Infection Values Data Frame

Prev.Pos.Dogs.T1 = Prevalence of positive Dog Serology from original data at time point 1

Prev.Pos.Dogs.T3 = Prevalence of positive Dog Serology from original data at time point 3

Inc.MST2 = Incidence of positive Human MST from original data

Mean.Max.Saliva = I calculated the maximum saliva test for each dog and found the average of these maximum scores from each village

Mean.Saliva = I averaged the saliva scores for all tests taken from each village

Prev = The saliva dataset also had serology tests for the dogs so I calculated the prevalence from this

Saliva.Prevlence = If the saliva score was above 916 it counts as positive and below 916 counted as negative. I used all the tests to calculate the saliva prevelence in each village

InfectionValuesdf <- read.csv('InfectionValuesdf.csv')
row.names(InfectionValuesdf) <- InfectionValuesdf$Group
InfectionValuesdf <- InfectionValuesdf[-1]


InfectionValueslist.imp <-imputePCA(InfectionValuesdf)

InfectionValuesdf.imp <- as.data.frame(InfectionValueslist.imp[[1]])

InfectionValuesdf <-  InfectionValuesdf[,1:7]

      
InfectionValuesdf <- subset(InfectionValuesdf, !is.na(InfectionValuesdf$Mean.Saliva))




InfectionValuesdf
##       Prev.Pos.Dogs.T1 Prev.Pos.Dogs.T3   Inc.MST2 Mean.Max.Saliva Mean.Saliva
## BCVN         0.7777778        0.9333333 0.06206897       12188.260    7068.542
## BMCA         0.9090909        0.6842105 0.04395604       18520.143   10038.423
## BVSV         0.5833333        0.7250000 0.03900709        6626.440    4106.023
## MGROS        0.5555556        0.8400000 0.01276596        2543.100    2543.100
## MQBA         0.5384615        0.6304348 0.06845238        9086.183    4540.988
## PABE         0.8000000        0.8421053 0.05128205       17818.580   12414.814
## PD           0.7894737        0.7000000 0.05442177        9657.033    6450.597
## PF           0.6666667        0.6666667 0.04687500        9708.000    5116.465
##            Prev Saliva.Prevlence
## BCVN  0.7368421        0.7600000
## BMCA  0.6153846        0.7647059
## BVSV  0.4545455        0.6875000
## MGROS 0.0000000        0.1111111
## MQBA  0.5588235        0.8947368
## PABE  0.5714286        0.6666667
## PD    0.5714286        0.6250000
## PF    0.7058824        0.7083333

Environmental Variables Data Frame

EnviroVardf <- read.csv('EnviroVardf.csv')


row.names(EnviroVardf) <- EnviroVardf$Group
EnviroVardf <- EnviroVardf[-1]

EnviroVardf
##        Annual.Precipitation Wettest Driest Seasonal     Tmin     Tmax   Precip
## ABCHAC                 2545     465     23       74 233.6667 311.8333 212.0833
## BCVN                   2712     513     19       79 236.9167 311.1667 226.0000
## BMCA                   2565     472     21       75 234.1667 311.8333 213.7500
## BVSV                   2675     502     22       78 236.1667 311.4167 222.9167
## CD                     2533     463     21       74 233.8333 312.0000 211.0833
## CL                     2804     536     16       80 238.0833 311.0833 233.6667
## CM                     2506     457     21       75 234.0833 312.4167 208.8333
## FDR                    2484     448     23       73 233.0000 312.4167 207.0000
## JUCACH                 2492     451     22       73 233.0833 312.2500 207.6667
## MARU                   2549     467     22       75 234.0833 311.9167 212.4167
## MGROS                  2548     469     20       75 235.0000 312.0000 212.3333
## MQBA                   2751     522     17       79 237.5833 311.0833 229.2500
## PABE                   2608     484     21       76 235.5000 311.9167 217.3333
## PD                     2595     480     22       76 234.4167 311.5000 216.2500
## PF                     2742     520     17       79 237.2500 311.1667 228.5000
## SM                     2506     455     21       74 233.3333 311.8333 208.8333
## VC                     2634     491     23       77 235.0000 311.3333 219.5000
## VUPD                   2586     477     22       75 234.4167 311.6667 215.5000
##        NDVIMean NDVIMedian  NDVIMax  NDVIMin  LSTMean LSTMedian   LSTMax
## ABCHAC 71171480   72124656 83807144 39128224 300.5819  300.8271 303.0098
## BCVN   68978590   74344300 88563360 23014351 301.3609  301.3182 302.7504
## BMCA   76365818   81642252 89359640 22570000 301.6482  301.5077 303.9783
## BVSV   66396028   71211897 80306307 35999860 301.2537  301.3463 302.7621
## CD     67193928   70285952 85833000 33270751 301.3924  301.0569 303.1886
## CL     61414923   63564123 77102720 21825432 300.6765  300.5820 302.5384
## CM     71262930   75586501 85088944 21250836 302.0870  302.1326 303.5665
## FDR    59531105   67846856 83440456 10942584 299.9074  299.8832 301.1968
## JUCACH 76857983   83674620 90319288 11576548 300.0859  300.0298 302.0617
## MARU   68922772   76347064 87785160 14878260 301.0485  301.0889 302.8358
## MGROS  59298448   64433116 78529904 12650532 303.4854  303.2383 305.1004
## MQBA   68256453   73206280 82936463 31080920 301.2487  301.2910 303.3614
## PABE   57434785   55752292 83119800 24896600 302.8574  302.5098 305.1974
## PD     74303323   76214741 83793944 43079578 300.5899  301.1789 302.7252
## PF     72026454   75880300 86175296 34324358 301.3940  301.3448 303.0893
## SM     67031112   73060000 83226112 13844195 300.1174  300.0407 301.8558
## VC     74922352   76383299 83954072 51465236 301.0097  300.9769 303.6098
## VUPD   68107798   70802201 79956392 17223452 301.1254  301.6835 303.3354
##          LSTMin  EvapoMean EvapoMedian   EvapoMax    EvapoMin
## ABCHAC 296.1200   31.48407    30.30290   50.20264   14.176617
## BCVN   299.6700   34.04578    32.61080   59.02321   13.396488
## BMCA   300.3395   40.50005    39.14014   71.94923   15.479762
## BVSV   300.0952   32.44249    29.98976   51.49193   10.128520
## CD     299.6663   28.59371    27.74046   52.54673    8.543652
## CL     298.4493 1479.88998  1479.22331 1488.55842 1472.834867
## CM     300.4409   34.06431    31.96171   54.65224   13.881584
## FDR    299.0244  618.75475   619.07491  632.48888  597.756224
## JUCACH 298.6659   35.28196    36.10414   51.93369   11.716193
## MARU   298.0121   38.78923    38.19121   67.12448   15.347358
## MGROS  301.9213   28.18515    24.99208   49.68626   11.888706
## MQBA   299.2475  255.44454   255.16791  277.84252  236.315641
## PABE   301.4247   26.73978    24.50969   47.55969   11.947536
## PD     293.0273   38.08400    36.30581   58.62634   14.902667
## PF     299.5918   33.13820    31.46552   59.30126    8.860002
## SM     298.2349 3274.23554  3274.23863 3274.24589 3274.221180
## VC     299.6946   33.92231    33.79157   53.97996   13.031496
## VUPD   295.1025   30.39886    31.15986   49.19620   14.207052

