1 2021-01-11 Monday 8030382
## 2 2021-01-12 Tuesday 8072136
## 3 2021-01-13 Wednesday 8114008
## 4 2021-01-14 Thursday 8155998
## 5 2021-01-15 Friday 8198105
## 6 2021-01-16 Saturday 8240330
## 7 2021-01-17 Sunday 8282673
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days) # Root mean square forecast error
MSE_Holt<-(sum((Error_Holt^2))/validation_data_days) # Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,MSE_Holt,RMSE_Holt,MAPE_Mean_All,MAD_Holt) # analysis of Error by using Holt's linear model shows result of correlation ,MSE ,MPER
## correlation_Holt MSE_Holt RMSE_Holt
## 1 0.9753755 1802673206 42457.9
## MAPE_Mean_All MAD_Holt
## 1 0.492 % MAPE 7 days Covid 19 Infection cases in Brazil 27131.59
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1 2021-01-04 Monday 24989.38 0.324 % 0.323 %
## 2 2021-01-05 Tuesday 48580.11 0.628 % 0.624 %
## 3 2021-01-06 Wednesday 69623.16 0.898 % 0.89 %
## 4 2021-01-07 Thursday 54141.59 0.693 % 0.688 %
## 5 2021-01-08 Friday 31995.45 0.406 % 0.405 %
## 6 2021-01-09 Saturday 14446.21 0.181 % 0.182 %
## 7 2021-01-10 Sunday 24962.34 0.311 % 0.312 %
#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series
paste ("tests For Check Stationarity in series ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series ==> Covid 19 Infection cases in Brazil "
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: data_series
## KPSS Level = 5.9017, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series) # applay pp test
##
## Phillips-Perron Unit Root Test
##
## data: data_series
## Dickey-Fuller Z(alpha) = -1.7739, Truncation lag parameter = 5, p-value
## = 0.9751
## alternative hypothesis: stationary
adf.test(data_series) # applay adf test
##
## Augmented Dickey-Fuller Test
##
## data: data_series
## Dickey-Fuller = -3.1481, Lag order = 7, p-value = 0.09694
## alternative hypothesis: stationary
ndiffs(data_series) # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in ==> Covid 19 Infection cases in Brazil "
kpss.test(diff1_x1) # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff1_x1
## KPSS Level = 4.3318, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1) # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff1_x1
## Dickey-Fuller Z(alpha) = -83.636, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1) # applay adf test after taking first differences
##
## Augmented Dickey-Fuller Test
##
## data: diff1_x1
## Dickey-Fuller = -1.3113, Lag order = 7, p-value = 0.8676
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub, cex.main,
## cex.lab, cex.sub, font.main, font.lab

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Covid 19 Infection cases in Brazil "
kpss.test(diff2_x1) # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
##
## KPSS Test for Level Stationarity
##
## data: diff2_x1
## KPSS Level = 0.03997, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1) # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
##
## Phillips-Perron Unit Root Test
##
## data: diff2_x1
## Dickey-Fuller Z(alpha) = -217.44, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1) # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
##
## Augmented Dickey-Fuller Test
##
## data: diff2_x1
## Dickey-Fuller = -8.8838, Lag order = 7, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp")) #applaying auto arima
##
## ARIMA(0,2,0) : 7781.254
## ARIMA(0,2,1) : 7783.125
## ARIMA(0,2,2) : 7666.805
## ARIMA(0,2,3) : 7667.607
## ARIMA(0,2,4) : 7647.428
## ARIMA(0,2,5) : 7630.406
## ARIMA(1,2,0) : 7783.215
## ARIMA(1,2,1) : 7699.599
## ARIMA(1,2,2) : 7668.17
## ARIMA(1,2,3) : 7669.045
## ARIMA(1,2,4) : 7632.891
## ARIMA(2,2,0) : 7753.15
## ARIMA(2,2,1) : 7645.097
## ARIMA(2,2,2) : 7585.275
## ARIMA(2,2,3) : Inf
## ARIMA(3,2,0) : 7740.24
## ARIMA(3,2,1) : 7631.318
## ARIMA(3,2,2) : 7572.113
## ARIMA(4,2,0) : 7682.875
## ARIMA(4,2,1) : 7574.361
## ARIMA(5,2,0) : 7553.166
##
##
##
## Best model: ARIMA(5,2,0)
model1 # show the result of autoarima
## Series: data_series
## ARIMA(5,2,0)
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.3625 -0.5278 -0.4630 -0.4729 -0.5639
## s.e. 0.0439 0.0409 0.0438 0.0413 0.0444
##
## sigma^2 estimated as 55286712: log likelihood=-3770.47
## AIC=7552.93 AICc=7553.17 BIC=7576.33
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE)
{