Run Environmental factors PCA

Broken stick

One of these procedures consists is computing a broken stick model, which randomly divides a stick of unit length into the same number of pieces as there are PCA eigenvalues. The theoretical equation for the broken stick model is known. The pieces are then put in order of decreasing lengths and compared to the eigenvalues. One interprets only the axes whose eigenvalues are larger than the length of the corresponding piece of the stick.

env.pca <- rda(EnviroVardf, scale = TRUE)
env.pca
## Call: rda(X = EnviroVardf, scale = TRUE)
## 
##               Inertia Rank
## Total              19     
## Unconstrained      19   16
## Inertia is correlations 
## 
## Eigenvalues for unconstrained axes:
##   PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9  PC10  PC11  PC12  PC13 
## 6.936 5.144 3.500 1.356 0.932 0.566 0.245 0.168 0.094 0.045 0.007 0.003 0.003 
##  PC14  PC15  PC16 
## 0.001 0.000 0.000
summary(env.pca) # Default scaling 2
## 
## Call:
## rda(X = EnviroVardf, scale = TRUE) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total              19          1
## Unconstrained      19          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                          PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Eigenvalue            6.9365 5.1436 3.4995 1.35551 0.93222 0.56593 0.24532
## Proportion Explained  0.3651 0.2707 0.1842 0.07134 0.04906 0.02979 0.01291
## Cumulative Proportion 0.3651 0.6358 0.8200 0.89132 0.94039 0.97017 0.98308
##                            PC8      PC9     PC10      PC11      PC12      PC13
## Eigenvalue            0.168051 0.094069 0.045257 0.0070587 0.0033651 0.0025202
## Proportion Explained  0.008845 0.004951 0.002382 0.0003715 0.0001771 0.0001326
## Cumulative Proportion 0.991927 0.996878 0.999260 0.9996318 0.9998089 0.9999415
##                            PC14      PC15      PC16
## Eigenvalue            1.095e-03 1.538e-05 7.292e-07
## Proportion Explained  5.762e-05 8.094e-07 3.838e-08
## Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  4.239363 
## 
## 
## Species scores
## 
##                          PC1      PC2      PC3        PC4       PC5       PC6
## Annual.Precipitation -0.9291  0.19192  0.19285  0.0002482  0.070519 -0.007338
## Wettest              -0.9362  0.17394  0.18126 -0.0102013  0.057368 -0.005666
## Driest                0.7436 -0.30070  0.07543  0.3759915 -0.114385 -0.215023
## Seasonal             -0.9276  0.15368  0.16788 -0.0624964  0.005468 -0.029221
## Tmin                 -0.9530  0.12522  0.03109 -0.0914466  0.092377  0.011680
## Tmax                  0.8233 -0.25622 -0.34949 -0.0867789  0.154320 -0.017635
## Precip               -0.9291  0.19192  0.19285  0.0002482  0.070519 -0.007338
## NDVIMean              0.1941 -0.17483  0.81137 -0.2300436 -0.364726  0.110572
## NDVIMedian            0.3180 -0.07767  0.76601 -0.3860945 -0.170015  0.143287
## NDVIMax               0.3692 -0.27016  0.51478 -0.5739610  0.041864 -0.105037
## NDVIMin              -0.3725 -0.20265  0.46611  0.4048829 -0.440981 -0.395562
## LSTMean              -0.3649 -0.58605 -0.60603 -0.1901818 -0.231410  0.067448
## LSTMedian            -0.3701 -0.62854 -0.51481 -0.0381138 -0.273125  0.227215
## LSTMax               -0.3550 -0.61567 -0.47256 -0.0678009 -0.404251  0.057501
## LSTMin               -0.2043 -0.21381 -0.49466 -0.5909345  0.066018 -0.477189
## EvapoMean             0.1640  0.90181 -0.23334 -0.0920573 -0.205243 -0.007130
## EvapoMedian           0.1644  0.90201 -0.23272 -0.0919657 -0.204801 -0.007040
## EvapoMax              0.1633  0.90147 -0.23286 -0.0948165 -0.206434 -0.006687
## EvapoMin              0.1628  0.90146 -0.23564 -0.0906428 -0.205751 -0.006546
## 
## 
## Site scores (weighted sums of species scores)
## 
##            PC1       PC2     PC3     PC4      PC5      PC6
## ABCHAC  0.6711 -0.325274  0.6061  1.5108 -0.44554 -0.29735
## BCVN   -1.0519 -0.026000  0.7041 -1.1326  0.81667  0.00376
## BMCA    0.4003 -0.744075  0.4750 -1.6718 -0.98284  0.23451
## BVSV   -0.7510 -0.113427  0.1497  0.8159  0.24699 -1.30435
## CD      0.5443 -0.516282 -0.1584  0.1104  0.06318 -1.08185
## CL     -1.7901  2.029440 -0.4379  0.3918  0.87411  0.43693
## CM      0.6489 -0.877778 -0.5420 -0.9173 -0.50100  0.38687
## FDR     1.5041  0.631453 -0.4918  0.7461  2.54073 -1.08790
## JUCACH  1.5306 -0.239235  1.1809 -1.2590  1.08296  0.33008
## MARU    0.6533 -0.361026  0.2979 -0.4193  0.70775  0.66163
## MGROS  -0.2613 -1.084487 -2.4527 -0.2313 -0.45366  0.92813
## MQBA   -1.5341  0.312223  0.4480 -0.4449  0.19744  0.30453
## PABE   -0.5694 -0.902448 -2.0549  0.3121 -0.06099 -0.96635
## PD      0.1629 -0.149258  1.3225  1.8159 -0.96521  1.29129
## PF     -1.3990 -0.006176  0.8948 -0.9988  0.07998  0.05320
## SM      1.3707  3.036106 -0.8143 -0.6900 -1.78984 -0.05564
## VC     -0.3102 -0.397765  0.9807  0.5972 -1.58472 -2.07649
## VUPD    0.1807 -0.265993 -0.1075  1.4647  0.17398  2.23899
summary(env.pca, scaling = 1)