order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
m <- order[7]
result <- paste("ARIMA(", order[1], ",", order[2], ",",
order[3], ")", sep = "")
if (m > 1 && sum(order[4:6]) > 0) {
result <- paste(result, "(", order[4], ",", order[5],
",", order[6], ")[", m, "]", sep = "")
}
if (padding && m > 1 && sum(order[4:6]) == 0) {
result <- paste(result, " ", sep = "")
if (m <= 9) {
result <- paste(result, " ", sep = "")
}
else if (m <= 99) {
result <- paste(result, " ", sep = "")
}
else {
result <- paste(result, " ", sep = "")
}
}
if (!is.null(object$xreg)) {
if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
result <- paste(result, "with drift ")
}
else {
result <- paste("Regression with", result, "errors")
}
}
else {
if (is.element("constant", names(object$coef)) || is.element("intercept",
names(object$coef))) {
result <- paste(result, "with non-zero mean")
}
else if (order[2] == 0 && order[5] == 0) {
result <- paste(result, "with zero mean ")
}
else {
result <- paste(result, " ")
}
}
if (!padding) {
result <- gsub("[ ]*$", "", result)
}
return(result)
}
source("stringthearima.R")
bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 5 2 0
strtoi(bestmodel[3])
## [1] 0
#2. Using ACF and PACF Function
#par(mfrow=c(1,2)) # Code for making two plot in one graph
acf(diff2_x1,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20)) # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast) # install library forecast
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima for forecasting
x1_model1 # Show result of best model of auto arima
##
## Call:
## arima(x = data_series, order = c(bestmodel))
##
## Coefficients:
## ar1 ar2 ar3 ar4 ar5
## -0.3625 -0.5278 -0.4630 -0.4729 -0.5639
## s.e. 0.0439 0.0409 0.0438 0.0413 0.0444
##
## sigma^2 estimated as 54529360: log likelihood = -3770.47, aic = 7552.93
paste ("accuracy of autoarima Model For ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For ==> Covid 19 Infection cases in Brazil "
accuracy(x1_model1) # aacuracy of best model from auto arima
## ME RMSE MAE MPE MAPE MASE ACF1
## Training set 332.0835 7364.251 4605.471 1.111238 3.168168 0.218893 -0.2665656
x1_model1$x # show result of best model from auto arima
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab) # checkresiduals from best model from using auto arima

##
## Ljung-Box test
##
## data: Residuals from ARIMA(5,2,0)
## Q* = 89.025, df = 5, p-value < 2.2e-16
##
## Model df: 5. Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for ==> Covid 19 Infection cases in Brazil "
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box") # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
##
## Box-Ljung test
##
## data: x1_model1$residuals^2
## X-squared = 134.44, df = 20, p-value < 2.2e-16
library(tseries)
jarque.bera.test(x1_model1$residuals) # Do test jarque.bera.test
##
## Jarque Bera Test
##
## data: x1_model1$residuals
## X-squared = 219, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100) ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE % For 7 days by using bats Model for ==> Covid 19 Infection cases in Brazil "
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for 7 days in bats Model for ==> Covid 19 Infection cases in Brazil "
paste(MAPE_Mean_All,"%")
## [1] "0.262 % MAPE 7 days Covid 19 Infection cases in Brazil %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for 7 days in bats Model for ==> Covid 19 Infection cases in Brazil "
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
## date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1 2021-01-04 Monday 7716405 7718452
## 2 2021-01-05 Tuesday 7733746 7735149
## 3 2021-01-06 Wednesday 7753752 7771917
## 4 2021-01-07 Thursday 7810400 7819727
## 5 2021-01-08 Friday 7873830 7874810
## 6 2021-01-09 Saturday 7961673 7916489
## 7 2021-01-10 Sunday 8013708 7945248
## MAPE_auto.arima_Model
## 1 0.027 %
## 2 0.018 %
## 3 0.234 %
## 4 0.119 %
## 5 0.012 %
## 6 0.568 %
## 7 0.854 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
## FD forecating_date forecasting_by_auto.arima
## 1 2021-01-11 Monday 7965856
## 2 2021-01-12 Tuesday 7992777
## 3 2021-01-13 Wednesday 8029930
## 4 2021-01-14 Thursday 8077486
## 5 2021-01-15 Friday 8124089
## 6 2021-01-16 Saturday 8162421
## 7 2021-01-17 Sunday 8191038
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in ", frequency ,y_lab , sep=" "), col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days) # Root mean square forecast error