## 
## Call:
## rda(X = EnviroVardf, scale = TRUE) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total              19          1
## Unconstrained      19          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                          PC1    PC2    PC3     PC4     PC5     PC6     PC7
## Eigenvalue            6.9365 5.1436 3.4995 1.35551 0.93222 0.56593 0.24532
## Proportion Explained  0.3651 0.2707 0.1842 0.07134 0.04906 0.02979 0.01291
## Cumulative Proportion 0.3651 0.6358 0.8200 0.89132 0.94039 0.97017 0.98308
##                            PC8      PC9     PC10      PC11      PC12      PC13
## Eigenvalue            0.168051 0.094069 0.045257 0.0070587 0.0033651 0.0025202
## Proportion Explained  0.008845 0.004951 0.002382 0.0003715 0.0001771 0.0001326
## Cumulative Proportion 0.991927 0.996878 0.999260 0.9996318 0.9998089 0.9999415
##                            PC14      PC15      PC16
## Eigenvalue            1.095e-03 1.538e-05 7.292e-07
## Proportion Explained  5.762e-05 8.094e-07 3.838e-08
## Cumulative Proportion 1.000e+00 1.000e+00 1.000e+00
## 
## Scaling 1 for species and site scores
## * Sites are scaled proportional to eigenvalues
## * Species are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  4.239363 
## 
## 
## Species scores
## 
##                          PC1     PC2      PC3        PC4      PC5      PC6
## Annual.Precipitation -1.5377  0.3689  0.44937  0.0009291  0.31837 -0.04252
## Wettest              -1.5495  0.3343  0.42235 -0.0381928  0.25899 -0.03283
## Driest                1.2307 -0.5779  0.17575  1.4076787 -0.51640 -1.24589
## Seasonal             -1.5353  0.2954  0.39116 -0.2339808  0.02468 -0.16931
## Tmin                 -1.5772  0.2407  0.07244 -0.3423677  0.41704  0.06768
## Tmax                  1.3625 -0.4924 -0.81433 -0.3248923  0.69669 -0.10218
## Precip               -1.5377  0.3689  0.44937  0.0009291  0.31837 -0.04252
## NDVIMean              0.3213 -0.3360  1.89056 -0.8612627 -1.64659  0.64068
## NDVIMedian            0.5263 -0.1493  1.78487 -1.4455032 -0.76755  0.83024
## NDVIMax               0.6111 -0.5192  1.19949 -2.1488587  0.18900 -0.60861
## NDVIMin              -0.6166 -0.3895  1.08608  1.5158455 -1.99085 -2.29198
## LSTMean              -0.6039 -1.1264 -1.41210 -0.7120238 -1.04472  0.39081
## LSTMedian            -0.6125 -1.2080 -1.19955 -0.1426947 -1.23305  1.31654
## LSTMax               -0.5875 -1.1833 -1.10110 -0.2538403 -1.82503  0.33317
## LSTMin               -0.3381 -0.4109 -1.15260 -2.2124058  0.29805 -2.76494
## EvapoMean             0.2714  1.7332 -0.54370 -0.3446543 -0.92659 -0.04131
## EvapoMedian           0.2721  1.7336 -0.54225 -0.3443115 -0.92459 -0.04079
## EvapoMax              0.2702  1.7326 -0.54258 -0.3549843 -0.93196 -0.03875
## EvapoMin              0.2694  1.7326 -0.54907 -0.3393586 -0.92888 -0.03793
## 
## 
## Site scores (weighted sums of species scores)
## 
##             PC1       PC2      PC3      PC4      PC5       PC6
## ABCHAC  0.40549 -0.169241  0.26010  0.40353 -0.09869 -0.051318
## BCVN   -0.63555 -0.013528  0.30216 -0.30251  0.18090  0.000649
## BMCA    0.24189 -0.387145  0.20387 -0.44654 -0.21770  0.040473
## BVSV   -0.45376 -0.059017  0.06425  0.21794  0.05471 -0.225112
## CD      0.32887 -0.268623 -0.06800  0.02948  0.01400 -0.186712
## CL     -1.08162  1.055926 -0.18795  0.10466  0.19362  0.075408
## CM      0.39207 -0.456711 -0.23262 -0.24500 -0.11097  0.066768
## FDR     0.90882  0.328547 -0.21108  0.19929  0.56278 -0.187755
## JUCACH  0.92481 -0.124475  0.50681 -0.33628  0.23988  0.056967
## MARU    0.39474 -0.187843  0.12785 -0.11200  0.15677  0.114189
## MGROS  -0.15789 -0.564263 -1.05262 -0.06178 -0.10049  0.160182
## MQBA   -0.92691  0.162451  0.19227 -0.11884  0.04373  0.052557
## PABE   -0.34406 -0.469547 -0.88192  0.08336 -0.01351 -0.166777
## PD      0.09845 -0.077660  0.56756  0.48502 -0.21380  0.222858
## PF     -0.84531 -0.003213  0.38402 -0.26677  0.01772  0.009181
## SM      0.82818  1.579698 -0.34945 -0.18429 -0.39646 -0.009602
## VC     -0.18740 -0.206959  0.42089  0.15951 -0.35102 -0.358372
## VUPD    0.10918 -0.138397 -0.04616  0.39121  0.03854  0.386417
# Eigenvalues
ev <- env.pca$CA$eig

# Scree plot and broken stick model
dev.new(title = "Scree plot of PCA eigenvalues", noRStudioGD = TRUE)
screeplot(env.pca, bstick = TRUE, npcs = length(env.pca$CA$eig))

Environmental PCA biplots : Scaling 1 and 2

Scaling Types

Scaling 1 : Distances among objects in the biplot are approximations of their Euclidean distances in multidimensional space. (2) The angles among descriptor vectors do not reflect their correlations. If the main interest of the analysis is to interpret the relationships among objects, choose scaling 1.

Scaling 2 : Distances among objects in the biplot are not approximations of their Euclidean distances in multidimensional space. (2) The angles between descriptors in the biplot reflect their correlations.1. If the main interest focuses on the relationships among descriptors, choose scaling 2.

dev.new(width = 12,
   height = 6,
   title = "PCA biplots - environmental variables - cleanplot.pca", 
   noRStudioGD = TRUE
)
par(mfrow = c(1, 2))
cleanplot.pca(env.pca, scaling = 1, mar.percent = 0.08)
cleanplot.pca(env.pca, scaling = 2, mar.percent = 0.04)

Clustering of Environmental Factors

# Clustering the objects using the environmental data: Euclidean
# distance after standardizing the variables, followed by Ward
# clustering
env.w <- hclust(dist(scale(EnviroVardf)), "ward.D")
# Cut the dendrogram to yield 4 groups
gr <- cutree(env.w, k = 4)
grl <- levels(factor(gr))