MSE_auto.arima<-(sum((Error_auto.arima^2))/validation_data_days) # Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,MSE_auto.arima,RMSE_auto.arima,MAPE_Mean_All,MAD_auto.arima) # analysis of Error by using Holt's linear model shows result of correlation ,MSE ,MPER
## correlation_auto.arima MSE_auto.arima RMSE_auto.arima
## 1 0.9856113 1021780393 31965.3
## MAPE_Mean_All MAD_auto.arima
## 1 0.262 % MAPE 7 days Covid 19 Infection cases in Brazil 11674.67
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1 2021-01-04 Monday 2046.947 0.027 %
## 2 2021-01-05 Tuesday 1403.110 0.018 %
## 3 2021-01-06 Wednesday 18165.040 0.234 %
## 4 2021-01-07 Thursday 9326.717 0.119 %
## 5 2021-01-08 Friday 979.649 0.012 %
## 6 2021-01-09 Saturday 45183.953 0.568 %
## 7 2021-01-10 Sunday 68460.196 0.854 %
## REOF_F_auto.arima
## 1 0.027 %
## 2 0.018 %
## 3 0.234 %
## 4 0.119 %
## 5 0.012 %
## 6 0.571 %
## 7 0.862 %
# SIR Model
#install.packages("dplyr")
library(deSolve)
first<-rows-13
secondr<-rows-7
vector_SIR<-original_data[first:secondr]
Infected <- c(vector_SIR)
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.012239536 0.006763319
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR<-data.frame(out)
validation_forecast<-result_SIR$I
## Error of forecasting
Error_SIR<-abs(testing_data-validation_forecast) # Absolute error of forecast (AEOF)
REOF_A_SIR<-abs(((testing_data-validation_forecast)/testing_data)*100) #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_SIR<-abs(((testing_data-validation_forecast)/validation_forecast)*100) #Relative error of forecast (divided by forecast)(REOF_F)
correlation_SIR<-cor(testing_data,validation_forecast, method = c("pearson")) # correlation coefficient between predicted and actual values
RMSE_SIR<-sqrt(sum((Error_SIR^2))/validation_data_days) # Root mean square forecast error
MSE_SIR<-(sum((Error_SIR^2))/validation_data_days) # Root mean square forecast error
MAD_SIR<-abs((sum(testing_data-validation_forecast))/validation_data_days) # average forecast accuracy
AEOF_SIR<-c(Error_SIR)
REOF_A_SIR<-c(paste(round(REOF_A_SIR,3),"%"))
REOF_A_SIR1<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
REOF_F_SIR<-c(paste(round(REOF_F_SIR,3),"%"))
MAPE_Mean_All<-paste(round(mean(abs(((testing_data-validation_forecast)/testing_data)*100)),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
data.frame(correlation_SIR,MSE_SIR,RMSE_SIR,MAPE_Mean_All,MAD_SIR) # analysis of Error by using SIR's linear model shows result of correlation ,MSE ,MPER
## correlation_SIR MSE_SIR RMSE_SIR
## 1 0.975576 67830317745 260442.5
## MAPE_Mean_All MAD_SIR
## 1 3.284 % MAPE 7 days Covid 19 Infection cases in Brazil 257784.1
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_SIR,REOF_A_SIR,REOF_F_SIR,validation_forecast,testing_data) # Analysis of error shows result AEOF,REOF_A,REOF_F
## validation_dates Validation_day_name AEOF_SIR REOF_A_SIR REOF_F_SIR
## 1 2021-01-04 Monday 250599.0 3.248 % 3.357 %
## 2 2021-01-05 Tuesday 230176.6 2.976 % 3.068 %
## 3 2021-01-06 Wednesday 212266.4 2.738 % 2.815 %
## 4 2021-01-07 Thursday 230845.4 2.956 % 3.046 %
## 5 2021-01-08 Friday 256053.3 3.252 % 3.361 %
## 6 2021-01-09 Saturday 305520.9 3.837 % 3.991 %
## 7 2021-01-10 Sunday 319026.9 3.981 % 4.146 %
## validation_forecast testing_data
## 1 7465806 7716405
## 2 7503569 7733746
## 3 7541486 7753752
## 4 7579555 7810400
## 5 7617777 7873830
## 6 7656152 7961673
## 7 7694681 8013708
## forecasting by SIR model
Infected <- c(tail(original_data,validation_data_days))
Day <- 1:(length(Infected))
N <- Population # population of the us
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
init <- c(S = N-Infected[1], I = Infected[1], R = 0)
RSS <- function(parameters) {
names(parameters) <- c("beta", "gamma")
out <- ode(y = init, times = Day, func = SIR, parms = parameters)
fit <- out[ , 3]
sum((Infected - fit)^2)
}
# optimize with some sensible conditions
Opt <- optim(c(0.5, 0.5), RSS, method = "L-BFGS-B",
lower = c(0, 0), upper = c(10, 10))
Opt$message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
Opt_par <- setNames(Opt$par, c("beta", "gamma"))
Opt_par