# Extract the site scores, scaling 1
sit.sc1 <- scores(env.pca, display = "wa", scaling = 1)

# Plot the sites with cluster symbols and colours (scaling 1)
dev.new(title = "Ordination and clustering", noRStudioGD = TRUE)
p <- plot(
  env.pca,
  display = "wa",
  scaling = 1,
  type = "n",
  main = "PCA correlation + clusters"
)
abline(v = 0, lty = "dotted")
abline(h = 0, lty = "dotted")
for (i in 1:length(grl)) {
  points(sit.sc1[gr == i, ],
         pch = (14 + i),
         cex = 2,
         col = i + 1)
}
text(sit.sc1, row.names(EnviroVardf), cex = 0.7, pos = 3)
# Add the dendrogram
ordicluster(p, env.w, col = "dark grey")
# Add legend interactively
#legend(
 # locator(1),
  #paste("Cluster", c(1:length(grl))),
  #pch = 14 + c(1:length(grl)),
  #col = 1 + c(1:length(grl)),
  #pt.cex = 2
#)

Run Infection Scores PCA

inf.pca <- rda(InfectionValuesdf, scale = TRUE)
inf.pca
## Call: rda(X = InfectionValuesdf, scale = TRUE)
## 
##               Inertia Rank
## Total               7     
## Unconstrained       7    7
## Inertia is correlations 
## 
## Eigenvalues for unconstrained axes:
##   PC1   PC2   PC3   PC4   PC5   PC6   PC7 
## 4.102 1.772 0.719 0.242 0.108 0.046 0.012
summary(inf.pca) # Default scaling 2
## 
## Call:
## rda(X = InfectionValuesdf, scale = TRUE) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total               7          1
## Unconstrained       7          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                         PC1    PC2    PC3     PC4     PC5      PC6      PC7
## Eigenvalue            4.102 1.7716 0.7186 0.24210 0.10771 0.045946 0.011999
## Proportion Explained  0.586 0.2531 0.1027 0.03459 0.01539 0.006564 0.001714
## Cumulative Proportion 0.586 0.8391 0.9417 0.97633 0.99172 0.998286 1.000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  2.645751 
## 
## 
## Species scores
## 
##                      PC1     PC2      PC3       PC4       PC5      PC6
## Prev.Pos.Dogs.T1 -0.7473 -0.5403 -0.19231 -0.305370 -0.120160 -0.06807
## Prev.Pos.Dogs.T3  0.1039 -0.7147  0.68901  0.006342  0.050572 -0.03354
## Inc.MST2         -0.7696  0.4765  0.34353  0.090395 -0.232186  0.01499
## Mean.Max.Saliva  -0.9045 -0.3394 -0.18443  0.142592  0.066692 -0.03882
## Mean.Saliva      -0.8038 -0.5185 -0.13268  0.237179 -0.006209  0.08940
## Prev             -0.8939  0.2827  0.17354 -0.243349  0.133328  0.11767
## Saliva.Prevlence -0.8229  0.5273  0.08416  0.069509  0.120598 -0.12891
## 
## 
## Site scores (weighted sums of species scores)
## 
##            PC1     PC2      PC3      PC4     PC5      PC6
## BCVN  -0.60234 -0.4370  2.07585 -0.79678  0.1069 -0.64581
## BMCA  -0.96400 -0.6420 -1.54056 -0.35689  0.2825 -1.34892
## BVSV   0.59921  0.6000  0.02543  0.09193  1.2648 -0.69018
## MGROS  2.14133 -0.9562 -0.10429  0.15666 -0.3061 -0.09237
## MQBA  -0.09347  1.7379  0.16225  1.33468 -0.7056 -0.44448
## PABE  -0.84902 -1.2241  0.11205  1.56133  0.1138  1.10841
## PD    -0.17551  0.1611 -0.35682 -1.03888 -1.8645  0.50026
## PF    -0.05621  0.7602 -0.37391 -0.95204  1.1083  1.61309
summary(inf.pca, scaling = 1)
## 
## Call:
## rda(X = InfectionValuesdf, scale = TRUE) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total               7          1
## Unconstrained       7          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                         PC1    PC2    PC3     PC4     PC5      PC6      PC7
## Eigenvalue            4.102 1.7716 0.7186 0.24210 0.10771 0.045946 0.011999
## Proportion Explained  0.586 0.2531 0.1027 0.03459 0.01539 0.006564 0.001714
## Cumulative Proportion 0.586 0.8391 0.9417 0.97633 0.99172 0.998286 1.000000
## 
## Scaling 1 for species and site scores
## * Sites are scaled proportional to eigenvalues
## * Species are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  2.645751 
## 
## 
## Species scores
## 
##                      PC1     PC2     PC3     PC4      PC5     PC6
## Prev.Pos.Dogs.T1 -0.9762 -1.0739 -0.6002 -1.6420 -0.96867 -0.8401
## Prev.Pos.Dogs.T3  0.1357 -1.4206  2.1505  0.0341  0.40768 -0.4140
## Inc.MST2         -1.0054  0.9472  1.0722  0.4861 -1.87176  0.1850
## Mean.Max.Saliva  -1.1816 -0.6746 -0.5756  0.7667  0.53763 -0.4792
## Mean.Saliva      -1.0501 -1.0307 -0.4141  1.2753 -0.05005  1.1035
## Prev             -1.1677  0.5619  0.5417 -1.3085  1.07482  1.4524
## Saliva.Prevlence -1.0749  1.0480  0.2627  0.3738  0.97220 -1.5912
## 
## 
## Site scores (weighted sums of species scores)
## 
##            PC1      PC2       PC3      PC4      PC5       PC6
## BCVN  -0.46110 -0.21984  0.665085 -0.14818  0.01326 -0.052321
## BMCA  -0.73795 -0.32298 -0.493582 -0.06637  0.03504 -0.109286
## BVSV   0.45871  0.30186  0.008148  0.01710  0.15689 -0.055917
## MGROS  1.63921 -0.48103 -0.033414  0.02913 -0.03797 -0.007483
## MQBA  -0.07155  0.87432  0.051985  0.24821 -0.08753 -0.036010
## PABE  -0.64993 -0.61581  0.035899  0.29036  0.01411  0.089800
## PD    -0.13435  0.08105 -0.114323 -0.19320 -0.23128  0.040530
## PF    -0.04303  0.38243 -0.119798 -0.17705  0.13748  0.130687
# Eigenvalues
infev <- inf.pca$CA$eig

# Scree plot and broken stick model
dev.new(title = "Scree plot of PCA eigenvalues", noRStudioGD = TRUE)
screeplot(inf.pca, bstick = TRUE, npcs = length(inf.pca$CA$eig))

Infection PCA biplots : Scaling 1 and 2

## Cleanplot PCA biplots: scaling 1 and scaling 2


dev.new(width = 12,
   height = 6,
   title = "PCA biplots - Infection variables - cleanplot.pca", 
   noRStudioGD = TRUE
)
par(mfrow = c(1, 2))
cleanplot.pca(inf.pca, scaling = 1, mar.percent = 0.08)
cleanplot.pca(inf.pca, scaling = 2, mar.percent = 0.04)

Clustering of Infection Scores

# Clustering the objects using the environmental data: Euclidean
# distance after standardizing the variables, followed by Ward
# clustering
inf.w <- hclust(dist(scale(InfectionValuesdf)), "ward.D")
# Cut the dendrogram to yield 4 groups
gr <- cutree(inf.w, k = 4)
grl <- levels(factor(gr))

# Extract the site scores, scaling 1
sit.sc1 <- scores(inf.pca, display = "wa", scaling = 1)

# Plot the sites with cluster symbols and colours (scaling 1)
dev.new(title = "Ordination and clustering", noRStudioGD = TRUE)
p <- plot(
  inf.pca,
  display = "wa",
  scaling = 1,
  type = "n",
  main = "PCA correlation + clusters"
)
abline(v = 0, lty = "dotted")
abline(h = 0, lty = "dotted")
for (i in 1:length(grl)) {
  points(sit.sc1[gr == i, ],
         pch = (14 + i),
         cex = 2,
         col = i + 1)
}
text(sit.sc1, row.names(InfectionValuesdf), cex = 0.7, pos = 3)
# Add the dendrogram
ordicluster(p, inf.w, col = "dark grey")
# Add legend interactively
#legend(
 # locator(1),
  #paste("Cluster", c(1:length(grl))),
  #pch = 14 + c(1:length(grl)),
  #col = 1 + c(1:length(grl)),
  #pt.cex = 2
#)