## beta gamma
## 0.005859088 0.000000000
# beta gamma
# 0.6512503 0.4920399
out <- ode(y = init, times = Day, func = SIR, parms = Opt_par)
plot(out)
plot(out, obs=data.frame(time=Day, I=Infected))


result_SIR <-data.frame(out)
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_SIR=result_SIR$I)
## FD forecating_date forecasting_by_SIR
## 1 2021-01-11 Monday 7716405
## 2 2021-01-12 Tuesday 7760100
## 3 2021-01-13 Wednesday 7804033
## 4 2021-01-14 Thursday 7848205
## 5 2021-01-15 Friday 7892617
## 6 2021-01-16 Saturday 7937271
## 7 2021-01-17 Sunday 7982168
# Choose Best model by least error
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using bats model and BATS Model, Holt's Linear Models , and autoarima for ==> Covid 19 Infection cases in Brazil "
M1<-mean(REOF_A_bats)
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using TBATS Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using TBATS Model For ==> Covid 19 Infection cases in Brazil "
M2<-mean(REOF_A_tbats1)
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using Holt's Linear << Exponential Smoothing >> For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using Holt's Linear << Exponential Smoothing >> For ==> Covid 19 Infection cases in Brazil "
M3<-REOF_A_Holt11
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using auto arima Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using auto arima Model For ==> Covid 19 Infection cases in Brazil "
M4<-mean(REOF_A_auto.arima)
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using SIR Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using SIR Model For ==> Covid 19 Infection cases in Brazil "
M5<-REOF_A_SIR1
paste("System Summarizes Error ==> ( MAPE ) of Forecasting by using autoarima Model For ==> ", y_lab , sep=" ")
## [1] "System Summarizes Error ==> ( MAPE ) of Forecasting by using autoarima Model For ==> Covid 19 Infection cases in Brazil "
data.frame(validation_dates,forecating_date=forecasting_data_by_name,MAPE_bats_error=REOF_A_bats,MAPE_TBATS_error=REOF_A_tbats1,MAPE_Holt_error=REOF_A_Holt1,MAPE_autoarima_error = REOF_A_auto.arima)
## validation_dates forecating_date MAPE_bats_error MAPE_TBATS_error
## 1 2021-01-04 Monday 0.12438623 0.09557603
## 2 2021-01-05 Tuesday 0.40052263 0.37922542
## 3 2021-01-06 Wednesday 0.64082086 0.65063075
## 4 2021-01-07 Thursday 0.40661065 0.39452040
## 5 2021-01-08 Friday 0.08948854 0.07246274
## 6 2021-01-09 Saturday 0.52851413 0.53434332
## 7 2021-01-10 Sunday 0.69125690 0.72529774
## MAPE_Holt_error MAPE_autoarima_error
## 1 0.3238474 0.02652721
## 2 0.6281575 0.01814269
## 3 0.8979287 0.23427419
## 4 0.6931987 0.11941407
## 5 0.4063518 0.01244184
## 6 0.1814470 0.56751832
## 7 0.3114955 0.85428863
recommend_Model<-c(M1,M2,M3,M4,M5)
best_recommended_model<-min(recommend_Model)
paste ("lodaing ..... ... . .Select Minimum MAPE from Models for select best Model ==> ", y_lab , sep=" ")
## [1] "lodaing ..... ... . .Select Minimum MAPE from Models for select best Model ==> Covid 19 Infection cases in Brazil "
best_recommended_model
## [1] 0.261801
paste ("Best Model For Forecasting ==> ",y_lab, sep=" ")
## [1] "Best Model For Forecasting ==> Covid 19 Infection cases in Brazil "
if(best_recommended_model >= M1) {paste("System Recommend Bats Model That's better For forecasting==> ",y_lab, sep=" ")}
if(best_recommended_model >= M2) {paste("System Recommend That's better TBATS For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M3) {paste("System Recommend Holt's Linear Model < Exponential Smoothing Model > That's better For forecasting ==> ",y_lab, sep=" ")}
if(best_recommended_model >= M4) {paste("System Recommend auto arima Model That's better For forecasting ==> ",y_lab, sep=" ")}
## [1] "System Recommend auto arima Model That's better For forecasting ==> Covid 19 Infection cases in Brazil "
if(best_recommended_model >= M5) {paste("System Recommend SIR Model That's better For forecasting ==> ",y_lab, sep=" ")}
message("System finished Forecasting by using autoarima and Holt's ,TBATS, and SIR Model ==>",y_lab, sep=" ")
## System finished Forecasting by using autoarima and Holt's ,TBATS, and SIR Model ==>Covid 19 Infection cases in Brazil
message(" Thank you for using our System For Modelling ==> ",y_lab, sep=" ")
## Thank you for using our System For Modelling ==> Covid 19 Infection cases in Brazil