Run Infection factors Imputed PCA

For the imputed data frame missing values were filled in using imputePCA

inf.imp.pca <- rda(InfectionValuesdf.imp, scale = TRUE)
inf.imp.pca
## Call: rda(X = InfectionValuesdf.imp, scale = TRUE)
## 
##               Inertia Rank
## Total               9     
## Unconstrained       9    9
## Inertia is correlations 
## 
## Eigenvalues for unconstrained axes:
##   PC1   PC2   PC3   PC4   PC5   PC6   PC7   PC8   PC9 
## 5.129 2.545 0.565 0.499 0.137 0.055 0.043 0.020 0.006
summary(inf.imp.pca) # Default scaling 2
## 
## Call:
## rda(X = InfectionValuesdf.imp, scale = TRUE) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total               9          1
## Unconstrained       9          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                          PC1    PC2    PC3    PC4     PC5      PC6     PC7
## Eigenvalue            5.1290 2.5450 0.5652 0.4995 0.13721 0.054739 0.04266
## Proportion Explained  0.5699 0.2828 0.0628 0.0555 0.01525 0.006082 0.00474
## Cumulative Proportion 0.5699 0.8527 0.9155 0.9710 0.98621 0.992292 0.99703
##                            PC8       PC9
## Eigenvalue            0.020306 0.0064063
## Proportion Explained  0.002256 0.0007118
## Cumulative Proportion 0.999288 1.0000000
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  3.567621 
## 
## 
## Species scores
## 
##                           PC1     PC2      PC3      PC4      PC5       PC6
## Prev.Pos.Dogs.T1       0.9714 -0.4741  0.04915  0.38736 -0.28100  0.119622
## Prev.Pos.Dogs.T3       0.6219 -0.7193 -0.40614 -0.57865 -0.05943  0.047958
## Inc.MST2               0.7879  0.6801  0.37467 -0.40777 -0.05376  0.074064
## Mean.Max.Saliva        1.1495 -0.1623  0.08168  0.12986  0.18503  0.009132
## Mean.Saliva            1.1077 -0.3478  0.05792  0.09441  0.20895  0.033567
## Prev                   1.0237  0.5439  0.01351 -0.02806 -0.16343 -0.189072
## Saliva.Prevlence       0.8161  0.8454  0.07577 -0.01456  0.05341  0.049907
## HumanRevGroupModLambda 0.4273  0.8488 -0.68889  0.16717  0.02690  0.031906
## DogRevGroupModLambda   0.9261 -0.7185 -0.03210  0.02176  0.02201 -0.121864
## 
## 
## Site scores (weighted sums of species scores)
## 
##             PC1      PC2       PC3      PC4       PC5      PC6
## ABCHAC -1.03636  0.26612 -0.044951  0.22271 -0.286679  0.76559
## All    -0.08213  0.01719  0.006013  0.03532  0.006155 -0.02621
## BCVN    0.79624  0.26392 -0.509215 -1.68743 -1.528627 -0.40687
## BMCA    0.83505  0.14287  0.413812  1.52915  1.032573  0.15980
## BVSV   -0.29580  1.06722 -1.980845  0.18186  0.234192  1.30109
## CD      0.83892 -1.17097 -0.270483 -0.40191 -0.116166  0.24913
## CL      0.42336  0.79845 -1.742644  0.34888  0.426673 -0.18651
## CM     -0.18274 -0.60597 -0.012914  0.24330  0.583622 -1.64942
## FDR    -1.87605  0.53767  0.935772  0.12954  0.264089 -0.63524
## JUCACH  0.01415 -0.60336  0.131791  1.02751 -0.688226  0.32073
## MARU   -0.62213  0.12197 -0.082952  1.01997 -0.317605 -0.02302
## MGROS  -1.42854 -1.57322 -0.007298 -0.89742 -0.063719  0.70759
## MQBA   -0.10604  1.41825  1.508961 -0.78869  0.436117  1.16889
## PABE    0.94165 -0.46838  0.442739 -0.28895  2.007664 -0.04833
## PD      0.16065  0.32151  0.706839  0.12406 -1.134836  0.14348
## PF      0.06631  0.90421  0.004924  0.32805 -0.756406 -2.06608
## SM      0.30948 -1.60428 -0.111311  0.76248 -0.699273  0.36676
## VC     -0.26307 -0.20772 -0.465263 -1.65294  1.091834 -0.63182
## VUPD    1.50705  0.37452  1.077024 -0.23548 -0.491383  0.49045
summary(inf.imp.pca, scaling = 1)
## 
## Call:
## rda(X = InfectionValuesdf.imp, scale = TRUE) 
## 
## Partitioning of correlations:
##               Inertia Proportion
## Total               9          1
## Unconstrained       9          1
## 
## Eigenvalues, and their contribution to the correlations 
## 
## Importance of components:
##                          PC1    PC2    PC3    PC4     PC5      PC6     PC7
## Eigenvalue            5.1290 2.5450 0.5652 0.4995 0.13721 0.054739 0.04266
## Proportion Explained  0.5699 0.2828 0.0628 0.0555 0.01525 0.006082 0.00474
## Cumulative Proportion 0.5699 0.8527 0.9155 0.9710 0.98621 0.992292 0.99703
##                            PC8       PC9
## Eigenvalue            0.020306 0.0064063
## Proportion Explained  0.002256 0.0007118
## Cumulative Proportion 0.999288 1.0000000
## 
## Scaling 1 for species and site scores
## * Sites are scaled proportional to eigenvalues
## * Species are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  3.567621 
## 
## 
## Species scores
## 
##                           PC1     PC2      PC3      PC4     PC5     PC6
## Prev.Pos.Dogs.T1       1.2868 -0.8916  0.19613  1.64430 -2.2758  1.5339
## Prev.Pos.Dogs.T3       0.8238 -1.3526 -1.62068 -2.45630 -0.4813  0.6149
## Inc.MST2               1.0436  1.2789  1.49511 -1.73095 -0.4354  0.9497
## Mean.Max.Saliva        1.5226 -0.3052  0.32593  0.55126  1.4985  0.1171
## Mean.Saliva            1.4673 -0.6541  0.23111  0.40077  1.6922  0.4304
## Prev                   1.3561  1.0228  0.05392 -0.11910 -1.3236 -2.4244
## Saliva.Prevlence       1.0810  1.5898  0.30236 -0.06182  0.4325  0.6399
## HumanRevGroupModLambda 0.5660  1.5961 -2.74902  0.70962  0.2179  0.4091
## DogRevGroupModLambda   1.2268 -1.3512 -0.12811  0.09236  0.1782 -1.5626
## 
## 
## Site scores (weighted sums of species scores)
## 
##             PC1       PC2       PC3       PC4       PC5       PC6
## ABCHAC -0.78236  0.141514 -0.011265  0.052466 -0.035398  0.059706
## All    -0.06200  0.009141  0.001507  0.008321  0.000760 -0.002044
## BCVN    0.60109  0.140344 -0.127607 -0.397522 -0.188747 -0.031731
## BMCA    0.63039  0.075974  0.103700  0.360234  0.127496  0.012462
## BVSV   -0.22330  0.567515 -0.496392  0.042842  0.028917  0.101469
## CD      0.63331 -0.622684 -0.067782 -0.094681 -0.014344  0.019429
## CL      0.31960  0.424590 -0.436700  0.082189  0.052683 -0.014545
## CM     -0.13795 -0.322234 -0.003236  0.057316  0.072062 -0.128635
## FDR    -1.41625  0.285918  0.234501  0.030516  0.032608 -0.049541
## JUCACH  0.01068 -0.320848  0.033026  0.242058 -0.084978  0.025013
## MARU   -0.46966  0.064858 -0.020788  0.240283 -0.039216 -0.001796
## MGROS  -1.07842 -0.836588 -0.001829 -0.211413 -0.007868  0.055184
## MQBA   -0.08005  0.754180  0.378140 -0.185799  0.053849  0.091159
## PABE    0.71086 -0.249069  0.110949 -0.068071  0.247895 -0.003769
## PD      0.12128  0.170967  0.177131  0.029225 -0.140123  0.011190
## PF      0.05006  0.480830  0.001234  0.077281 -0.093397 -0.161129
## SM      0.23363 -0.853104 -0.027894  0.179623 -0.086342  0.028603
## VC     -0.19860 -0.110461 -0.116593 -0.389396  0.134814 -0.049274
## VUPD    1.13769  0.199158  0.269898 -0.055473 -0.060673  0.038249
# Eigenvalues
infev <- inf.imp.pca$CA$eig

# Scree plot and broken stick model
dev.new(title = "Scree plot of PCA eigenvalues", noRStudioGD = TRUE)
screeplot(inf.imp.pca, bstick = TRUE, npcs = length(inf.imp.pca$CA$eig))

Infection Imputed PCA biplots : Scaling 1 and 2

## Cleanplot PCA biplots: scaling 1 and scaling 2


dev.new(width = 12,
   height = 6,
   title = "PCA biplots - Infection variables Imputed- cleanplot.pca", 
   noRStudioGD = TRUE
)
par(mfrow = c(1, 2))
cleanplot.pca(inf.imp.pca, scaling = 1, mar.percent = 0.08)
cleanplot.pca(inf.imp.pca, scaling = 2, mar.percent = 0.04)

Clustering of Infection Scores Imputed

# Clustering the objects using the environmental data: Euclidean
# distance after standardizing the variables, followed by Ward
# clustering
inf.imp.w <- hclust(dist(scale(InfectionValuesdf.imp)), "ward.D")
# Cut the dendrogram to yield 4 groups
gr <- cutree(inf.imp.w, k = 4)
grl <- levels(factor(gr))

# Extract the site scores, scaling 1
sit.sc1 <- scores(inf.imp.pca, display = "wa", scaling = 1)

# Plot the sites with cluster symbols and colours (scaling 1)
dev.new(title = "Ordination and clustering", noRStudioGD = TRUE)
p <- plot(
  inf.imp.pca,
  display = "wa",
  scaling = 1,
  type = "n",
  main = "PCA correlation + clusters"
)
abline(v = 0, lty = "dotted")
abline(h = 0, lty = "dotted")
for (i in 1:length(grl)) {
  points(sit.sc1[gr == i, ],
         pch = (14 + i),
         cex = 2,
         col = i + 1)
}
text(sit.sc1, row.names(InfectionValuesdf.imp), cex = 0.7, pos = 3)
# Add the dendrogram
ordicluster(p, inf.imp.w, col = "dark grey")
# Add legend interactively
#legend(
 # locator(1),
  #paste("Cluster", c(1:length(grl))),
  #pch = 14 + c(1:length(grl)),
  #col = 1 + c(1:length(grl)),
  #pt.cex = 2
#)

Redundancy Analysis

EnviroVardf <-EnviroVardf[c(row.names(InfectionValuesdf)),]


RDA <- rda(InfectionValuesdf, EnviroVardf)


coef(RDA)
##                               RDA1          RDA2
## Annual.Precipitation  1.109655e+00  1.863965e-01
## Wettest              -5.232265e+00 -8.068760e-01
## Driest               -1.344334e+00 -4.686606e-01
## Seasonal              1.120137e+01  2.407766e+00
## Tmin                  2.554251e+00 -1.861547e+00
## Tmax                  4.089716e+00  7.955711e-01
## Precip                          NA            NA
## NDVIMean             -4.590814e-09 -1.445956e-07
## NDVIMedian                      NA            NA
## NDVIMax                         NA            NA
## NDVIMin                         NA            NA
## LSTMean                         NA            NA
## LSTMedian                       NA            NA
## LSTMax                          NA            NA
## LSTMin                          NA            NA
## EvapoMean                       NA            NA
## EvapoMedian                     NA            NA
## EvapoMax                        NA            NA
## EvapoMin                        NA            NA
# Unadjusted R^2 retrieved from the rda object
R2 <- RsquareAdj(RDA)$r.squared

# Adjusted R^2 retrieved from the rda object
R2adj <- RsquareAdj(RDA)$adj.r.squared

# Scaling 1
plot(RDA,
scaling = 1,
display = c("sp", "lc", "cn"),
main = "Triplot RDA  ~ env3 - scaling 1 - lc scores"
)